Intro 00000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

Continued Fraction Digit Averages and Maclaurin's Inequalities

Steven J. Miller, Williams College

sjml@williams.edu, Steven.Miller.MC.96@aya.yale.edu
Joint with Francesco Cellarosi, Doug Hensley and Jake Wellens
http://web.williams.edu/Mathematics/sjmiller/public_html/

Conférence de Théorie des Nombres Québec-Maine Université Laval, Québec 28 Septembre 2014

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
0000000		೦೦೦೦೦೦೦೦೦೦೦೦೦೦	০০০	o

Introduction

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
●○○○○○○○		০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	০০০	o
Plan of th	o talk			

- Classical ergodic theory of continued fractions.
 Almost surely geometric mean ⁿ√a₁ ··· · a_n → K₀.
 Almost surely arithmetic mean (a₁ + ··· + a_n)/n → ∞.
- Symmetric averages and Maclaurin's inequalities.
 S(x, n, k) := (ⁿ_k)⁻¹ ∑_{1≤i1<i2<···<ik≤n} x_{i1}x_{i2} ··· x_{ik}.
 AM = S(x, n, 1)^{1/1} ≥ S(x, n, 2)^{1/2} ≥ ··· ≥ S(x, n, n)^{1/n} = GM.
- Results / conjectures on typical / periodic continued fraction averages.
- Elementary proofs of weak results, sketch of stronger results.

To appear in Exp. Math.:http://arxiv.org/abs/1402.0208.

Intro o●oooooo	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o
Continue	d Fractions			

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\cdots}}}} = [a_1, a_2, a_3, \ldots], \ a_i \in \{1, 2, \ldots\}.$$

Intro ooooooo	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o
Continued	d Fractions			

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{$$

• The sequence $\{a_i\}_i$ is finite iff $\alpha \in \mathbb{Q}$.

0000000	00000	0000000000000000	000	
Continue	ed Fractions			

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{$$

• $x = \frac{p}{a} \in \mathbb{Q}$ then a_i 's the partial quotients of Euclidean Alg.

- $333 = 3 \cdot 106 + 15$
- $\frac{106}{333} = [3, 7, 15] \qquad 106 = 7 \cdot 15 + 1$

$$15 = 15 \cdot 1 + 0.$$

Continuo				
Intro o●oooooo	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

$$x = \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{\cdots}}}} = [a_1, a_2, a_3, \ldots], \ a_i \in \{1, 2, \ldots\}.$$

 {*a_i*}_{*i*} preperiodic iff *α* a quadratic irrational; ex: √3 − 1 = [1, 2, 1, 2, 1, 2, ...].

• The Gauss map $T : (0, 1] \to (0, 1], T(x) = \{\frac{1}{x}\} = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor$ generates the continued fraction digits

$$a_1 = \lfloor 1/T^0(\alpha) \rfloor, \quad a_{i+1} = \lfloor 1/T^i(\alpha) \rfloor, \quad \dots$$

corresponding to the Markov partition

$$(0,1] = \bigsqcup_{k=1}^{\infty} \left(\frac{1}{k+1},\frac{1}{k}\right].$$

• *T* preserves the measure $d\mu = \frac{1}{\log 2} \frac{1}{1+x} dx$ and it is mixing.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
0000000				

 $T: (0,1] \to (0,1], T(x) = \{\frac{1}{x}\} = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor \text{ generates digits}$ $a_1 = \lfloor 1/T^0(\alpha) \rfloor, \quad a_{i+1} = \lfloor 1/T^i(\alpha) \rfloor, \quad \dots$

$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, \dots]$$
: Note $a_1 = \lfloor \frac{1}{\sqrt{3} - 1} \rfloor = 1$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
0000000				

 $T: (0,1] \to (0,1], T(x) = \{\frac{1}{x}\} = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor \text{ generates digits}$ $a_1 = \lfloor 1/T^0(\alpha) \rfloor, \quad a_{i+1} = \lfloor 1/T^i(\alpha) \rfloor, \quad \dots$

$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, \dots]: \text{ Note } a_1 = \lfloor \frac{1}{\sqrt{3} - 1} \rfloor = 1 \text{ and}$$

$$T^1(\sqrt{3} - 1) = \frac{1}{\sqrt{3} - 1} - \lfloor \frac{1}{\sqrt{3} - 1} \rfloor = \frac{\sqrt{3} + 1}{3 - 1} - 1 = \frac{\sqrt{3} - 1}{2}$$

$$a_2 = \lfloor \frac{2}{\sqrt{3} - 1} \rfloor = 2.$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
0000000				

$$T: (0,1] \to (0,1], T(x) = \{\frac{1}{x}\} = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor \text{ generates digits}$$
$$a_1 = \lfloor 1/T^0(\alpha) \rfloor, \quad a_{i+1} = \lfloor 1/T^i(\alpha) \rfloor, \quad \dots$$

