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Introductory Notes

Lot of thesis is book-keeping: don’t want to
spend an hour keeping track of error terms.

Want to briefly explain the problem, history
and set-up – what are the main differences be-
tween this and density investigations of other
families.

Concentrate on sketching the proof of the main
theorem (for n = 1): show the new problem
that arises (the variation of the conductors),
and what we need to fix it.

Give some examples: conditions for the the-
orem are very easy to check, fun to make high
rank examples.

Applications: (1) checking the philosphy of Katz-Sarnak

on a much slimmer family; (2): better estimates for excess

rank (rank above the family rank); (3): observe potential

lower order density terms.
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Fundamental Problem:
Spacing Between Events

General Formulation: Studying some system,
observe values at t1, t2, t3, etc. Question: what
rules govern the spacings between events?

Often need to normalize by average spacing.

Example 1: Spacings Between Primes / Prime
Pairs.

Example 2: Spacings Between Energy Levels
of Nuclei.

Example 3: Spacings Between Eigenvalues of
Matrices.

Example 4: Spacings Between Zeros of L-
Functions.
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Elliptic Curves

Consider E : y2 + a1xy + a3y = x3 + a2x
2 +

a4x + a6, ai ∈ Q.

Local data: number of solutions (x, y) mod
p. Use to build the L-function.

Modularity Theorem [Wiles]: L(s, E) = L(s, f )
for a weight 2 cuspidal newform of level NE.

Λ(s, E) = (2π)−sN s/2Γ(s +
1

2
)L(s, E) = εEΛ(1− s, E)

By GRH: All zeros on the critical line. Makes
sense to talk about spacings between zeros.

Rational solutions form a group, write as E(Q) =
Zr ⊕ T , T are the torsion points, r is the geo-
metric rank.

Birch and Swinnerton-Dyer Conjecture: Ge-
ometric rank equals the analytic rank, the order
of vanishing of L(1

2, E).
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Random Matrix Theory

Consider the group of N ×N matrices from
one of the classical compact groups: unitary,
symplectic, orthogonal.

One assigns probability measures to matrices
from various groups. By explicitly calculating
properties associated to an individual matrix
and integrating over the group, one can often
use the group average to make good predictions
about the expected behaviour of statistics from
a generic, randomly chosen element.

More generally, can consider other spaces: GUE
/ GOE: Hermitian / Symmetric matrices with
Gaussian probabilities for entries.
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Measures of Spacings:

n-Level Correlations

Let {αj}N
j=1 be an increasing sequence of numbers. For

a compact box B ⊂ Rn−1 we define the n-level correla-

tion by

#{(αj1 − αj2, . . . , αjn−1 − αjn) ∈ B, ji 6= jk}
N

(0.1)

Instead of using a box, can use a test function.

1. f (x1, . . . , xn) is symmetric

2. f (x + t(1, . . . , 1)) = f (x); ie, f is a function of dif-

ferences.

3. f (x) → 0 rapidly as |x| → ∞ in the hyperplane
∑

j xj = 0.

1

N

∑

j1,...,jn
distinct

f (αj1, . . . , αjn)

f (x1, . . . , xn) = χB(x1 − x2, . . . , xn−1 − xn) recovers

Eq. 0.1; χB the characteristic function of the box.

Note the above is over distinct indices. As N → ∞,

the contribution from any finite number of indices be-

comes negligible.
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Measures of Spacings:

n-Level Correlations (Continued)

In an impressive set of computations, starting with the 1020th

zero of ζ(s), Odlyzko studied the normalized spacings between

adjacent zeros and found remarkable agreement with Random

Matrix Theory. Specifically, consider the set of N ×N random

Hermitian matrices with entries chosen from the Gaussian dis-

tribution (the GUE). As N → ∞, the limiting distribution of

spacings between adjacent eigenvalues is indistinguishable from

what Odlyzko observed!

Montgomery proved that the 2-level correlation for

ζ(s) is the same as that of the GUE, and Rudnick-Sarnak

showed the n-level correlations for all automorphic cup-

sidal L-functions are the same as the GUE.

