Continued Fraction Digit Averages and Maclaurin's Inequalities

Steven J. Miller, Williams College

sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu Joint with Francesco Cellarosi, Doug Hensley and Jake Wellens http://web.williams.edu/Mathematics/sjmiller/public_html/

Conférence de Théorie des Nombres Québec-Maine Université Laval, Québec 28 Septembre 2014

Introduction

Plan of the talk

- Classical ergodic theory of continued fractions. \diamond Almost surely geometric mean $\sqrt[n]{a_{1} \cdots a_{n}} \rightarrow K_{0}$. \diamond Almost surely arithmetic mean $\left(a_{1}+\cdots+a_{n}\right) / n \rightarrow \infty$.
- Symmetric averages and Maclaurin's inequalities.

$$
\begin{aligned}
& \diamond S(x, n, k):=\binom{n}{k}^{-1} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} . \\
& \diamond \mathrm{AM}=S(x, n, 1)^{1 / 1} \geq S(x, n, 2)^{1 / 2} \geq \cdots \geq S(x, n, n)^{1 / n}=\mathrm{GM} .
\end{aligned}
$$

- Results / conjectures on typical / periodic continued fraction averages.
- Elementary proofs of weak results, sketch of stronger results.

To appear in Exp. Math.:http://arxiv.org/abs/1402.0208.

Continued Fractions

- Every real number $\alpha \in(0,1)$ can be expressed as

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots}}}}=\left[a_{1}, a_{2}, a_{3}, \ldots\right], \quad a_{i} \in\{1,2, \ldots\} .
$$

Continued Fractions

- Every real number $\alpha \in(0,1)$ can be expressed as

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots}}}}=\left[a_{1}, a_{2}, a_{3}, \ldots\right], a_{i} \in\{1,2, \ldots\} .
$$

- The sequence $\left\{a_{i}\right\}_{i}$ is finite iff $\alpha \in \mathbb{Q}$.

Continued Fractions

- Every real number $\alpha \in(0,1)$ can be expressed as

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots}}}}=\left[a_{1}, a_{2}, a_{3}, \ldots\right], \quad a_{i} \in\{1,2, \ldots\} .
$$

- $x=\frac{p}{q} \in \mathbb{Q}$ then a_{i} 's the partial quotients of Euclidean Alg.

$$
\begin{aligned}
333 & =3 \cdot 106+15 \\
106 & =7 \cdot 15+1 \\
15 & =15 \cdot 1+0
\end{aligned}
$$

106

$$
=[3,7,15]
$$

Continued Fractions

- Every real number $\alpha \in(0,1)$ can be expressed as

$$
x=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{\ldots}}}}=\left[a_{1}, a_{2}, a_{3}, \ldots\right], a_{i} \in\{1,2, \ldots\} .
$$

- $\left\{a_{i}\right\}_{i}$ preperiodic iff α a quadratic irrational; ex: $\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$.

Gauss Map: Definition

- The Gauss map $T:(0,1] \rightarrow(0,1], T(x)=\left\{\frac{1}{x}\right\}=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ generates the continued fraction digits

$$
a_{1}=\left\lfloor 1 / T^{0}(\alpha)\right\rfloor, \quad a_{i+1}=\left\lfloor 1 / T^{i}(\alpha)\right\rfloor, \quad \ldots
$$

corresponding to the Markov partition

$$
(0,1]=\bigsqcup_{k=1}^{\infty}\left(\frac{1}{k+1}, \frac{1}{k}\right] .
$$

- T preserves the measure $d \mu=\frac{1}{\log 2} \frac{1}{1+x} d x$ and it is mixing.

Gauss Map: Example: $\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$
$T:(0,1] \rightarrow(0,1], T(x)=\left\{\frac{1}{x}\right\}=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ generates digits

$$
a_{1}=\left\lfloor 1 / T^{0}(\alpha)\right\rfloor, \quad a_{i+1}=\left\lfloor 1 / T^{i}(\alpha)\right\rfloor, \quad \ldots
$$

$\alpha=\sqrt{3}-1=[1,2,1,2, \ldots]$: Note $a_{1}=\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=1$

Gauss Map: Example: $\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$
$T:(0,1] \rightarrow(0,1], T(x)=\left\{\frac{1}{x}\right\}=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ generates digits

$$
\begin{aligned}
a_{1} & =\left\lfloor 1 / T^{0}(\alpha)\right\rfloor, \quad a_{i+1}=\left\lfloor 1 / T^{i}(\alpha)\right\rfloor, \quad \cdots \\
\alpha=\sqrt{3}-1 & =[1,2,1,2, \ldots]: \text { Note } a_{1}=\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=1 \text { and } \\
T^{1}(\sqrt{3}-1) & =\frac{1}{\sqrt{3}-1}-\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=\frac{\sqrt{3}+1}{3-1}-1=\frac{\sqrt{3}-1}{2} \\
a_{2} & =\left\lfloor\frac{2}{\sqrt{3}-1}\right\rfloor=2 .
\end{aligned}
$$

