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Introduction

2



Intro Maclaurin Inequalities Main Results (Elementary) Main Results (Technical) Refs

Plan of the talk

Classical ergodic theory of continued fractions.
⋄ Almost surely geometric mean n

√
a1 · · · an → K0.

⋄ Almost surely arithmetic mean (a1 + · · ·+ an)/n → ∞.

Symmetric averages and Maclaurin’s inequalities.
⋄ S(x ,n, k) :=

(n
k

)−1∑
1≤i1<i2<···<ik≤n xi1xi2 · · · xik .

⋄ AM = S(x , n, 1)1/1 ≥ S(x , n, 2)1/2 ≥ · · · ≥ S(x , n, n)1/n = GM.

Results / conjectures on typical / periodic continued
fraction averages.

Elementary proofs of weak results, sketch of stronger
results.

To appear in Exp. Math.:http://arxiv.org/abs/1402.0208.
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Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.

4



Intro Maclaurin Inequalities Main Results (Elementary) Main Results (Technical) Refs

Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.

The sequence {ai}i is finite iff α ∈ Q.
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Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1
. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.

x = p
q ∈ Q then ai ’s the partial quotients of Euclidean Alg.

333 = 3 · 106 + 15
106
333

= [3,7,15] 106 = 7 · 15 + 1

15 = 15 · 1 + 0.
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Continued Fractions

Every real number α ∈ (0,1) can be expressed as

x =
1

a1 +
1

a2 +
1

a3 +
1

. . .

= [a1,a2,a3, . . .], ai ∈ {1,2, . . . }.

{ai}i preperiodic iff α a quadratic irrational;
ex:

√
3 − 1 = [1,2,1,2,1,2, . . . ].
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Gauss Map: Definition

The Gauss map T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates the continued fraction digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

corresponding to the Markov partition

(0,1] =

∞
⊔

k=1

(

1
k + 1

,
1
k

]

.

T preserves the measure dµ = 1
log 2

1
1+x dx and it is mixing.
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Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1
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Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1 and

T 1(
√

3 − 1) =
1√

3 − 1
−
⌊

1√
3 − 1

⌋

=

√
3 + 1

3 − 1
− 1 =

√
3 − 1
2

a2 =

⌊

2√
3 − 1

⌋

= 2.
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Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1 and

T 1(
√

3 − 1) =
1√

3 − 1
−
⌊

1√
3 − 1

⌋

=

√
3 + 1

3 − 1
− 1 =

√
3 − 1
2

a2 =

⌊

2√
3 − 1

⌋

= 2.

T 2(
√

3 − 1) =
2√

3 − 1
−
⌊

2√
3 − 1

⌋

=
2
√

3 + 2
2

− 2 =
√

3 − 1

a3 =

⌊

1√
3 − 1

⌋

= 1.

11



Intro Maclaurin Inequalities Main Results (Elementary) Main Results (Technical) Refs

Gauss Map: Example:
√

3 − 1 = [1,2,1,2,1,2, . . . ]

T : (0,1] → (0,1], T (x) = {1
x } = 1

x −
⌊ 1

x

⌋

generates digits

a1 = ⌊1/T 0(α)⌋, ai+1 = ⌊1/T i(α)⌋, . . .

α =
√

3 − 1 = [1,2,1,2, . . . ]: Note a1 = ⌊ 1√
3−1

⌋ = 1 and

T 1(
√

3 − 1) =
1√

3 − 1
−
⌊

1√
3 − 1

⌋

=

√
3 + 1

3 − 1
− 1 =

√
3 − 1
2

a2 =

⌊

2√
3 − 1

⌋

= 2.

T 2(
√

3 − 1) =
2√

3 − 1
−
⌊

2√
3 − 1

⌋

=
2
√

3 + 2
2

− 2 =
√

3 − 1

a3 =

⌊

1√
3 − 1

⌋

= 1.
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Statistics of Continued Fraction Digits 1/3

The digits ai follow the Gauss-Kuzmin distribution:

lim
n→∞

P(an = k) = log2

(

1 +
1

k(k + 2)

)

(note the expectation is infinite).
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Statistics of Continued Fraction Digits 1/3

The digits ai follow the Gauss-Kuzmin distribution:

lim
n→∞

P(an = k) = log2

(

1 +
1

k(k + 2)

)

(note the expectation is infinite).

The function x 7→ f (x) = ⌊1/T (x)⌋ on (0,1] is not
integrable wrt µ. However, log f ∈ L1(µ).
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Statistics of Continued Fraction Digits 1/3

The digits ai follow the Gauss-Kuzmin distribution:

lim
n→∞

P(an = k) = log2

(

1 +
1

k(k + 2)

)

(note the expectation is infinite).