The universality that Rudnick and Sarnak observed

is somewhat surprising, but explainable as follows: the

correlations are controlled by the second moments of the

ap’s, and while there are many possible limiting distribu-

tions for the ap’s, they all have the same second moment.

Katz and Sarnak prove the n-level correlations of all

the classical compact groups are the same as N →∞.
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Measures of Spacings:
n-Level Density

Let f (x) =
∏

i fi(xi) be compactly supported. Assum-

ing f (x) is a product for simplicity. Consider

Dn,E(f ) =
∑

j1,...,jn
distinct

f1(LEγ
(j1)
E ) · · · fn(LEγ

(j1)
E ). (0.2)

Unlike n-level correlations, possible for a fixed number

of zeros to contribute in the limit. For f of compact sup-

port, only first few zeros contribute.

In many instances, the behaviour of L(1
2 , f) encodes critical

information about the function. For example, for L-functions of
elliptic curves, the order of vanishing of L(s, E) at s = 1

2 is con-
jecturally equal to the geometric rank of the Mordell-Weil group.

If we force the Mordell-Weil group to be large, we expect
many zeros at s = 1

2 , and this might influence the behaviour of
the neighboring zeros. Hence we are led to study the distribu-
tion of the first few, or low lying, zeros.

Similar to choosing an N×N matrix at random and calculat-
ing its eigenvalues, we only get one string of values. If, however,
we can find a large number of curves similar to our original one,
then we may calculate the zeros of each, and see how they vary
from curve to curve.
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Families

This leads us to the concept of family. Roughly, a

family will be a collection of geometric objects and their

associated L-functions, where the geometric objects have

similar properties.

Iwaniec, Luo and Sarnak considered (among others) all cus-
pidal newforms of a given level and weight. Rubinstein consid-
ered twists by fundamental discriminants D ∈ [N, 2N ] of a fixed
modular form.

I studied the family of all elliptic curves and one-parameter

families of elliptic curves.

To any geometric family, Katz-Sarnak predict the n-

level density depends only on a symmetry group attached

to the family. Based on the function field case, for typ-

ical elliptic curve families they predict orthogonal sym-

metries. One can further analyze the distributions de-

pending on the signs of the functional equations. As our

elliptic curve families are self-dual, we expect the densi-

ties to be controlled by the distribution of signs (all even:

SO(even); all odd: SO(odd); equidistributed: O).
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Normalization of Zeros

How should we normalize the zeros of the curves in

our family? Two choices: (1) locally (using some natural

measure from that curve); (2) globally (using some nat-

ural measure from the family).

Hope: for f a good even test function with compact

support, as |F| → ∞,

1

|F|
∑

E∈F
Dn,E(f ) =

1

|F|
∑

E∈F
∑

j1,...,jn
ji 6=±jk

∏

i
fi

(log NE

2π
γ

(ji)
E

)

→
∫
· · ·

∫
f (x)Wn,G(F)(x)dx

=
∫
· · ·

∫
f̂ (u) ̂Wn,G(F)(u)du.

In all results below, we obtain the same results (with

significantly easier proofs and no sieving) if instead of

rescaling by log NE we rescale by the average log-condcutor

log M =
1

|F|
∑

E∈F
log NE

Much of the work is handling the dependence on the

conductors.
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1-Level Densities

Katz and Sarnak calculate the n-level densities for the

classical compact groups. Unlike the correlations, the

densities are different for different groups.

The Fourier Transforms for the 1-level densities are

̂W1,O+(u) = δ0(u) +
1

2
η(u)

̂W1,O(u) = δ0(u) +
1

2
̂W1,O−(u) = δ0(u)− 1

2
η(u) + 1

̂W1,Sp(u) = δ0(u)− 1

2
η(u)

̂W1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and η(u) is

1, 1
2, and 0 for |u| less than 1, 1, and greater than 1.

Note the three orthogonal densities are indistinguish-
able for |u| < 1. Hence, for test functions supported in
(−1, 1), we cannot differentiate the three orthoganal den-
sities, although we can differentiate them from the other
densities. Note: the 2-Level Density does distinguish the or-
thogonal groups, even with test functions of arbitrarily small
support.
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Explicit Formula

Starting Point is the Explicit Formula, which relates

sums of test functions over zeros to sums over primes of

aE(p) and a2
E(p).

