Ryan Peckner, UC Berkeley SMALL REU at Williams College (advisor Steven J. Miller)

Young Mathematicians Conference The Ohio State University, August 29, 2009

Random Matrices and **Number Theory**

Random Matrix Ensembles

Background

000000

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1N} \\ a_{12} & a_{22} & a_{23} & \cdots & a_{2N} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{1N} & a_{2N} & a_{3N} & \cdots & a_{NN} \end{pmatrix} = A^{T}, \quad a_{ij} = a_{ji}$$

Fix p, define

$$Prob(A) = \prod_{1 \le i \le N} p(a_{ij}).$$

This means

$$\mathsf{Prob}\left(\mathsf{A}: \mathsf{a}_{ij} \in [\alpha_{ij}, \beta_{ij}]\right) \ = \ \prod_{1 \leq i \leq j \leq N} \int_{\mathsf{x}_{ij} = \alpha_{ij}}^{\beta_{ij}} \rho(\mathsf{x}_{ij}) d\mathsf{x}_{ij}.$$

Want to understand eigenvalues of A.

Eigenvalue Distribution

Background

$$\delta(x - x_0)$$
 is a unit point mass at x_0 : $\int f(x)\delta(x - x_0)dx = f(x_0)$.

To each A, attach a probability measure:

$$\mu_{A,N}(x) = \frac{1}{N} \sum_{i=1}^{N} \delta\left(x - \frac{\lambda_i(A)}{2\sqrt{N}}\right)$$

$$\int_{a}^{b} \mu_{A,N}(x) dx = \frac{\#\left\{\lambda_i : \frac{\lambda_i(A)}{2\sqrt{N}} \in [a,b]\right\}}{N}$$

Random Matrix Theory: Eigenvalue Trace Formula

Want to understand the eigenvalues of A, but it is the matrix elements that are chosen randomly and independently.

Eigenvalue Trace Lemma

Let A be an $N \times N$ matrix with eigenvalues $\lambda_i(A)$. Then

$$\sum_{n=1}^{N} \lambda_i(A)^k = \operatorname{Trace}(A^k),$$

where

Background

Trace
$$(A^k) = \sum_{i_1=1}^N \cdots \sum_{i_k=1}^N a_{i_1 i_2} a_{i_2 i_3} \cdots a_{i_k i_1}.$$

Riemann Zeta Function

Background

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \text{ Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Hypothesis (RH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Riemann Zeta Function

Background

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}, \text{ Re}(s) > 1.$$

Functional Equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s).$$

Riemann Hypothesis (RH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian matrices $\overline{A}^T = A$.

70 million spacings b/w adjacent zeros of $\zeta(s)$, starting at the 10^{20th} zero (from Odlyzko)

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s, f) = \Lambda_{\infty}(s, f)L(s, f) = \Lambda(1 - s, f).$$

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

q

General L-functions

Background

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s} = \prod_{p \text{ prime}} L_p(s, f)^{-1}, \quad \text{Re}(s) > 1.$$

Functional Equation:

$$\Lambda(s, f) = \Lambda_{\infty}(s, f)L(s, f) = \Lambda(1 - s, f).$$

Generalized Riemann Hypothesis (GRH):

All non-trivial zeros have $Re(s) = \frac{1}{2}$; can write zeros as $\frac{1}{2} + i\gamma$.

Observation: Spacings b/w zeros appear same as b/w eigenvalues of Complex Hermitian matrices $\overline{A}^T = A$.

Measures of Spacings: 1-Level Density

 $\phi(x)$ even Schwartz function whose Fourier Transform is compactly supported.

1-level density

Background

000000

$$D_f(\phi) = \sum_j \phi(L_f \gamma_{j;f})$$

- Individual zeros contribute in limit.
- Most of contribution is from low zeros.
- ϕ decays too rapidly for this sum to be evaluated asymptotically.

Instead of looking at a single L-function L(s, f), need to average over a family $\{L(s, f) : f \in \mathcal{F}\}$ of 'similar' L-functions.