Gauss Map: Example: $\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$
$T:(0,1] \rightarrow(0,1], T(x)=\left\{\frac{1}{x}\right\}=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor$ generates digits

$$
\begin{aligned}
a_{1} & =\left\lfloor 1 / T^{0}(\alpha)\right\rfloor, \quad a_{i+1}=\left\lfloor 1 / T^{i}(\alpha)\right\rfloor, \quad \ldots \\
\alpha=\sqrt{3}-1 & =[1,2,1,2, \ldots]: \text { Note } a_{1}=\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=1 \text { and } \\
T^{1}(\sqrt{3}-1) & =\frac{1}{\sqrt{3}-1}-\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=\frac{\sqrt{3}+1}{3-1}-1=\frac{\sqrt{3}-1}{2} \\
a_{2} & =\left\lfloor\frac{2}{\sqrt{3}-1}\right\rfloor=2 . \\
T^{2}(\sqrt{3}-1) & =\frac{2}{\sqrt{3}-1}-\left\lfloor\frac{2}{\sqrt{3}-1}\right\rfloor=\frac{2 \sqrt{3}+2}{2}-2=\sqrt{3}-1 \\
a_{3} & =\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=1 .
\end{aligned}
$$

Gauss Map: Example: $\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$

$$
T:(0,1] \rightarrow(0,1], T(x)=\left\{\frac{1}{x}\right\}=\frac{1}{x}-\left\lfloor\frac{1}{x}\right\rfloor \text { generates digits }
$$

$$
\begin{aligned}
a_{1} & =\left\lfloor 1 / T^{0}(\alpha)\right\rfloor, \quad a_{i+1}=\left\lfloor 1 / T^{i}(\alpha)\right\rfloor, \quad \ldots \\
\alpha=\sqrt{3}-1 & =[1,2,1,2, \ldots]: \text { Note } a_{1}=\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=1 \text { and } \\
T^{1}(\sqrt{3}-1) & =\frac{1}{\sqrt{3}-1}-\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=\frac{\sqrt{3}+1}{3-1}-1=\frac{\sqrt{3}-1}{2} \\
a_{2} & =\left\lfloor\frac{2}{\sqrt{3}-1}\right\rfloor=2 . \\
T^{2}(\sqrt{3}-1) & =\frac{2}{\sqrt{3}-1}-\left\lfloor\frac{2}{\sqrt{3}-1}\right\rfloor=\frac{2 \sqrt{3}+2}{2}-2=\sqrt{3}-1 \\
a_{3} & =\left\lfloor\frac{1}{\sqrt{3}-1}\right\rfloor=1 .
\end{aligned}
$$

Statistics of Continued Fraction Digits 1/3

- The digits a_{i} follow the Gauss-Kuzmin distribution:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(a_{n}=k\right)=\log _{2}\left(1+\frac{1}{k(k+2)}\right)
$$

(note the expectation is infinite).

Statistics of Continued Fraction Digits 1/3

- The digits a_{i} follow the Gauss-Kuzmin distribution:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(a_{n}=k\right)=\log _{2}\left(1+\frac{1}{k(k+2)}\right)
$$

(note the expectation is infinite).

- The function $x \mapsto f(x)=\lfloor 1 / T(x)\rfloor$ on $(0,1]$ is not integrable wrt μ. However, $\log f \in L^{1}(\mu)$.

Statistics of Continued Fraction Digits 1/3

- The digits a_{i} follow the Gauss-Kuzmin distribution:

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(a_{n}=k\right)=\log _{2}\left(1+\frac{1}{k(k+2)}\right)
$$

(note the expectation is infinite).

- The function $x \mapsto f(x)=\lfloor 1 / T(x)\rfloor$ on $(0,1]$ is not integrable wrt μ. However, $\log f \in L^{1}(\mu)$.
- Pointwise ergodic theorem (applied to f and $\log f$) reads

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{a_{1}+a_{2}+\cdots+a_{n}}{n}=\infty \quad \text { almost surely } \\
& \lim _{n \rightarrow \infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}=e^{\int \log f d_{\mu}} \quad \text { almost surely. }
\end{aligned}
$$

Statistics of Continued Fraction Digits 2/3

- Geometric mean converges a.s. to Khinchin's constant:

$$
\lim _{n \rightarrow \infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}=\prod_{k=1}^{\infty}\left(1+\frac{1}{k(k+2)}\right)^{\log _{2} k}=K_{0} \approx 2.6854
$$

Statistics of Continued Fraction Digits 2/3

- Geometric mean converges a.s. to Khinchin's constant:

$$
\lim _{n \rightarrow \infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}=\prod_{k=1}^{\infty}\left(1+\frac{1}{k(k+2)}\right)^{\log _{2} k}=K_{0} \approx 2.6854 .
$$