$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, \dots]$$
: Note $a_1 = \lfloor \frac{1}{\sqrt{3} - 1} \rfloor = 1$ and

$$T^{1}(\sqrt{3}-1) = \frac{1}{\sqrt{3}-1} - \left\lfloor \frac{1}{\sqrt{3}-1} \right\rfloor = \frac{\sqrt{3}+1}{3-1} - 1 = \frac{\sqrt{3}-1}{2}$$
$$a_{2} = \left\lfloor \frac{2}{\sqrt{3}-1} \right\rfloor = 2.$$
$$T^{2}(\sqrt{3}-1) = \frac{2}{\sqrt{3}-1} - \left\lfloor \frac{2}{\sqrt{3}-1} \right\rfloor = \frac{2\sqrt{3}+2}{2} - 2 = \sqrt{3}-1$$
$$a_{3} = \left\lfloor \frac{1}{\sqrt{3}-1} \right\rfloor = 1.$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
00000000				

 $T: (0,1] \to (0,1], T(x) = \{\frac{1}{x}\} = \frac{1}{x} - \lfloor \frac{1}{x} \rfloor \text{ generates digits}$ $a_1 = \lfloor 1/T^0(\alpha) \rfloor, \quad a_{i+1} = \lfloor 1/T^i(\alpha) \rfloor, \quad \dots$

 $\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, ...]$: Note $a_1 = \lfloor \frac{1}{\sqrt{3} - 1} \rfloor = 1$ and

$$T^{1}(\sqrt{3}-1) = \frac{1}{\sqrt{3}-1} - \left\lfloor \frac{1}{\sqrt{3}-1} \right\rfloor = \frac{\sqrt{3}+1}{3-1} - 1 = \frac{\sqrt{3}-1}{2}$$
$$a_{2} = \left\lfloor \frac{2}{\sqrt{3}-1} \right\rfloor = 2.$$
$$T^{2}(\sqrt{3}-1) = \frac{2}{\sqrt{3}-1} - \left\lfloor \frac{2}{\sqrt{3}-1} \right\rfloor = \frac{2\sqrt{3}+2}{2} - 2 = \sqrt{3}-1$$
$$a_{3} = \left\lfloor \frac{1}{\sqrt{3}-1} \right\rfloor = 1.$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
00000000	00000	00000000000000	000	

• The digits *a_i* follow the Gauss-Kuzmin distribution:

$$\lim_{n\to\infty}\mathbb{P}(a_n=k)=\log_2\left(1+\frac{1}{k(k+2)}\right)$$

(note the expectation is infinite).

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
00000000				

• The digits *a_i* follow the Gauss-Kuzmin distribution:

$$\lim_{n\to\infty}\mathbb{P}(a_n=k)=\log_2\left(1+\frac{1}{k(k+2)}\right)$$

(note the expectation is infinite).

The function x → f(x) = ⌊1/T(x)⌋ on (0, 1] is not integrable wrt μ. However, log f ∈ L¹(μ).

Intro ○○○○○●○○	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

• The digits *a_i* follow the Gauss-Kuzmin distribution:

$$\lim_{n\to\infty}\mathbb{P}(a_n=k)=\log_2\left(1+\frac{1}{k(k+2)}\right)$$

(note the expectation is infinite).

- The function x → f(x) = ⌊1/T(x)⌋ on (0, 1] is not integrable wrt μ. However, log f ∈ L¹(μ).
- Pointwise ergodic theorem (applied to f and log f) reads

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = \infty \quad \text{almost surely}$$
$$\lim_{n \to \infty} (a_1 a_2 \cdots a_n)^{1/n} = e^{\int \log f \, d\mu} \quad \text{almost surely.}$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
00000000				

• Geometric mean converges a.s. to Khinchin's constant:

$$\lim_{n \to \infty} (a_1 a_2 \cdots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)} \right)^{\log_2 k} = K_0 \approx 2.6854.$$

Intro ○○○○○●○	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

Geometric mean converges a.s. to Khinchin's constant:

$$\lim_{n \to \infty} (a_1 a_2 \cdots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)} \right)^{\log_2 k} = K_0 \approx 2.6854.$$