1-level density for families

$$D_{\mathcal{F}}(\phi) = \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} D_f(\phi)$$
$$= \frac{1}{|\mathcal{F}|} \sum_{f \in \mathcal{F}} \sum_{i} \phi \Big(L_f \gamma_{j;f} \Big)$$

Katz-Sarnak Conjecture

For a 'nice' family of L-functions, the 1-level density depends only on a symmetry group attached to the family.

Number Fields

Definitions

Background

A *number field* is a subfield K of \mathbb{C} which forms a finite-dimensional vector space over \mathbb{Q} .

Examples

- $oldsymbol{2}$ $\mathbb{R}, \mathbb{C}, \bar{\mathbb{Q}}$ are not number fields

Definitions

Background

Every number field K/\mathbb{Q} contains a ring of algebraic integers \mathcal{O}_{κ} with properties similar to those of \mathbb{Z} .

Examples

$$\bullet$$
 $K = \mathbb{Q}(\sqrt{-5})$. Have $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$, and

$$6 = 2 \cdot 3 = (1 - \sqrt{-5})(1 + \sqrt{-5})$$

②
$$K = \mathbb{Q}(i)$$
. Have $\mathcal{O}_K = \mathbb{Z}[i]$, and

$$2 = (1 - i)(1 + i)$$

$$\bullet$$
 $K = \mathbb{Q}(\sqrt{-3})$. Have $\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$.

Prime ideals

Because of non-unique factorization, doesn't help to study prime elements of $\mathcal{O}_{\mathcal{K}}$.

Theorem (Unique factorization of ideals)

Let $\mathfrak a$ be an ideal of $\mathcal O_K$. Then $\mathfrak a$ factors uniquely as a product of prime ideals:

$$\mathfrak{a} = \mathfrak{p}_1^{e_1} \mathfrak{p}_2^{e_2} \cdots \mathfrak{p}_r^{e_r}$$
.

Thus, we study prime ideals instead of prime elements.

Prime ideals

Background

Fact: Every non-zero prime ideal \mathfrak{p} of \mathcal{O}_K is maximal. Thus $\mathcal{O}_{\kappa}/\mathfrak{p}$ is a field.

Lemma

The field $\mathcal{O}_K/\mathfrak{p}$ is finite.

We define $N\mathfrak{p} := |\mathcal{O}_K/\mathfrak{p}|$. If \mathfrak{a} is an arbitrary ideal of \mathcal{O}_K , define

$$N\mathfrak{a}=N\mathfrak{p}_1^{e_1}\cdots N\mathfrak{p}_r^{e_r}.$$

Dedekind zeta function

Background

Given a number field K, we define for Re(s)>1

$$\zeta_{\kappa}(s) = \sum_{\mathfrak{a}} \frac{1}{N\mathfrak{a}^{s}}.$$

Have an Euler product

$$\zeta_{\mathcal{K}}(s) = \prod_{\mathfrak{p}} \left(1 - \frac{1}{N\mathfrak{p}^s}\right)^{-1}.$$

How to attach L-functions to K?

Number Field L-functions

Background 0000000

Ideal class characters

An *ideal class character* is a function χ which assigns complex numbers to ideals of \mathcal{O}_K in a multiplicative fashion, i.e. $\chi(\mathfrak{ab}) = \chi(\mathfrak{a})\chi(\mathfrak{b})$, and which is trivial on principal ideals.

Given such a character, define the *L*-function

$$L(s,\chi) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{N\mathfrak{a}^s} = \prod_{\mathfrak{p}} \left(1 - \frac{\chi(\mathfrak{p})}{N\mathfrak{p}^s}\right)^{-1}.$$

How to study the zeros of this function?

Need an explicit formula, which relates sums over zeros to sums over primes.