- Hölder means: For $p<1$, almost surely

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}=K_{p}=\left(\sum_{k=1}^{\infty}-k^{p} \log _{2}\left(1-\frac{1}{(k+1)^{2}}\right)\right)^{1 / p} .
$$

Statistics of Continued Fraction Digits 2/3

- Geometric mean converges a.s. to Khinchin's constant:

$$
\lim _{n \rightarrow \infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}=\prod_{k=1}^{\infty}\left(1+\frac{1}{k(k+2)}\right)^{\log _{2} k}=K_{0} \approx 2.6854 .
$$

- Hölder means: For $p<1$, almost surely

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}=K_{p}=\left(\sum_{k=1}^{\infty}-k^{p} \log _{2}\left(1-\frac{1}{(k+1)^{2}}\right)\right)^{1 / p}
$$

- Example: The harmonic mean $K_{-1}=1.74540566 \ldots$

Statistics of Continued Fraction Digits 2/3

- Geometric mean converges a.s. to Khinchin's constant:

$$
\lim _{n \rightarrow \infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}=\prod_{k=1}^{\infty}\left(1+\frac{1}{k(k+2)}\right)^{\log _{2} k}=K_{0} \approx 2.6854 .
$$

- Hölder means: For $p<1$, almost surely

$$
\lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{i=1}^{n} a_{i}^{p}\right)^{1 / p}=K_{p}=\left(\sum_{k=1}^{\infty}-k^{p} \log _{2}\left(1-\frac{1}{(k+1)^{2}}\right)\right)^{1 / p} .
$$

- Example: The harmonic mean $K_{-1}=1.74540566 \ldots$
- $\lim _{p \rightarrow 0} K_{p}=K_{0}$.

Statistics of Continued Fraction Digits 3/3

- Khinchin also proved: For $a_{m}^{\prime}=a_{m}$ if $a_{m}<m(\log m)^{4 / 3}$ and 0 otherwise:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} a_{i}^{\prime}}{n \log n}=\frac{1}{\log 2} \quad \text { in measure }
$$

Statistics of Continued Fraction Digits 3/3

- Khinchin also proved: For $a_{m}^{\prime}=a_{m}$ if $a_{m}<m(\log m)^{4 / 3}$ and 0 otherwise:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} a_{i}^{\prime}}{n \log n}=\frac{1}{\log 2} \quad \text { in measure. }
$$

- Diamond and Vaaler (1986) showed that

$$
\lim _{n \rightarrow \infty} \frac{\sum_{i=1}^{n} a_{i}-\max _{1 \leq i \leq n} a_{i}}{n \log n}=\frac{1}{\log 2} \quad \text { almost surely. }
$$

Maclaurin Inequalities

Definitions and Maclaurin's Inequalities

- Both $\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$ are defined in terms of elementary symmetric polynomials in x_{1}, \ldots, x_{n}.
- Define $k^{\text {th }}$ elementary symmetric mean of x_{1}, \ldots, x_{n} by

$$
S(x, n, k):=\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}}
$$

Definitions and Maclaurin's Inequalities

- Both $\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\left(\prod_{i=1}^{n} x_{i}\right)^{1 / n}$ are defined in terms of elementary symmetric polynomials in x_{1}, \ldots, x_{n}.
- Define $k^{\text {th }}$ elementary symmetric mean of x_{1}, \ldots, x_{n} by

$$
S(x, n, k):=\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}} .
$$

Maclaurin's Inequalities

For positive x_{1}, \ldots, x_{n} we have

$$
\mathrm{AM}:=S(x, n, 1)^{1 / 1} \geq S(x, n, 2)^{1 / 2} \geq \cdots \geq S(x, n, n)^{1 / n}=: \mathrm{GM}
$$

(and equalities hold iff $x_{1}=\cdots=x_{n}$).

Maclaurin's work

IV. A fecond Letter from Mr . Colin M^{c} Laurin, Profeffor of Mathematicks in the Univerfity of Edinburgh and F. R. S. to Martin Folkes, $E \int_{q}$; concerning the Roots of Equations, with the $\mathcal{D e}$ monftration of other Rules in Algebra; being the Continuation of the Letter publijhed in the Philofophical Tranfactions, $N^{\circ} 394$.

$S I R$,

Edinburgh, April 19th, 1729.

IN the Y ar $\mathbf{1 7 2 5}$, I wrote to you that I had a Method of demonftrating Sir Ifaac Nerwton's Rule concerning the impoffible Roots of Equations, deduced from this obvious Principle, that the Squares of the Differences of realQuantities muft always be pofitive : and fome time after, I fent you the firt Principles of that Method, which were publifhed in the Philofophical Tranfactions for the Month of May, 1726. The

This laft is the Theorem publifhed by the learned Mr. Bernouilli in the AEf a Lipfore 1694 . It is now high Time to conclude this long Letter; I beg you may accept of it as a Proof of that Refpect and Efteem with which

$$
\begin{aligned}
& \text { Iam, } \\
& \text { SI R, } \\
& \text { Your mof Obedient, } \\
& \text { Moft Humble Servant, }
\end{aligned}
$$

Colin Mac Laurin.