Hölder means: For p < 1, almost surely</p>

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} a_i^p \right)^{1/p} = K_p = \left(\sum_{k=1}^{\infty} -k^p \log_2 \left(1 - \frac{1}{(k+1)^2} \right) \right)^{1/p}$$

Intro ○○○○○●○	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

• Geometric mean converges a.s. to Khinchin's constant:

$$\lim_{n\to\infty} (a_1 a_2 \cdots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)} \right)^{\log_2 k} = K_0 \approx 2.6854.$$

• Hölder means: For *p* < 1, almost surely

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} a_i^p \right)^{1/p} = K_p = \left(\sum_{k=1}^{\infty} -k^p \log_2 \left(1 - \frac{1}{(k+1)^2} \right) \right)^{1/p}$$

• Example: The harmonic mean $K_{-1} = 1.74540566...$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
00000000				

Geometric mean converges a.s. to Khinchin's constant:

$$\lim_{n\to\infty} (a_1 a_2 \cdots a_n)^{1/n} = \prod_{k=1}^{\infty} \left(1 + \frac{1}{k(k+2)} \right)^{\log_2 k} = K_0 \approx 2.6854.$$

Hölder means: For p < 1, almost surely

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^{n} a_i^p \right)^{1/p} = K_p = \left(\sum_{k=1}^{\infty} -k^p \log_2 \left(1 - \frac{1}{(k+1)^2} \right) \right)^{1/p}$$

• Example: The harmonic mean $K_{-1} = 1.74540566...$

•
$$\lim_{p\to 0} K_p = K_0$$

Intro ○○○○○○●	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

 Khinchin also proved: For a'_m = a_m if a_m < m(log m)^{4/3} and 0 otherwise:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} a'_i}{n \log n} = \frac{1}{\log 2} \quad \text{in measure.}$$

Intro ○○○○○○●	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

 Khinchin also proved: For a'_m = a_m if a_m < m(log m)^{4/3} and 0 otherwise:

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} a'_{i}}{n \log n} = \frac{1}{\log 2} \quad \text{in measure.}$$

• Diamond and Vaaler (1986) showed that

$$\lim_{n \to \infty} \frac{\sum_{i=1}^{n} a_i - \max_{1 \le i \le n} a_i}{n \log n} = \frac{1}{\log 2} \quad \text{almost surely.}$$

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

Maclaurin Inequalities

Intro 0000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

Definitions and Maclaurin's Inequalities

- Both $\frac{1}{n} \sum_{i=1}^{n} x_i$ and $(\prod_{i=1}^{n} x_i)^{1/n}$ are defined in terms of elementary symmetric polynomials in x_1, \ldots, x_n .
- Define k^{th} elementary symmetric mean of x_1, \ldots, x_n by

$$S(x, n, k) := \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}.$$

Intro 0000000	Maclaurin Inequalities ●○○○○	Main Results (Elementary)	Main Results (Technical)	Refs o

Definitions and Maclaurin's Inequalities

- Both $\frac{1}{n} \sum_{i=1}^{n} x_i$ and $(\prod_{i=1}^{n} x_i)^{1/n}$ are defined in terms of elementary symmetric polynomials in x_1, \ldots, x_n .
- Define k^{th} elementary symmetric mean of x_1, \ldots, x_n by

$$S(x, n, k) := \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \cdots < i_k \le n} x_{i_1} x_{i_2} \cdots x_{i_k}.$$

Maclaurin's Inequalities

For positive x_1, \ldots, x_n we have

$$AM := S(x, n, 1)^{1/1} \ge S(x, n, 2)^{1/2} \ge \cdots \ge S(x, n, n)^{1/n} =: GM$$

(and equalities hold iff $x_1 = \cdots = x_n$).

Intro 00000000	Maclaurin Inequalities ○●○○○	Main Results (Elementary)	Main Results (Technical)	Refs o

Maclaurin's work

IV. A fecond Letter from Mr. Colin M^c Laurin, Profeffor of Mathematicks in the Univerfity of Edinburgh and F. R. S. to Martin Folkes, E/q; concerning the Roots of Equations, with the Demonfiration of other Rules in Algebra, being the Continuation of the Letter publified in the Philosophical Transactions, N^o 394.

Edinburgh, April 19th, 1729.