∑

γ
(j)
E

G
(log NE

2π
γ

(j)
E

)
= Ĝ(0) + G(0)

− 2
∑

p

log p

log NE

1

p
Ĝ(

log p

log NE
)aE(p)

− 2
∑

p

log p

log NE

1

p2
Ĝ(

2 log p

log NE
)a2

E(p)

+ O(
log log NE

log NE
).

Modified Explicit Formula:

∑

γ
(j)
E

G
(log X

2π
γ

(j)
E

)
=

log NE

log X
Ĝ(0) + G(0)

− 2
∑

p

log p

log X

1

p
Ĝ(

log p

log X
)aE(p)

− 2
∑

p

log p

log X

1

p2
Ĝ(

2 log p

log X
)a2

E(p)

+ O(
log log X

log X
).
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Previous Results

Iwaniec-Luo-Sarnak: Among other examples they prove the
following. Let HF

k (N) be the space of holomorphic even weight
k cuspidal newforms of square-free level N ; let H±

k (N) be the
subspaces of forms with even (odd) functional equation. For
test functions f supported in (−2, 2), as N →∞, the densities
of HF

k (N), H+
k (N) and H−

k (N) agree with O, SO(even) and
SO(odd). Explicitly,

lim
N→∞

1

|HF
k (N)|

∑

h∈HFk (N)
D1,h(f) =

∫
f(x)W1,O(x)dx, (0.3)

and similarly for the other two families.

Main Tools:

(1) Petersson Formula: Let Sk(N) be the space of weight k
cusp forms of level N . Let Bk(N) be a basis of forms f with
normalized coefficients ψf(n). Then for m,n ≥ 1:

∑

f∈Bk(N)
ψf(m)ψf(n) = δ(m,n) + (2πi)k ∑

c≡0(N)

S(m,n; c)

c
Jk−1

(
4π
√

mn

c

)

where δ(m,n) = 1 for m = n and 0 otherwise, Jk−1 is a Bessel
function, and S(m,n; c) is the Kloosterman sum.

(2) Conductors: The analytic conductors of the forms are all
equal: ch = k2N . |HF

k (N)| ≈ 2|H±
k (N)| ≈ k−1

24 ϕ(N), ϕ(N) is
Euler’s phi-function.

Note: they extend results to KN →∞, k ≤ K.
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Previous Results (cont)

Rubinstein: χd(n) =
(d
p

)
. Let D be the set of d with

χd primitive, D(X) = {d ∈ D : X
2 ≤ |D| < X}.

Consider family of twists L(s, χd) of the zeta-function.

Let L = log X
2π . For test functions f with support

∑
i σi < 1

1

|D(X)|
∑

d∈D(X)

∑

j1,...,jn
distinct

∏

i
fi(Lγ

(ji)
d ) →

∫

Rn f (x)Wn,USp(x)dx.

Main Tools:

(1) Orthogonality of characters

(2) Jutila:

∑

m≤Xα

∣∣∣∣
∑

d∈D(X)
χd(m)

∣∣∣∣
2 ¿ε X1+α logA X.

(0.4)

Note that the conductors are all approximately the

same, and in the Modified Explicit Formula can replace

log d with log X with cost O( 1
log X ).
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Comments on Previous Results

The proofs have two similarities: there is some nice av-

eraging formula to control the arithmetic quantities, and

the conductors are manageable (the log of the conductors

is approximately constant).

In Iwaniec-Luo-Sarnak, the conductors were the same

for different members of the family.

In Rubinstein, log d = log X + O(1).

For families of elliptic curves, let ∆(t) be the discrim-

inant. Then the conductor C(t) is

C(t) =
∏

p|∆(t)
pfp(t)

For p > 3, if the curve is minimal for p then fp(t) = 0

if p - ∆(t), 1 if p|∆(t) and p - c4(t), and 2 if p|∆(t) and

p|c4(t). If p > 3 and p12 - ∆(t), then the equation is

minimal at p.