Proof

Standard proof through Newton's inequalities.
Define the $k^{\text {th }}$ elementary symmetric function by

$$
s_{k}(x)=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n} x_{i_{1}} x_{i_{2}} \cdots x_{i_{k}},
$$

and the $k^{\text {th }}$ elementary symmetric mean by

$$
E_{k}(x)=s_{k}(x) /\binom{n}{k} .
$$

Newton's inequality: $E_{k}(x)^{2} \geq E_{k-1}(x) E_{k+1}(x)$.
New proof by Iddo Ben-Ari and Keith Conrad:
http://homepages.uconn.edu/benari/pdf/maclaurinMathMagFinal.pdf.

Sketch of Ben-Ari and Conrad's Proof

Bernoulli's inequality: $t>-1:(1+t)^{n} \geq 1+n t$ or $1+\frac{1}{n} x \geq(1+x)^{1 / n}$.

Generalized Bernoulli: $x>-1$:

$$
1+\frac{1}{n} x \geq\left(1+\frac{2}{n} x\right)^{1 / 2} \geq\left(1+\frac{3}{n} x\right)^{1 / 3} \geq \cdots \geq\left(1+\frac{n}{n} x\right)^{1 / n} .
$$

Sketch of Ben-Ari and Conrad's Proof

Bernoulli's inequality: $t>-1:(1+t)^{n} \geq 1+n t$ or $1+\frac{1}{n} x \geq(1+x)^{1 / n}$.

Generalized Bernoulli: $x>-1$:

$$
1+\frac{1}{n} x \geq\left(1+\frac{2}{n} x\right)^{1 / 2} \geq\left(1+\frac{3}{n} x\right)^{1 / 3} \geq \cdots \geq\left(1+\frac{n}{n} x\right)^{1 / n}
$$

Proof: Equivalent to $\frac{1}{k} \log \left(1+\frac{k}{n} x\right) \geq \frac{1}{k+1} \log \left(1+\frac{k+1}{n} x\right)$, which follows by $\log t$ is strictly concave:

$$
\lambda=\frac{1}{k+1}, 1+\frac{k}{n} x=\lambda \cdot 1+(1-\lambda) \cdot\left(1+\frac{k+1}{n} x\right) .
$$

Sketch of Ben-Ari and Conrad's Proof

Proof of Maclaurin's Inequalities:

Trivial for $n \in\{1,2\}$, wlog assume $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.

Sketch of Ben-Ari and Conrad's Proof

Proof of Maclaurin's Inequalities:

Trivial for $n \in\{1,2\}$, wlog assume $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
Set $E_{k}:=s_{k}(x) /\binom{n}{k}, \epsilon_{k}:=E_{k}\left(x_{1}, \ldots, x_{n-1}\right)$.

Sketch of Ben-Ari and Conrad's Proof

Proof of Maclaurin's Inequalities:

Trivial for $n \in\{1,2\}$, wlog assume $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
Set $E_{k}:=s_{k}(x) /\binom{n}{k}, \epsilon_{k}:=E_{k}\left(x_{1}, \ldots, x_{n-1}\right)$.
Have
$E_{k}\left(x_{1}, \ldots, x_{n}\right)=\left(1-\frac{k}{n}\right) E_{k}\left(x_{1}, \ldots, x_{n-1}\right)+\frac{k}{n} E_{k}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}$.

Sketch of Ben-Ari and Conrad's Proof

Proof of Maclaurin's Inequalities:

Trivial for $n \in\{1,2\}$, wlog assume $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$.
Set $E_{k}:=s_{k}(x) /\binom{n}{k}, \epsilon_{k}:=E_{k}\left(x_{1}, \ldots, x_{n-1}\right)$.
Have
$E_{k}\left(x_{1}, \ldots, x_{n}\right)=\left(1-\frac{k}{n}\right) E_{k}\left(x_{1}, \ldots, x_{n-1}\right)+\frac{k}{n} E_{k}\left(x_{1}, \ldots, x_{n-1}\right) x_{n}$.
Proceed by induction in number of variables, use Generalized Bernoulli.

Main Results
 (Elementary Techniques)

Symmetric Averages and Maclaurin's Inequalities

- Recall: $S(x, n, k)=\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}$ and $S(x, n, 1)^{1 / 1} \geq S(x, n, 2)^{1 / 2} \geq \cdots \geq S(x, n, n)^{1 / n}$.