SIR,

25

I hae Y at 1728, I wrote to you that I had a Mathod of demonstrating Sit Jaac Newton's Rule concerning the impossible Roots of Equations, deduced from this obvious Principle, that the Squares of the Differences of real Quantities multi always be politive ; and fome time after, I fent you the first Principles of that Method, which were published in the Pbilofophical Tranfations for the Month of May, 1736. The This laft is the Theorem publified by the learned Mr. Bernwilli in the Affa Lift is 1694. It is now high Time to conclude this long Letter; I beg you may accept of it as a Proof of that Refpect and Efterm with which

I am,

SIR,

Your most Obedient, Most Humble Servant.

Colin Mac Laurin.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
0000000	○○●○○	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	০০০	o
Proof				

Standard proof through Newton's inequalities.

Define the *k*th elementary symmetric function by

$$\mathbf{s}_k(\mathbf{x}) = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} \mathbf{x}_{i_1} \mathbf{x}_{i_2} \cdots \mathbf{x}_{i_k},$$

and the kth elementary symmetric mean by

$$E_k(x) = s_k(x) / {n \choose k}.$$

Newton's inequality: $E_k(x)^2 \ge E_{k-1}(x)E_{k+1}(x)$.

New proof by Iddo Ben-Ari and Keith Conrad:

http://homepages.uconn.edu/benari/pdf/maclaurinMathMagFinal.pdf.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs		
00000000	○○○●○	00000000000000	000	o		
Sketch of Ben-Ari and Conrad's Proof						

Bernoulli's inequality:
$$t > -1$$
: $(1 + t)^n \ge 1 + nt$ or $1 + \frac{1}{n}x \ge (1 + x)^{1/n}$.

Generalized Bernoulli: x > -1:

$$1 + \frac{1}{n}x \ge \left(1 + \frac{2}{n}x\right)^{1/2} \ge \left(1 + \frac{3}{n}x\right)^{1/3} \ge \cdots \ge \left(1 + \frac{n}{n}x\right)^{1/n}.$$

	00000					
Sketch of Ben-Ari and Conrad's Proof						

Bernoulli's inequality:
$$t > -1$$
: $(1 + t)^n \ge 1 + nt$ or $1 + \frac{1}{n}x \ge (1 + x)^{1/n}$.

Generalized Bernoulli: x > -1:

$$1 + \frac{1}{n}x \ge \left(1 + \frac{2}{n}x\right)^{1/2} \ge \left(1 + \frac{3}{n}x\right)^{1/3} \ge \cdots \ge \left(1 + \frac{n}{n}x\right)^{1/n}.$$

Proof: Equivalent to $\frac{1}{k} \log (1 + \frac{k}{n}x) \ge \frac{1}{k+1} \log (1 + \frac{k+1}{n}x)$, which follows by log *t* is strictly concave:

$$\lambda = \frac{1}{k+1}, 1 + \frac{k}{n}x = \lambda \cdot 1 + (1-\lambda) \cdot \left(1 + \frac{k+1}{n}x\right).$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs		
00000000	○○○○●	০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০		o		
Sketch of Ben-Ari and Conrad's Proof						

Trivial for $n \in \{1, 2\}$, wlog assume $x_1 \le x_2 \le \cdots \le x_n$.

Intro 0000000	Maclaurin Inequalities ○○○○●	Main Results (Elementary)	Main Results (Technical)	Refs o
Sketch of	Ben-Ari and Con	rad's Proof		

Trivial for $n \in \{1, 2\}$, wlog assume $x_1 \le x_2 \le \cdots \le x_n$.

Set
$$E_k := s_k(x)/\binom{n}{k}$$
, $\epsilon_k := E_k(x_1, ..., x_{n-1})$.

Intro 00000000	Maclaurin Inequalities ○○○○●	Main Results (Elementary)	Main Results (Technical)	Refs o		
Sketch of Ben-Ari and Conrad's Proof						

Trivial for $n \in \{1, 2\}$, wlog assume $x_1 \le x_2 \le \cdots \le x_n$.

Set
$$E_k := s_k(x)/\binom{n}{k}$$
, $\epsilon_k := E_k(x_1, ..., x_{n-1})$.

Have

$$E_k(x_1,\ldots,x_n)=\left(1-\frac{k}{n}\right)E_k(x_1,\ldots,x_{n-1})+\frac{k}{n}E_k(x_1,\ldots,x_{n-1})x_n.$$

	00000					
Sketch of Ben-Ari and Conrad's Proof						

Trivial for $n \in \{1, 2\}$, wlog assume $x_1 \le x_2 \le \cdots \le x_n$.

Set
$$E_k := s_k(x)/\binom{n}{k}$$
, $\epsilon_k := E_k(x_1, ..., x_{n-1})$.