Weil's explicit formula

$$\sum_{L(1/2+i\gamma_{\chi},\,\chi)=0} \widehat{\phi}(\gamma_{\chi}) = 4\delta_{\chi} \int_{0}^{\infty} \phi(x) \cosh(x/2) dx + \phi(0) (\log \Delta - N\gamma - N \log 8\pi - \frac{r_{1}\pi}{2})$$

$$- \sum_{\mathfrak{p}} \log N\mathfrak{p} \sum_{m=1}^{\infty} \frac{\phi(m \log N\mathfrak{p})}{N\mathfrak{p}^{m/2}} (\chi(\mathfrak{p})^{m} + \chi(\mathfrak{p})^{-m})$$

$$+ r_{1} \int_{0}^{\infty} \frac{\phi(0) - \phi(x)}{2 \cosh(x/2)} dx + N \int_{0}^{\infty} \frac{\phi(0) - \phi(x)}{2 \sinh(x/2)} dx$$

Gives a nice expression for the 1-level density:

$$\begin{split} D_{\chi}(\phi) &= \sum_{L(1/2+i\gamma_{\chi})=0} \phi\left(\frac{\log \Delta}{2\pi}\gamma_{\chi}\right) \\ &= \frac{1}{\log \Delta} \left[4\delta_{\chi} \int_{0}^{\infty} \widehat{\phi}\left(x\frac{2\pi}{\log \Delta}\right) \cosh(x/2) dx \right. \\ &+ \widehat{\phi}(0)(\log \Delta - N\gamma - N\log 8\pi - \frac{r_{1}\pi}{2}) \\ &- \sum_{\mathfrak{p}} \log N\mathfrak{p} \sum_{m=1}^{\infty} \frac{\widehat{\phi}\left(m\frac{2\pi}{\log \Delta}\log N\mathfrak{p}\right)}{N\mathfrak{p}^{m/2}} (\chi(\mathfrak{p})^{m} + \chi(\mathfrak{p})^{-m}) \\ &+ r_{1} \int_{0}^{\infty} \frac{\widehat{\phi}(0) - \widehat{\phi}(x)}{2\cosh(x/2)} dx + N \int_{0}^{\infty} \frac{\widehat{\phi}(0) - \widehat{\phi}(x)}{2\sinh(x/2)} dx \right]. \end{split}$$

Class number

Background

The 1-level density for the family is then

$$D_{\mathcal{F}}(\phi) = \frac{1}{h} \sum_{\chi} D_{\chi}(\phi)$$

where h is the class number of K.

Need to understand what happens to h as K changes.

Main Difficulty: If there are many prime ideals with small norm, then the sum

$$\sum_{\mathfrak{p}} \log N\mathfrak{p} \sum_{m=1}^{\infty} \frac{\widehat{\phi}\left(m2\pi \frac{\log N\mathfrak{p}}{\log \Delta}\right)}{N\mathfrak{p}^{m/2}} (\chi(\mathfrak{p})^m + \chi(\mathfrak{p})^{-m})$$

might blow up.

Use algebraic number theory to control norms of primes.

Background

Results

Background 0000000

Fourry and Iwaniec

Background

Fourry and Iwaniec studied the family $\{\mathbb{Q}(\sqrt{-D})\}$ for suitable D.

$$p = \frac{m^2 + Dn^2}{4}$$

$$\Rightarrow p \ge \frac{D}{4}$$

Theorem (Fouvry and Iwaniec, 2003)

Let ϕ be an even Schwartz function whose Fourier transform is supported in (-1, 1). Then for the family $\{\mathbb{Q}(\sqrt{-D})\}$, the 1-level density is

$$D_{\mathcal{F}}(\phi) \sim \hat{\phi}(0) - rac{1}{2}\phi(0) = \int \phi(x)W_{\mathsf{Sp}}(x)dx$$

Main result

Theorem

Let K_0 be a normal, totally real field of class number one. Then for the family {K} of all CM-fields such that $K^+ = K_0$, the 1-level density is again given by the symplectic distribution:

$$D_{\mathcal{F}}(\phi) \sim \hat{\phi}(0) - \frac{1}{2}\phi(0) = \int \phi(x)W_{\mathsf{Sp}}(x)dx$$

THANK YOU!