Symmetric Averages and Maclaurin's Inequalities

- Recall: $S(x, n, k)=\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{k}}$ and $S(x, n, 1)^{1 / 1} \geq S(x, n, 2)^{1 / 2} \geq \cdots \geq S(x, n, n)^{1 / n}$.
- Khinchin's results: almost surely as $n \rightarrow \infty$

$$
S(\alpha, 1,1)^{1 / 1} \rightarrow \infty \quad \text { and } \quad S(\alpha, n, n)^{1 / n} \rightarrow K_{0} .
$$

- We study the intermediate means $S(\alpha, n, k)^{1 / k}$ as $n \rightarrow \infty$ when $k=k(n)$, with

$$
S(\alpha, n, k(n))^{1 / k(n)}=S(\alpha, n,\lceil k(n)\rceil)^{1 /\lceil k(n)\rceil} .
$$

Our results on typical continued fraction averages

Recall: $S(\alpha, n, k)=\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{i_{1}} \cdots a_{i_{k}}$ and $S(\alpha, n, 1)^{1 / 1} \geq S(\alpha, n, 2)^{1 / 2} \geq \cdots \geq S(\alpha, n, n)^{1 / n}$.

Theorem 1

Let $f(n)=o(\log \log n)$ as $n \rightarrow \infty$. Then, almost surely,

$$
\lim _{n \rightarrow \infty} S(\alpha, n, f(n))^{1 / f(n)}=\infty .
$$

Theorem 2

Let $f(n)=o(n)$ as $n \rightarrow \infty$. Then, almost surely,

$$
\lim _{n \rightarrow \infty} S(\alpha, n, n-f(n))^{1 /(n-f(n))}=K_{0} .
$$

Note: Theorems do not cover the case $f(n)=c n$ for $0<c<1$.

Sketch of Proofs of Theorems 1 and 2

Theorem 1: For $f(n)=o(\log \log n)$ as $n \rightarrow \infty$:

$$
\text { Almost surely } \lim _{n \rightarrow \infty} S(\alpha, n, f(n))^{1 / f(n)}=\infty .
$$

Uses Niculescu's strengthening of Maclaurin (2000):

$$
S(n, t j+(1-t) k) \geq S(n, j)^{t} \cdot S(n, k)^{1-t} .
$$

Sketch of Proofs of Theorems 1 and 2

Theorem 1: For $f(n)=o(\log \log n)$ as $n \rightarrow \infty$:
Almost surely $\lim _{n \rightarrow \infty} S(\alpha, n, f(n))^{1 / f(n)}=\infty$.
Uses Niculescu's strengthening of Maclaurin (2000):

$$
S(n, t j+(1-t) k) \geq S(n, j)^{t} \cdot S(n, k)^{1-t} .
$$

Theorem 2: For $f(n)=o(n)$ as $n \rightarrow \infty$:
Almost surely $\lim _{n \rightarrow \infty} S(\alpha, n, n-f(n))^{1 /(n-f(n))}=K_{0}$.

Use (a.s.) $K_{0} \leq \limsup _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n} \leq K_{0}^{1 / c}<\infty, 0<c<1$.

Proof of Theorem 1: Preliminaries

Lemma

Let X be a sequence of positive real numbers. Suppose $\lim _{n \rightarrow \infty} S(X, n, k(n))^{1 / k(n)}$ exists. Then, for any $f(n)=o(k(n))$ as $n \rightarrow \infty$, we have

$$
\lim _{n \rightarrow \infty} S(X, n, k(n)+f(n))^{1 /(k(n)+f(n))}=\lim _{n \rightarrow \infty} S(n, k(n))^{1 / k(n)} .
$$

Proof: Assume $f(n) \geq 0$ for large enough n, and for display purposes write k and f for $k(n)$ and $f(n)$.

From Newton's inequalities and Maclaurin's inequalities, we get

$$
\left(S(X, n, k)^{1 / k}\right)^{\frac{k}{k+7}}=S(X, n, k)^{1 /(k+f)} \leq S(X, n, k+f)^{1 /(k+f)} \leq S(X, n, k)^{1 / k}
$$

Proof of Theorem 1: $f(n)=o(\log \log n)$

Each entry of α is at least 1 .
Let $f(n)=o(\log \log n)$. Set $t=1 / 2$ and $(j, k)=(1,2 f(n)-1)$, so that $t j+(1-t) k=f(n)$. Niculescu's result yields
$S(\alpha, n, f(n)) \geq \sqrt{S(\alpha, n, 1) \cdot S(\alpha, n, 2 f(n)-1)}>\sqrt{S(\alpha, n, 1)}$.
Square both sides, raise to the power $1 / f(n)$:

$$
S(\alpha, n, f(n))^{2 / f(n)} \geq S(\alpha, n, 1)^{1 / f(n)} .
$$

From Khinchin almost surely if $g(n)=o(\log n)$

$$
\lim _{n \rightarrow \infty} \frac{S(\alpha, n, 1)}{g(n)}=\infty
$$

Let $g(n)=\log n / \log \log n$. Taking logs:

$$
\log \left(S(\alpha, n, 1)^{1 / f(n)}\right)>\frac{\log g(n)}{f(n)}>\frac{\log \log n}{2 f(n)} .
$$