Note two t that are close could yield ∆(t)’s with wildly

differing factorization, hence the conductors can fluctuate

greatly.
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1-Level Expansion

D1,F(f ) =
1

|F|
∑

E∈F
∑

j
f

(log NE

2π
γ

(j)
E

)

=
1

|F|
∑

E∈F
f̂ (0) + fi(0)

− 2

|F|
∑

E∈F
∑

p

log p

log NE

1

p
f̂

( log p

log NE

)
aE(p)

− 2

|F|
∑

p

log p

log NE

1

p2
f̂

(
2

log p

log NE

)
a2

E(p)

+ O
(log log NE

log NE

)

Want to move 1
|F|

∑
E∈F past the prime sum and the

conductors to hit the ar
E(p) terms.

If instead we scaled by the average log-conductor, we

would have 1
|F|

∑
E∈F ar

E(p), r = 1, 2. This is just |F|p com-

plete sums of ar
E(p) mod p, which we can often evaluate.

Leads us to study

Ar,F(p) =
∑

t(p)
ar

t (p).
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2-Level Expansion

Need to evaluate terms like

1

|F|
∑

E∈F

2∏

i=1

1

pri
i

gi

( log pi

log NE

)
ari

E(pi).

Goal: want to pass 1
|F|

∑
E∈F past the test function to

the ari
E(pi) terms and exploit cancellation of the aE(p)’s.

The following is our best analogue to the Petersson

formula. For a one-parameter family (the family of all

elliptic curves is handled similarly) define

Ar,F(p) =
∑

t(p)
ar

t (p).

If p1, . . . , pn are distinct primes,

∑

t(p1···pn)
ar1

t1
(p1) · · · arn

tn
(pn) = Ar1,F(p1) · · ·Arn,F(pn).

Thus, to handle the products, it is sufficient to under-

stand the one-dimensional versions. If y2 = x3+a2(t)x
2+

a4(t)x + a6(t) = ft(x), ai(t) integer polynomials, then

at(p) = − ∑

x(p)



ft(x)

p


.

17



Needed Input

For many families

(1) : A1,F(p) = −rp + O(1)

(2) : A2,F(p) = p2 −mFp + O(1), mF > 0.

Consider a one-parameter family E (of rank r over

Q(t)) of elliptic curves Et over Q. E is a rational elliptic

surface iff E is birational to P2.

Silverman and Rosen prove

lim
X→∞

1

X

∑

p≤X
−AE(p) log p = r

By partial summation, this is as good as (1).

For surfaces with j(t) non-constant, Michel proves

A2,F(p) = p2 + O(p3/2).
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New Results

Rational Surfaces Density Theorem: Consider a one-
parameter family of elliptic curves of rank r over Q(t) that is
a rational surface. Assume GRH, j(t) non-constant, and the
ABC (or Square-Free Sieve) conjecture if ∆(t) has an irreducible
polynomial factor of degree at least 4. Let m = deg C(t) and
fi be an even Schwartz function of small but non-zero support
σi (σ1 < min(1

2 ,
2

3m) for the 1-level density, σ1 + σ2 < 1
3m for

the 2-level density). Assume the Birch and Swinnerton-Dyer
conjecture for interpretation purposes. Possibly after passing to
a subsequence,

D
(r)
1,F(f1) = f̂1(0) +

1

2
f1(0)

D
(r)
2,F(f) =

2∏

i=1

[
f̂i(0) +

1

2
fi(0)

]
+ 2

∫ ∞
−∞ |u|f̂1(u)f̂2(u)du

−2f̂1f2(0)− f1(0)f2(0) + (f1f2)(0)N(F ,−1)

where N(F ,−1) is the percent of curves with odd sign.

For small support, the 1-level density of the non-family

zeros agrees with SO(even), O, and SO(odd); the 2-level

density of the non-family zeros agrees with SO(even),

O, and SO(odd) depending on whether the signs are all

even, equidistributed in the limit, or all odd.

The densities of the non-family zeros agree
with Katz and Sarnak’s predictions, at least for
small support.
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Examples

Constant-Sign Families:

1. y2 = x3 + 24(−3)3(9t + 1)2, 9t + 1 Square-Free: all even.

2. y2 = x3 ± 4(4t + 2)x, 4t + 2 Square-Free: + yields all odd,
− yields all even.