The function x 7→ f (x) = ⌊1/T (x)⌋ on (0,1] is not
integrable wrt µ. However, log f ∈ L1(µ).

Pointwise ergodic theorem (applied to f and log f ) reads

lim
n→∞

a1 + a2 + · · ·+ an

n
= ∞ almost surely

lim
n→∞

(a1a2 · · · an)
1/n = e

∫
log f dµ almost surely.
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.

Hölder means: For p < 1, almost surely

lim
n→∞

(

1
n

n
∑

i=1

ap
i

)1/p

= Kp =

( ∞
∑

k=1

−kp log2

(

1 − 1
(k + 1)2

)

)1/p

.
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.

Hölder means: For p < 1, almost surely

lim
n→∞

(

1
n

n
∑

i=1

ap
i

)1/p

= Kp =

( ∞
∑

k=1

−kp log2

(

1 − 1
(k + 1)2

)

)1/p

.

Example: The harmonic mean K−1 = 1.74540566 . . . .
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Statistics of Continued Fraction Digits 2/3

Geometric mean converges a.s. to Khinchin’s constant:

lim
n→∞

(a1a2 · · · an)
1/n =

∞
∏

k=1

(

1 +
1

k(k + 2)

)log2 k

= K0 ≈ 2.6854.

Hölder means: For p < 1, almost surely

lim
n→∞

(

1
n

n
∑

i=1

ap
i

)1/p

= Kp =

( ∞
∑

k=1

−kp log2

(

1 − 1
(k + 1)2

)

)1/p

.

Example: The harmonic mean K−1 = 1.74540566 . . . .

limp→0 Kp = K0.
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Statistics of Continued Fraction Digits 3/3

Khinchin also proved: For a′
m = am if am < m(log m)4/3

and 0 otherwise:

lim
n→∞

∑n
i=1 a′

i

n log n
=

1
log 2

in measure.
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Statistics of Continued Fraction Digits 3/3

Khinchin also proved: For a′
m = am if am < m(log m)4/3

and 0 otherwise:

lim
n→∞

∑n
i=1 a′

i

n log n
=

1
log 2

in measure.

Diamond and Vaaler (1986) showed that

lim
n→∞

∑n
i=1 ai − max1≤i≤n ai

n log n
=

1
log 2

almost surely.
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Maclaurin Inequalities

22
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Definitions and Maclaurin’s Inequalities

Both 1
n

∑n
i=1 xi and

(
∏n

i=1 xi
)1/n are defined in terms of

elementary symmetric polynomials in x1, . . . , xn.

Define k th elementary symmetric mean of x1, . . . , xn by

S(x ,n, k) :=
1
(n

k

)

∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik .
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Definitions and Maclaurin’s Inequalities

Both 1
n

∑n
i=1 xi and

(
∏n

i=1 xi
)1/n are defined in terms of

elementary symmetric polynomials in x1, . . . , xn.

Define k th elementary symmetric mean of x1, . . . , xn by

S(x ,n, k) :=
1
(n

k

)

∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik .

Maclaurin’s Inequalities

For positive x1, . . . , xn we have

AM := S(x ,n,1)1/1 ≥ S(x ,n,2)1/2 ≥ · · · ≥ S(x ,n,n)1/n =: GM

(and equalities hold iff x1 = · · · = xn).

24
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Maclaurin’s work

25
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Proof

Standard proof through Newton’s inequalities.

Define the k th elementary symmetric function by

sk (x) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik ,

and the k th elementary symmetric mean by

Ek (x) = sk (x)
/

(

n
k

)

.

Newton’s inequality: Ek (x)2 ≥ Ek−1(x)Ek+1(x).

New proof by Iddo Ben-Ari and Keith Conrad:

http://homepages.uconn.edu/benari/pdf/maclaurinMathMagFinal.pdf.

26
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Sketch of Ben-Ari and Conrad’s Proof

Bernoulli’s inequality: t > −1: (1 + t)n ≥ 1 + nt or
1 + 1

n x ≥ (1 + x)1/n.

Generalized Bernoulli: x > −1:

1 +
1
n

x ≥
(

1 +
2
n

x
)1/2

≥
(

1 +
3
n

x
)1/3

≥ · · · ≥
(

1 +
n
n

x
)1/n

.
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Sketch of Ben-Ari and Conrad’s Proof

Bernoulli’s inequality: t > −1: (1 + t)n ≥ 1 + nt or
1 + 1

n x ≥ (1 + x)1/n.