Proof of Theorem 2

Theorem 2: Let $f(n)=o(n)$ as $n \rightarrow \infty$. Then, almost surely,

$$
\lim _{n \rightarrow \infty} S(\alpha, n, n-f(n))^{1 /(n-f(n))}=K_{0}
$$

Proof: Follows immediately from:
For any constant $0<c<1$ and almost all α have

$$
K_{0} \leq \limsup _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n} \leq K_{0}^{1 / c}<\infty
$$

To see this, note

$$
S(\alpha, n, c n)^{1 / c n}=\left(\prod_{i=1}^{n} a_{i}(\alpha)^{1 / n}\right)^{n / c n}\left(\frac{\sum_{i_{1}<\cdots<i_{1-c) n} \leq n} 1 /\left(a_{i_{1}}(\alpha) \cdots a_{i_{(1-c) n}}(\alpha)\right)}{\binom{n}{c n}}\right)^{1 / c n} .
$$

Limiting Behavior

Recall $S(\alpha, n, k)=\frac{1}{\binom{n}{k}} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} a_{i_{1}} \cdots a_{i_{k}}$ and $S(\alpha, n, 1)^{1 / 1} \geq S(\alpha, n, 2)^{1 / 2} \geq \cdots \geq S(\alpha, n, n)^{1 / n}$.

Proposition

For $0<c<1$ and for almost every α

$$
K_{0} \leq \limsup _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n} \leq K_{0}^{1 / c}\left(K_{-1}\right)^{1-1 / c} .
$$

Conjecture

Almost surely $F_{+}^{\alpha}(c)=F_{-}^{\alpha}(c)=F(c)$ for all $0<c<1$, with

$$
\begin{aligned}
& F_{+}^{\alpha}(c)=\limsup _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n}, \\
& F_{-}^{\alpha}(c)=\liminf _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n} .
\end{aligned}
$$

Limiting Behavior

Recall

$$
\begin{aligned}
F_{+}^{\alpha}(c) & =\limsup _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n} \\
F_{-}^{\alpha}(c) & =\liminf _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n}
\end{aligned}
$$

and we conjecture $F_{+}^{\alpha}(c)=F_{-}^{\alpha}(c)=F(c)$ a.s.
Assuming conjecture, can show that the function $c \mapsto F(c)$ is continuous.

Assuming conjecture is false, we can show that for every
$0<c<1$ the set of limit points of the sequence $\left.\left\{S(\alpha, n, c n)^{1 / c n}\right)\right\}_{n \in \mathbb{N}}$ is a non-empty interval inside $\left[K, K^{1 / c}\right]$.

Evidence for Conjecture 1

- $n \mapsto S(\alpha, n, c n)^{1 / c n}$ for $c=\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ and $\alpha=\pi-3, \gamma, \sin (1)$.

Our results on periodic continued fraction averages 1/2

- For $\alpha=\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S(\alpha, n, 1)^{1 / 1}=\frac{3}{2} \neq \infty \\
& \lim _{n \rightarrow \infty} S(\alpha, n, n)^{1 / n}=\sqrt{2} \neq K_{0}
\end{aligned}
$$

Our results on periodic continued fraction averages 1/2

- For $\alpha=\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S(\alpha, n, 1)^{1 / 1}=\frac{3}{2} \neq \infty \\
& \lim _{n \rightarrow \infty} S(\alpha, n, n)^{1 / n}=\sqrt{2} \neq K_{0}
\end{aligned}
$$

- What can we say about $\lim _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n}$?

Our results on periodic continued fraction averages 1/2

- For $\alpha=\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S(\alpha, n, 1)^{1 / 1}=\frac{3}{2} \neq \infty \\
& \lim _{n \rightarrow \infty} S(\alpha, n, n)^{1 / n}=\sqrt{2} \neq K_{0}
\end{aligned}
$$

- What can we say about $\lim _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n}$?
- Consider the quadratic irrational $\alpha=[x, y, x, y, x, y, \ldots]$.