3. y2 = x3 + tx2 − (t + 3)x + 1, t2 + 3t + 9 Square-Free: all
odd.

First two rank 0 over Q(t); third is rank 1. Only assume
GRH for first two; add B-SD to interpret third.

Harald Helfgott has shown, if j(t) and M(t) non-constant,
that ABC (or Square-Free Sieve) conjecture and Polynomial
Moebius imply equidistribution of sign.

Family of Rank 6 over Q(t):

y2 = x3 + (2at−B)x2 + (2bt− C)(t2 + 2t− A + 1)x

+(2ct−D)(t2 + 2t− A + 1)2

A = 8916100448256000000
B = −811365140824616222208
C = 26497490347321493520384
D = −343107594345448813363200
a = 16660111104
b = −1603174809600
c = 2149908480000

(0.5)

Need GRH. Also need ABC or Square-Free Sieve conjecture
to handle sieving, B-SD to interpret result.
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Sieving

If conductors were constant and summed over t ∈
[N, 2N ], would have N

p complete sums, each giving Ar,F(p).

Let D(t) be the product of the irreducible factors of

∆(t). Can often show C(t) is a monotone polynomial of t

when D(t) is square-free, and there are cFN +o(N) such

t. (Unconditional if all factors of D(t) of degree ≤ 3; else

need ABC or Square-Free Sieve conjecture).

2N∑

t=N
D(t)

sqfree

S(t) =
Nk/2∑

d=1
µ(d)

∑

D(t)≡0(d2)
t∈[N,2N ]

S(t)

=
logl N∑

d=1
µ(d)

∑

D(t)≡0(d2)
t∈[N,2N ]

S(t) +
Nk/2∑

d≥logl N

µ(d)
∑

D(t)≡0(d2)
t∈[N,2N ]

S(t).

Handle first piece by progressions, handle second piece

by Cauchy-Schwartz.
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Sieving (cont)

The number of t in the second sum is o(N) (uncondi-

tionally if all of D(t)’s factors are deg ≤ 3). Denote these

t by T . By Cauchy-Schwartz:

∑

t∈T
S(t) ¿

( ∑

t∈T
S2(t)

)1
2 ·

( ∑

t∈T
1

)1
2

¿
( ∑

t∈[N,2N ]
S2(t)

)1
2 · o

(√
N

)
.

If we can show
∑2N

t=N S2(t) = O(N), then the error

term is negligible as N → ∞. Often isn’t too bad, as

just need order of magnitude, and not exact value.

First piece is handled by progressions: let ν(d) be

the number of incongruent roots of D(t) ≡ 0 mod d2;

ν(d) ¿ dε. Let ti(d) be one of the ν(d) roots. This gives

a sequence of t: ti(d), ti(d) + d2, . . . , ti(d) + [N
d2 ]d

2.

If (d, p) = 1, then (mod p), go through the complete

set of residue classes N/d2

p times. As d < logl N , l < 2,

can take all p > logl N in the Explicit Formula, incorpo-

rating lower p’s into the error terms.
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Partial Summation

N∑

M

anbn = A(N)bN +
N−1∑

M

A(u)(bu − bu+1), A(u) =
u∑

n=M

an.

Notation: ãd,i,p(t
′) = at(d,i,t′)(p), Gd,i,P (u) is related to

the test functions.

Applying Partial Summation

S(d, i, r, p) =
[N/d2]∑

t′=0
ãr

d,i,p(t
′)Gd,i,p(t

′)

=
([N/d2]

p
Ar,F(p) + O(pR)

)
Gd,i,p([N/d2])

−
[N/d2]−1∑

u=0

(u

p
Ar,F(p) + O(pR)

)

·
(
Gd,i,p(u)−Gd,i,p(u + 1)

)

S(r, p) =
logl N∑

d=1
µ(d)

ν(d)∑

i=1
S(d, i, r, p)

=
4∑

w=1

logl N∑

d=1
µ(d)

ν(d)∑

i=1
Sw(d, i, r, p).

O(pR) is the error from using Hasse to bound the partial
sums: pR = p1+ r

2 .
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First, Second and Third Sums

First Sum: Use Taylor Expansion. Gives the main

term:

Ar,F(p)Gp(N)

p
.