Generalized Bernoulli: x > −1:

1 +
1
n

x ≥
(

1 +
2
n

x
)1/2

≥
(

1 +
3
n

x
)1/3

≥ · · · ≥
(

1 +
n
n

x
)1/n

.

Proof: Equivalent to 1
k log

(

1 + k
n x
)

≥ 1
k+1 log

(

1 + k+1
n x

)

,
which follows by log t is strictly concave:

λ = 1
k+1 , 1 + k

n x = λ · 1 + (1 − λ) ·
(

1 + k+1
n x

)

.
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Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:

Trivial for n ∈ {1,2}, wlog assume x1 ≤ x2 ≤ · · · ≤ xn.
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Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:

Trivial for n ∈ {1,2}, wlog assume x1 ≤ x2 ≤ · · · ≤ xn.

Set Ek := sk (x)/
(n

k

)

, ǫk := Ek (x1, . . . , xn−1).
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Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:

Trivial for n ∈ {1,2}, wlog assume x1 ≤ x2 ≤ · · · ≤ xn.

Set Ek := sk (x)/
(n

k

)

, ǫk := Ek (x1, . . . , xn−1).

Have
Ek (x1, . . . , xn) =

(

1 − k
n

)

Ek (x1, . . . , xn−1)+
k
n Ek (x1, . . . , xn−1)xn.
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Sketch of Ben-Ari and Conrad’s Proof

Proof of Maclaurin’s Inequalities:

Trivial for n ∈ {1,2}, wlog assume x1 ≤ x2 ≤ · · · ≤ xn.

Set Ek := sk (x)/
(n

k

)

, ǫk := Ek (x1, . . . , xn−1).

Have
Ek (x1, . . . , xn) =

(

1 − k
n

)

Ek (x1, . . . , xn−1)+
k
n Ek (x1, . . . , xn−1)xn.

Proceed by induction in number of variables, use Generalized
Bernoulli.
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Main Results
(Elementary Techniques)
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Symmetric Averages and Maclaurin’s Inequalities

Recall: S(x ,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

xi1 · · · xik

and S(x ,n,1)1/1 ≥ S(x ,n,2)1/2 ≥ · · · ≥ S(x ,n,n)1/n.
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Symmetric Averages and Maclaurin’s Inequalities

Recall: S(x ,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

xi1 · · · xik

and S(x ,n,1)1/1 ≥ S(x ,n,2)1/2 ≥ · · · ≥ S(x ,n,n)1/n.

Khinchin’s results: almost surely as n → ∞

S(α,1,1)1/1 → ∞ and S(α,n,n)1/n → K0.

We study the intermediate means S(α,n, k)1/k as n → ∞
when k = k(n), with

S(α,n, k(n))1/k(n) = S(α,n, ⌈k(n)⌉)1/⌈k(n)⌉ .
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Our results on typical continued fraction averages

Recall: S(α,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

ai1 · · · aik

and S(α,n,1)1/1 ≥ S(α,n,2)1/2 ≥ · · · ≥ S(α,n,n)1/n .

Theorem 1
Let f (n) = o(log log n) as n → ∞. Then, almost surely,

lim
n→∞

S(α,n, f (n))1/f (n) = ∞.

Theorem 2
Let f (n) = o(n) as n → ∞. Then, almost surely,

lim
n→∞

S(α,n,n − f (n))1/(n−f (n)) = K0.

Note: Theorems do not cover the case f (n) = cn for 0 < c < 1.
36
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Sketch of Proofs of Theorems 1 and 2

Theorem 1: For f (n) = o(log log n) as n → ∞:

Almost surely lim
n→∞

S(α,n, f (n))1/f (n) = ∞.

Uses Niculescu’s strengthening of Maclaurin (2000):

S(n, tj + (1 − t)k) ≥ S(n, j)t · S(n, k)1−t .
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Sketch of Proofs of Theorems 1 and 2

Theorem 1: For f (n) = o(log log n) as n → ∞:

Almost surely lim
n→∞

S(α,n, f (n))1/f (n) = ∞.

Uses Niculescu’s strengthening of Maclaurin (2000):

S(n, tj + (1 − t)k) ≥ S(n, j)t · S(n, k)1−t .

Theorem 2: For f (n) = o(n) as n → ∞:

Almost surely lim
n→∞

S(α,n,n − f (n))1/(n−f (n)) = K0.