Our results on periodic continued fraction averages 1/2

- For $\alpha=\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S(\alpha, n, 1)^{1 / 1}=\frac{3}{2} \neq \infty \\
& \lim _{n \rightarrow \infty} S(\alpha, n, n)^{1 / n}=\sqrt{2} \neq K_{0}
\end{aligned}
$$

- What can we say about $\lim _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n}$?
- Consider the quadratic irrational $\alpha=[x, y, x, y, x, y, \ldots]$.
- Let us look at $S(\alpha, n, c n)^{1 / c n}$ for $c=1 / 2$.

$$
S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)= \begin{cases}S\left(\alpha, n, \frac{n}{2}\right) & \text { if } n \equiv 0 \bmod 2 ; \\ S\left(\alpha, n, \frac{n+1}{2}\right) & \text { if } n \equiv 1 \bmod 2 .\end{cases}
$$

Our results on periodic continued fraction averages 1/2

- For $\alpha=\sqrt{3}-1=[1,2,1,2,1,2, \ldots]$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} S(\alpha, n, 1)^{1 / 1}=\frac{3}{2} \neq \infty \\
& \lim _{n \rightarrow \infty} S(\alpha, n, n)^{1 / n}=\sqrt{2} \neq K_{0}
\end{aligned}
$$

- What can we say about $\lim _{n \rightarrow \infty} S(\alpha, n, c n)^{1 / c n}$?
- Consider the quadratic irrational $\alpha=[x, y, x, y, x, y, \ldots]$.
- Let us look at $S(\alpha, n, c n)^{1 / c n}$ for $c=1 / 2$.

$$
S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)= \begin{cases}S\left(\alpha, n, \frac{n}{2}\right) & \text { if } n \equiv 0 \bmod 2 ; \\ S\left(\alpha, n, \frac{n+1}{2}\right) & \text { if } n \equiv 1 \bmod 2 .\end{cases}
$$

- We find the limit $\lim _{n \rightarrow \infty} S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)^{1 /\left[\frac{n}{2}\right\rceil}$ in terms of x, y.

Our results on periodic continued fraction averages 2/2

Theorem 3

Let $\alpha=[\overline{x, y}]$. Then $S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)^{1 /\left[\frac{n}{2}\right\rceil}$ converges as $n \rightarrow \infty$ to the $\frac{1}{2}$-Hölder mean of x and y :

$$
\lim _{n \rightarrow \infty} S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)^{1 /\left\lceil\frac{n}{2}\right\rceil}=\left(\frac{x^{1 / 2}+y^{1 / 2}}{2}\right)^{2} .
$$

Our results on periodic continued fraction averages 2/2

Theorem 3

Let $\alpha=[\overline{x, y}]$. Then $S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)^{1 /\left[\frac{n}{2}\right\rceil}$ converges as $n \rightarrow \infty$ to the $\frac{1}{2}$-Hölder mean of x and y :

$$
\lim _{n \rightarrow \infty} S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)^{1 /\left\lceil\frac{n}{2}\right\rceil}=\left(\frac{x^{1 / 2}+y^{1 / 2}}{2}\right)^{2} .
$$

Suffices to show for $n \equiv 0 \bmod 2$, say $n=2 k$. In this case we have that $S(\alpha, 2 k, k)^{1 / k} \rightarrow\left(\frac{x^{1 / 2}+y^{1 / 2}}{2}\right)^{2}$ monotonically as $k \rightarrow \infty$.

On the proof of Theorem 3, 1/2

$$
\text { Goal : } \alpha=[\overline{x, y}] \Rightarrow \lim _{n \rightarrow \infty} S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)^{\left.1 / / \frac{n}{2}\right\rceil}=\left(\frac{x^{1 / 2}+y^{1 / 2}}{2}\right)^{2} .
$$

The proof uses an asymptotic formula for Legendre polynomials P_{k} (with $t=\frac{x}{y}<1$ and $u=\frac{1+t}{1-t}>1$):

$$
\begin{aligned}
P_{k}(u) & =\frac{1}{2^{k}} \sum_{j=0}^{k}\binom{k}{j}^{2}(u-1)^{k-j}(u+1)^{j} \\
S(\alpha, 2 k, k) & =\frac{1}{\binom{2 k}{k}} \sum_{j=0}^{k}\binom{k}{j}^{2} x^{j} y^{k-j}=\frac{y^{k}}{\binom{2 k}{k}} \sum_{j=0}^{k}\binom{k}{j}^{2} t^{j} \\
& =\frac{y^{k}}{\binom{2 k}{k}}(1-t)^{k} P_{k}(u) .
\end{aligned}
$$

On the proof of Theorem 3, 2/2

$$
\text { Goal : } \alpha=[\overline{x, y}] \Rightarrow \lim _{n \rightarrow \infty} S\left(\alpha, n,\left\lceil\frac{n}{2}\right\rceil\right)^{1 /\left[\frac{n}{2}\right\rceil}=\left(\frac{x^{1 / 2}+y^{1 / 2}}{2}\right)^{2} .
$$

Using the generalized Laplace-Heine asymptotic formula for $P_{k}(u)$ for $u>1$ and $t=\frac{x}{y}<1$ and $u=\frac{1+t}{1-t}>1$ gives

$$
\begin{aligned}
S(\alpha, 2 k, k)^{1 / k} & =y(1-t)\left(\frac{P_{k}(u)}{\binom{2 k}{k}}\right)^{1 / k} \\
& \longrightarrow y(1-t) \frac{u+\sqrt{u^{2}-1}}{4}=y\left(\frac{1+\sqrt{t}}{2}\right)^{2} \\
& =\left(\frac{x^{1 / 2}+y^{1 / 2}}{2}\right)^{2} .
\end{aligned}
$$

A conjecture on periodic continued fraction averages 1/3

Expect the same result of Theorem 3 to hold for every quadratic irrational α and for every c.