Second Sum: Summing over primes won’t contribute

for small support. Gd,i,p term is O(1), left with

1

N

Nα∑

p=logl N

1

p
p1+r

2 .

Third Sum: Apply Partial Summation again. Taylor
Expansion gains a O( 1

log N ), which is sufficient.

S3(d, i, r, p) =

(
Gd,i,p(0)−Gd,i,p([N/d2])

)
[N/d2]− 1

p
Ar,F(p)

−
[N/d2]−2∑

u=0
(Gd,i,p(0)−Gd,i,p(u + 1))

1

p
Ar,F(p).

Using the Taylor Expansion, we gain a 1
log N in the first term,

making it of size Ar,F (p)
p

[N/d2]
log N ¿ Ar,F (p)

p
|F|

d2 log N .

For the second term, we have < [N/d2] summands, each ¿
1

log N
Sc(r,p)

p . We again obtain a term of size Sc(r,p)
p

|F|
d2 log N .

Third Sum is a lower order contribution.
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Difficult Piece: Fourth Sum I

[N/d2]−1∑

u=0
O(pR)(Gd,i,p(u)−Gd,i,p(u + 1))

Using the Taylor Expansion for Gd,i,p(u) −
Gd,i,p(u + 1) is not sufficient. This would give

NpR

d2 log N
. Summing over i and d is manageable,

and would give us O(pR |F|
log N ). Dividing by the

cardinality of the family gives O( pR

log N ).

The problem is in summing over the primes,
as we no longer have 1

|F|. We multiply by 1
pr .

Consider the case r = 1. Then R = 1 + r1
2 = 3

2, and
1
pr = 1

p. We have

Nmσ∑

p=logl N

1

p

p
3
2

log N
À Nmσ.

As N →∞, this term blows up. We need much better

cancellation. Note, by Hasse, O(pR) ≤ 2RpR.
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Fourth Sum: II

[N/d2]−1∑

u=0

∣∣∣∣Gd,i,p(u)−Gd,i,p(u + 1)
∣∣∣∣

=
[N/d2]−1∑

u=0

∣∣∣∣g
( log p

log C(ti(d) + ud2)

)
− g

( log p

log C(ti(d) + (u + 1)d2)

)∣∣∣∣

If the conductors are monotone, for fixed i, d and p,

by the Mean Value Theorem the above is small. It is es-

sential that we look at the above as a problem in bounded

variation of g and not gd,i,p. Only need g has bounded

derivative to bound the u-sum by the support of g (can

add boundary terms).

For the 2-Level Density, we would use:

|a1a2 − b1b2| = |a1a2 − b1a2 + b1a2 − b1b2|
≤ |a1a2 − b1a2| + |b1a2 − b1b2|
= |a2| · |a1 − b1| + |b1| · |a2 − b2|

Note: if our conductors are not monotone, we can-

not apply theorems on bounded variation. The prob-

lem is we could transverse [0, 1000σ] (or a large subset

of it) many times.
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Handling the Conductors I

C(t) =
∏

p|∆(t)
pfp(t), (0.6)

where for p > 3, if the curve is minimal for p then

fp(t) = 0 if p - ∆(t), 1 if p|∆(t) and p - c4(t), and 2 if

p|∆(t) and p|c4(t). If p > 3 and p12 - ∆(t), then the

equation is minimal at p.

Let D1(t) be the product of primitive irreducible poly-
nomial factors that ∆(t) and c4(t) share. Let D2(t) be
the remaining primitive irreducible polynomial factors of
∆(t). There are only finitely many primes that can di-
vide D1(t) and D2(t) for any t.

We consider only t with D1(t)D2(t) square-free; if not possi-

ble, square-free save for a fixed number of primes. By passing

to a subsequence, can assure always the same power.

Expect the conductors to be like D2
1(t)D2(t) except

for a finite set of bad primes. This set contains the

primes that can divide both, primes where not square-

free, primes that divide ∆(t) for all t, and p = 2, 3.

