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1. Random Matrix Theory

1.1 Introduction
An important problem in random matrix theory involves investigating the distribution of
eigenvalues of random matrix ensembles. Such a study has applications from nuclear
physics to number theory. Previous work has given the eigenvalue distribution of real
symmetric matrices and Toeplitz matrices.

We provide a way to investigate behavior between these two previously studied ensem-
bles by looking at the Signed Toeplitz matrix ensemble, which are constant along the
diagonal up to a randomly chosen sign for each entry:

ε11b0 ε12b1 ε13b2 ε14b3
ε21b1 ε22b0 ε23b1 ε24b2
ε31b2 ε32b1 ε33b0 ε34b1
ε41b3 ε42b2 ε43b1 ε44b0


where εij = εji ∈ {1,−1} and p = P

(
εij
)
= 1.

1.2 Methods
Markov’s Method of Moments We attempt to show a typical eigenvalue measure
µA,N (x) converges to a probability distribution P by controlling convergence of average
moments of the measures as N →∞ to the moments of P .

In order to calculate the moments of the eigenvalue distribution, we use the:
Eigenvalue Trace Lemma For any non-negative integer k, if A is an N × N matrix with
eigenvalues λi (A), then

Trace
(
Ak
)
=

N∑
i=1

λi (A)
k .

We get the following formula for the average kth moment, Mk (N) = E [Mk (AN )], is:

1

N
k
2+1

∑
1≤i1,...,ik≤N

E
(
εi1i2b|i1−i2|εi2i3b|i2−i3| . . . εiki1b|ik−i1|

)
Circle Configurations We represent the different terms in the sums as ways of pairing
vertices on a circle. For example, a configuration of the 6th moment:

Èi1-i2È

Èi2-i3ÈÈi3-i4È

Èi4-i5È

Èi5-i6È Èi6-i1È

1.3 Results
Weighted Contributions
p = 1/2: semi-circle distribution (bounded support)
p 6= 1/2: Each configuration weighted by (2p − 1)m, where m is the number of points on
the circle whose edge crosses another edge. (unbounded support)
Counting Crossing Configurations
For:

•m = 0, well-known to be the Catalan numbers.

•m = 4, we proved there are
( 2k
k−2
)

such pairings.

•m = 6, we proved there are 4
( 2k
k−3
)

such pairings.

For higher m, we were unable to find closed form expressions, but were able to prove that
as k →∞, E (m)→ 2k−2 and Var (m) = 4, which allows us to get very reasonable bounds
on the moments.

2. L-functions

2.1 Introduction
An L-function is a Dirichlet seriesL(s) =

∑∞
n=1

an
ns, s ∈ C An simple example is the Riemann

zeta function where an = 1 for all n. ζ(s) =
∑∞
n=1

1
ns, Re(s) > 1.

Though Random Matrix Theory was developed to explain the energy levels of heavy
nuclei, later it was observed that similar answers are found for zeros of L-functions, and
since then RMT has modeled their behavior. These zeros are connected to many prob-
lems in number theory, from the prime number theorem to the class number problem.
The Katz-Sarnak Density Conjecture states that the behavior of zeros of a family of L-
functions near the central point (as the conductors tend to zero) agree with the behavior
of eigenvalues near 1 of a classical compact group (as the matrix size tends to infinity).

Maass forms are smooth functions on the upper half plane, are invariant under the action
of SL2(Z), are eigenfunctions of the non-Euclidean Laplacian, and are a natural general-
ization of the Riemann zeta function. While they arise in a variety of problems in number
theory, they are significantly harder to work with then their cousins (the holomorphic cusp
forms) as the averaging formula here is significantly more unwieldy. We study the distribu-
tion of zeros near the central point of L-functions of level 1 Maass forms; this is essentially
summing a smooth test function whose Fourier transform is compactly supported over the
scaled zeros.

2.2 Methods and Results
First we define the one level density by

D1(φ) =
∑
j

h(tj)
∑
k

φ(γ̃j,k)

With prime number theorem∑
p≤x

log p = x +O
(
x exp(−c

√
log x)

)
and partial summations we are able to get

D1(φ) = φ(0) + ˆφ(0)
log(tj)

logR
+O

(
log logR

logR

)
−
∑
p

2λf (p) log p

p
1
2 logR

g

(
log p

logR

)
−
∑
p

2λ2f (p) log p

p logR
g

(
2 log p

logR

)
To handle the λ terms, we use the Kuznetsov trace formula

∑
j

h(tj)λj(m)λj(n)/‖uj‖2 +
1

4π

∫
R
τ (m, r)τ (n, r)

h(r)

cosh(πr)
dr

=
δn,m

π2

∫
R
r tanh(r)h(r)dr +

2i

π

∑
c≥1

S(n,m; c)

c

∫
R
Jir

(
4π
√
mn

c

)
h(r)r

cosh(πr)
dr

In particular we get a term

1∑
j hT (tj)/‖uj‖2

∑
p

2 log p

p
1
2 logR

g

(
log p

logR

)∑
j

hT (tj)λj(p)

= O(T 3σ/2−1/4+ε + T−1+ε)

which forces the support to be 1
6.

3. Virus Dynamics

3.1 Introduction
A common way to model virus propagation is via network graphs. Such a model has appli-
cations from biology to the study of other networks, such as electronic or airline networks.
We study the SIS model on the star topology.

SIS (Susceptible Infected Susceptible) model

• Each node is either Susceptible (S) or Infected (I). At each time step, susceptible nodes
can be infected by their neighbors, while infected neighbors can be cured and go back
to being susceptible.
• At any time step, an infected node tries to infect its neighbors with probability β and has

probability δ of being cured.
Star Topology

hub

spokes

If we let n = the number of nodes, x = P (hub is infected), y = P (a spoke node is infected),
a = 1 + δ and b = β, we can model the system with the following equation:

fn

((
x
y

))
=

(
1− (1− ax)(1− by)n
1− (1− ay)(1− bx)

)
.

We study fn : [0, 1]2→ [0, 1]2.
3.2 Questions

•Given an initial state, does the system reach a steady state?
• If the system does reach a steady state, what are its characteristics?

3.3 Results
Our primary method for attacking these questions was to analyze the behavior of the sys-
tem in the four regions created by the curves x = φ1 (y) and y = φ2 (x) which represent the
points where x and y are fixed on iteration, respectively. If these curves intersect, then we
have found a fixed point, or steady state.

φ1 (y) =
1−(1−by)n
1−a(1−by)n and φ2 (x) = bx

1−a+abx
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• There exists a unique nontrivial steady state.
• Initial conditions in regions I and III (excluding (0, 0)) eventually reach the nontrivial

steady state.
From numerical simulations, we are also able to conjecture the behavior of conditions in
regions II and IV.
Conjecture: Depending on a, b, n, points in region II and IV will exhibit either ”flipping” or
”non-flipping” behavior until the points either reach the steady state, or enter regions I and
III where they will then eventually reach the steady state.

Theorem: If b > (1−a)/
√
n then all initial configurations save (0, 0) converge to the unique,

non-trivial fixed point; for all other a, b the system converges to the fixed point (0, 0).