Conjecture 2

For every $\alpha=\left[\overline{\bar{x}_{1}, \ldots, X_{L}}\right]$ and every $0 \leq c \leq 1$ the limit

$$
\lim _{n \rightarrow \infty} S(\alpha, n,\lceil c n\rceil)^{1 /[c n\rceil}=: F(\alpha, c)
$$

exists and it is a continuous function of c.

Notice $\boldsymbol{c} \mapsto \boldsymbol{F}(\alpha, \boldsymbol{c})$ is automatically decreasing by Maclaurin's inequalities.

A conjecture on periodic continued fraction averages 2/3

Conjecture 2 for period 2 and period $3,0 \leq c \leq 1$.

$\mathrm{X}=\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{2}, x_{3}, \ldots\right)=(1,2,100,1,2,100, \ldots)$
$\mathrm{X}=\left(x_{1}, x_{2}, x_{3}, x_{1}, x_{2}, x_{3}, \ldots\right)=(1,100,100,1,100,100, \ldots)$

Main Results
 (Sketch of More Technical Arguments)

Explicit Formula for $F(c)$

Result of Halász and Székely yields conjecture and $F(c)$.

Theorem 4

If $\lim _{n \rightarrow \infty} \frac{k}{n}=\boldsymbol{c} \in(0,1]$, then for almost all $\alpha \in[0,1]$

$$
\lim _{n \rightarrow \infty} S(\alpha, n, k)^{1 / k}=: F(c)
$$

exists, and $F(c)$ is continuous and given explicitly by

$$
c(1-c)^{\frac{1-c}{c}} \exp \left\{\frac{1}{c}\left((c-1) \log r_{c}-\sum_{k=1}^{\infty} \log \left(r_{c}+k\right) \log _{2}\left(1-\frac{1}{(k+1)^{2}}\right)\right)\right\}
$$

where r_{c} is the unique nonnegative solution of the equation

$$
\sum_{k=1}^{\infty} \frac{r}{r+k} \log _{2}\left(1-\frac{1}{(k+1)^{2}}\right)=c-1
$$

Proof: Work of Halász and Székely

- Halász and Székely calculate asymptotic properties of iidrv ξ_{1}, \ldots, ξ_{n} when
$\diamond c=\lim _{n \rightarrow \infty} k / n \in[0,1]$.
$\diamond \xi_{j}$ non-negative.
$\diamond \mathbb{E}\left[\log \xi_{j}\right]<\infty$ if $c=1$.
$\diamond \mathbb{E}\left[\log \left(1+\xi_{j}\right)<\infty\right.$ if $0<c<1$.
$\diamond \mathbb{E}\left[\xi_{j}\right]<\infty$ if $c=0$.
- Prove $\lim _{n \rightarrow \infty} \sqrt[k]{S(\xi, n, k) /\binom{n}{k}}$ exists with probability 1 and determine it.

Proof: Work of Halász and Székely

Random variables $a_{i}(\alpha)$ not independent, but Halász and Székely only use independence to conclude sum of the form

$$
\frac{1}{n} \sum_{k=1}^{n} f\left(T^{k}(\alpha)\right)
$$

(where T is the Gauss map and f is some function integrable with respect to the Gauss measure) converges a.e. to $\mathbb{E} f$ as $n \rightarrow \infty$.

Arrive at the same conclusion by appealing to the pointwise ergodic theorem.

References

References

E
I. Ben-Ari and K. Conrad, Maclaurin's inequality and a generalized Bernoulli inequality, Math. Mag. 87 (2014), 14-24.

T- F. Cellarosi, D. Hensley, S. J. Miller and J. Wellens, Continued Fraction Digit Averages and Maclaurin's Inequalities, to appear in Experimental Mathematics. http://arxiv.org/abs/1402.0208.

T- H. G. Diamond and J. D. Vaaler, Estimates for Partial Sums of Continued Fraction Partial Quotients, Pacific Journal of Mathematics 122 (1986), 73-82.
T. G. Halász and G. J. Székely, On the elementary symmetric polynomials of independent random variables, Acta Math. Acad. Sci. Hungar. 28 (1976), no. 3-4, 397-400.
A. Y. Khinchin, Continued Fractions, 3rd edition, University of Chicago Press, Chicago, 1964.

Work supported by AMS-Simons Travel grant, NSF grants DMS0850577, DMS0970067, DMS1265673 and DMS1363227, and Williams College.