Use (a.s.) K0 ≤ lim sup
n→∞

S(α,n, cn)1/cn ≤ K 1/c
0 < ∞,0 < c < 1.
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Proof of Theorem 1: Preliminaries

Lemma
Let X be a sequence of positive real numbers. Suppose
limn→∞ S(X ,n, k(n))1/k(n) exists. Then, for any f (n) = o(k(n))
as n → ∞, we have

lim
n→∞

S(X ,n, k(n) + f (n))1/(k(n)+f (n)) = lim
n→∞

S(n, k(n))1/k(n) .

Proof: Assume f (n) ≥ 0 for large enough n, and for display
purposes write k and f for k(n) and f (n).

From Newton’s inequalities and Maclaurin’s inequalities, we get
(

S(X , n, k)1/k
) k

k+f
= S(X , n, k)1/(k+f )

≤ S(X , n, k+f )1/(k+f )
≤ S(X , n, k)1/k .
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Proof of Theorem 1: f (n) = o(log log n)

Each entry of α is at least 1.
Let f (n) = o(log log n). Set t = 1/2 and (j , k) = (1,2f (n)− 1),
so that tj + (1 − t)k = f (n). Niculescu’s result yields

S(α,n, f (n)) ≥
√

S(α,n,1) · S(α,n,2f (n) − 1) >
√

S(α,n,1).

Square both sides, raise to the power 1/f (n):

S(α,n, f (n))2/f (n) ≥ S(α,n,1)1/f (n).

From Khinchin almost surely if g(n) = o(log n)

lim
n→∞

S(α,n,1)
g(n)

= ∞.

Let g(n) = log n/ log log n. Taking logs:

log
(

S(α,n,1)1/f (n)
)

>
log g(n)

f (n)
>

log log n
2f (n)

.
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Proof of Theorem 2

Theorem 2: Let f (n) = o(n) as n → ∞. Then, almost surely,

lim
n→∞

S(α,n,n − f (n))1/(n−f (n)) = K0.

Proof: Follows immediately from:
For any constant 0 < c < 1 and almost all α have

K0 ≤ lim sup
n→∞

S(α,n, cn)1/cn ≤ K 1/c
0 < ∞.

To see this, note

S(α, n, cn)1/cn =

(

n
∏

i=1

ai(α)
1/n

)n/cn













∑

i1<···<i(1−c)n≤n

1/(ai1(α) · · · ai(1−c)n
(α))

(

n
cn

)













1/cn

.
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Limiting Behavior

Recall S(α,n, k) =
1
(n

k

)

∑

1≤i1<···<ik≤n

ai1 · · · aik

and S(α,n,1)1/1 ≥ S(α,n,2)1/2 ≥ · · · ≥ S(α,n,n)1/n .

Proposition

For 0 < c < 1 and for almost every α

K0 ≤ lim sup
n→∞

S(α,n, cn)1/cn ≤ K 1/c
0 (K−1)

1−1/c .

Conjecture

Almost surely Fα
+(c) = Fα

−(c) = F (c) for all 0 < c < 1, with

Fα
+(c) = lim sup

n→∞
S(α,n, cn)1/cn ,

Fα
−(c) = lim inf

n→∞
S(α,n, cn)1/cn .
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Limiting Behavior

Recall

Fα
+(c) = lim sup

n→∞
S(α,n, cn)1/cn

Fα
−(c) = lim inf

n→∞
S(α,n, cn)1/cn ,

and we conjecture Fα
+(c) = Fα

−(c) = F (c) a.s.

Assuming conjecture, can show that the function c 7→ F (c) is
continuous.

Assuming conjecture is false, we can show that for every
0 < c < 1 the set of limit points of the sequence
{S(α,n, cn)1/cn)}n∈N is a non-empty interval inside [K ,K 1/c].
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Evidence for Conjecture 1

n 7→ S(α,n, cn)1/cn for c = 1
4 ,

1
2 ,

3
4 and α = π − 3, γ, sin(1) .
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?

Consider the quadratic irrational α = [x , y , x , y , x , y , . . .].
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?

Consider the quadratic irrational α = [x , y , x , y , x , y , . . .].

Let us look at S(α,n, cn)1/cn for c = 1/2.

S(α,n, ⌈n
2⌉) =

{

S(α,n, n
2) if n ≡ 0 mod 2;

S(α,n, n+1
2 ) if n ≡ 1 mod 2.
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Our results on periodic continued fraction averages 1/2

For α =
√

3 − 1 = [1,2,1,2,1,2, . . .],

lim
n→∞

S(α,n,1)1/1 =
3
2
6= ∞

lim
n→∞

S(α,n,n)1/n =
√

2 6= K0

What can we say about limn→∞ S(α,n, cn)1/cn?