Let P be the product of the bad primes.
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Handling the Conductors II

By Tate’s Algorithm, can determine fp(t), which de-

pends on the coefficients ai(t) mod powers of p. ∆(t) is

not identically zero. Thus, ∃t1 > 0 such that ∀t ≥ t1,

∆(t) 6= 0.

Apply Tate’s Algorithm to Et1 to determine fp(t1) for

the bad primes. By choosing m sufficiently large, we can

show fp(τ ) = fp(P
mt + t1) = fp(t1) for p|P , ie, for the

bad primes. The number m depends on the curve Et1.

This is because in Tate’s Algorithm, we only need the

values modulo a power of p. We have

ai(τ ) = ai(P
m
0 t + t1) = Pm

0 tâi(P
m
0 t) + ai(t1).

In applying Tate’s Algorithm, we need ai(τ ) modulo

powers of p. If m is sufficiently large, we can ignore ãi(t)

in all equivalence checks, as for the powers of p we inves-

tigate, ãi(t) ≡ 0.

Note, for m enormous, for bad primes, the order of p

dividing D(Pmt + t1) is independent of t. So can find

integers st C(τ ) = cbad
D2

1(τ)
c1

D2(τ)
c2

.
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Application:
Bounding Excess Rank

D1,F(f1) = ̂f1(0) +
1

2
f1(0) + rf1(0).

To estimate the percent with rank at least
r + R, PR, we get

Rf1(0)PR ≤ ̂f1(0) +
1

2
f1(0), R > 1.

Note the family rank r has been cancelled
from both sides.

By using the 2-level density, however, we get
squares of the rank on the left hand side. The
advantage is we get a cross term rR. The dis-
advantage is our support is smaller. Once R is
large, the 2-level density yields better results.
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Potential Lower Order Density
Terms

Can often show

A2,F(p) = p2 −mF · p + O(1), mF > 0.

The p2 term contributes −1
2f (0); the mF term con-

tributes something of size 1
log N .

The potential lower order density terms, arising from

lower order terms in the sums of the second moments

of a2
E(p), could be masked by the errors propagating

through our derivations. We have errors of the size log log N
log N

arising from the Explicit Formula and the contributions

from am
E (p), m ≥ 3.

To truly observe lower order corrections to the den-

sities, a significantly more delicate analysis of these dis-

carded terms are needed. The conductor dependence in

the Gamma factors of the Explicit Formula are easily

managed. The real difficulty is handling the primes which

divide the discriminant and the m ≥ 3 terms.

We save this for a future project, and content ourselves

with observing a potential lower order density term.

30



Variation of Sign in One-Parameter Families

For his junior thesis, Atul Pokharel investigated the

Restricted Sign Conjecture by studying the distribution

of signs in one-parameter families. A representative fam-

ily is included below. For N curves, the excess of posi-

tive to negative signs in intervals of 1000 was computed,

for a total of N
1000 blocks. If the signs are randomly dis-

tributed, one would expect a histogram bin plot to reveal

a Gaussian structure, with mean 0 and standard devia-

tion
√

1000. Note this is a far stronger assumption than

equidistribution of sign.

This was tested for many families; further, as in this

thesis we sieve to D(t) square-free, the same calculation

was performed for the sub-families with D(t) square-free.

Restricting t did not seem to change the shape of the

observed data. A more sensitive analysis is currently un-

derway.

For the family y2 = x3 + (t + 1)x2 + tx, we sieve to

D(t) = t(t−1) square-free. Approximately 32% of t give

D(t) square-free. First, the sign of Et was computed for

t ∈ [2, 5 · 107]. Histogram plots were prepared without

restricting to D(t). Restricting to D(t) square-free re-

quires evaluating µ(t)µ(t − 1); as this was lengthy (and

this is a preliminary verification), we contented ourselves

with checking the first 2 · 106 square-free D(t).
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Distribution of signs: y2 = x3 + (t + 1)x2 + tx
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Histogram plot: D(t) square-free, first 2 · 106 such t.
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Distribution of signs: y2 = x3 + (t + 1)x2 + tx
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The observed behaviour agrees with the predicted be-

haviour. Note as the number of curves increase (compar-

ing the plot of 5 · 107 points to 2 · 106 points), the fit to

the Gaussian improves.
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