Consider the quadratic irrational α = [x , y , x , y , x , y , . . .].

Let us look at S(α,n, cn)1/cn for c = 1/2.

S(α,n, ⌈n
2⌉) =

{

S(α,n, n
2) if n ≡ 0 mod 2;

S(α,n, n+1
2 ) if n ≡ 1 mod 2.

We find the limit limn→∞ S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ in terms of x , y .
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Our results on periodic continued fraction averages 2/2

Theorem 3

Let α = [x , y ]. Then S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ converges as n → ∞ to

the 1
2 -Hölder mean of x and y :

lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.
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Our results on periodic continued fraction averages 2/2

Theorem 3

Let α = [x , y ]. Then S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ converges as n → ∞ to

the 1
2 -Hölder mean of x and y :

lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.

Suffices to show for n ≡ 0 mod 2, say n = 2k .

In this case we have that S(α,2k , k)1/k →
(

x1/2+y1/2

2

)2

monotonically as k → ∞.
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On the proof of Theorem 3, 1/2

Goal : α = [x , y ] ⇒ lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.

The proof uses an asymptotic formula for Legendre
polynomials Pk (with t = x

y < 1 and u = 1+t
1−t > 1):

Pk (u) =
1
2k

k
∑

j = 0

(

k
j

)2

(u − 1)k−j(u + 1)j

S(α,2k , k) =
1
(2k

k

)

k
∑

j=0

(

k
j

)2

x jyk−j =
yk

(2k
k

)

k
∑

j=0

(

k
j

)2

t j

=
yk

(2k
k

)
(1 − t)k Pk(u).
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On the proof of Theorem 3, 2/2

Goal : α = [x , y ] ⇒ lim
n→∞

S(α,n, ⌈n
2⌉)

1/⌈n
2 ⌉ =

(

x1/2 + y1/2

2

)2

.

Using the generalized Laplace-Heine asymptotic formula for
Pk (u) for u > 1 and t = x

y < 1 and u = 1+t
1−t > 1 gives

S(α,2k , k)1/k = y(1 − t)

(

Pk(u)
(2k

k

)

)1/k

−→ y(1 − t)
u +

√
u2 − 1
4

= y

(

1 +
√

t
2

)2

=

(

x1/2 + y1/2

2

)2

.
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A conjecture on periodic continued fraction averages 1/3

Expect the same result of Theorem 3 to hold for every quadratic
irrational α and for every c.

Conjecture 2

For every α = [x1, . . . , xL] and every 0 ≤ c ≤ 1 the limit

lim
n→∞

S(α,n, ⌈cn⌉)1/⌈cn⌉ =: F (α, c)

exists and it is a continuous function of c.

Notice c 7→ F (α, c) is automatically decreasing by Maclaurin’s
inequalities.
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A conjecture on periodic continued fraction averages 2/3

Conjecture 2 for period 2 and period 3, 0 ≤ c ≤ 1.
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Main Results
(Sketch of More Technical Arguments)
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Explicit Formula for F (c)

Result of Halász and Székely yields conjecture and F (c).

Theorem 4

If limn→∞

k
n = c ∈ (0, 1], then for almost all α ∈ [0, 1]

lim
n→∞

S(α, n, k)1/k =: F (c)

exists, and F (c) is continuous and given explicitly by

c(1−c)
1−c

c exp

{

1
c

(

(c − 1) log rc −

∞
∑

k=1

log (rc + k) log2

(

1 −
1

(k + 1)2

)

)}

,

where rc is the unique nonnegative solution of the equation

∞
∑

k=1

r
r + k

log2

(

1 − 1
(k + 1)2

)

= c − 1.
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Proof: Work of Halász and Székely

Halász and Székely calculate asymptotic properties of iidrv
ξ1, . . . , ξn when

⋄ c = limn→∞ k/n ∈ [0,1].
⋄ ξj non-negative.
⋄ E[log ξj ] < ∞ if c = 1.
⋄ E[log(1 + ξj) < ∞ if 0 < c < 1.
⋄ E[ξj ] < ∞ if c = 0.

Prove limn→∞ k
√

S(ξ,n, k)/
(n

k

)

exists with probability 1 and
determine it.
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Proof: Work of Halász and Székely

Random variables ai(α) not independent, but Halász and
Székely only use independence to conclude sum of the form

1
n

n
∑

k=1

f (T k(α))

(where T is the Gauss map and f is some function integrable
with respect to the Gauss measure) converges a.e. to Ef as
n → ∞.

Arrive at the same conclusion by appealing to the pointwise
ergodic theorem.
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