Have $E_k(x_1,...,x_n) = (1 - \frac{k}{n}) E_k(x_1,...,x_{n-1}) + \frac{k}{n} E_k(x_1,...,x_{n-1}) x_n.$

Proceed by induction in number of variables, use Generalized Bernoulli.

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

Main Results (Elementary Techniques)

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		0000000000000		

Symmetric Averages and Maclaurin's Inequalities

• Recall:
$$S(x, n, k) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} \cdots x_{i_k}$$

and $S(x, n, 1)^{1/1} \ge S(x, n, 2)^{1/2} \ge \dots \ge S(x, n, n)^{1/n}$.

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary) ●০০০০০০০০০০০০০০	Main Results (Technical)	Refs o

Symmetric Averages and Maclaurin's Inequalities

• Recall:
$$S(x, n, k) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} \cdots x_{i_k}$$

and $S(x, n, 1)^{1/1} \ge S(x, n, 2)^{1/2} \ge \dots \ge S(x, n, n)^{1/n}$.

• Khinchin's results: almost surely as $n \to \infty$

$$S(\alpha, 1, 1)^{1/1} \to \infty$$
 and $S(\alpha, n, n)^{1/n} \to K_0$.

We study the intermediate means S(α, n, k)^{1/k} as n → ∞ when k = k(n), with

$$S(\alpha, n, k(n))^{1/k(n)} = S(\alpha, n, \lceil k(n) \rceil)^{1/\lceil k(n) \rceil}$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		0000000000000		

Our results on typical continued fraction averages

Recall:
$$S(\alpha, n, k) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \cdots < i_k \le n} a_{i_1} \cdots a_{i_k}$$

and $S(\alpha, n, 1)^{1/1} \ge S(\alpha, n, 2)^{1/2} \ge \cdots \ge S(\alpha, n, n)^{1/n}$.

Theorem 1

Let $f(n) = o(\log \log n)$ as $n \to \infty$. Then, almost surely,

$$\lim_{n\to\infty} S(\alpha, n, f(n))^{1/f(n)} = \infty.$$

Theorem 2

Let
$$f(n) = o(n)$$
 as $n \to \infty$. Then, almost surely,

$$\lim_{n\to\infty} S(\alpha, n, n-f(n))^{1/(n-f(n))} = K_0.$$

Note: Theorems do not cover the case f(n) = cn for 0 < c < 1.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
00000000	00000	0000000000000	000	

Sketch of Proofs of Theorems 1 and 2

Theorem 1: For $f(n) = o(\log \log n)$ as $n \to \infty$:

Almost surely
$$\lim_{n\to\infty} S(\alpha, n, f(n))^{1/f(n)} = \infty$$
.

Uses Niculescu's strengthening of Maclaurin (2000):

$$S(n,tj+(1-t)k) \geq S(n,j)^t \cdot S(n,k)^{1-t}$$

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary) ০০●০০০০০০০০০০০	Main Results (Technical)	Refs ○

Sketch of Proofs of Theorems 1 and 2

Theorem 1: For $f(n) = o(\log \log n)$ as $n \to \infty$:

Almost surely
$$\lim_{n\to\infty} S(\alpha, n, f(n))^{1/f(n)} = \infty$$
.

Uses Niculescu's strengthening of Maclaurin (2000):

$$S(n,tj+(1-t)k) \geq S(n,j)^t \cdot S(n,k)^{1-t}$$

Theorem 2: For f(n) = o(n) as $n \to \infty$:

Almost surely $\lim_{n\to\infty} S(\alpha, n, n-f(n))^{1/(n-f(n))} = K_0.$

Use (a.s.) $K_0 \leq \limsup_{n \to \infty} S(\alpha, n, cn)^{1/cn} \leq K_0^{1/c} < \infty, 0 < c < 1.$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		00000000000000		

Proof of Theorem 1: Preliminaries

Lemma

Let *X* be a sequence of positive real numbers. Suppose $\lim_{n\to\infty} S(X, n, k(n))^{1/k(n)}$ exists. Then, for any f(n) = o(k(n)) as $n \to \infty$, we have

$$\lim_{n\to\infty} S(X, n, k(n) + f(n))^{1/(k(n)+f(n))} = \lim_{n\to\infty} S(n, k(n))^{1/k(n)}.$$

Proof: Assume $f(n) \ge 0$ for large enough *n*, and for display purposes write *k* and *f* for k(n) and f(n).

From Newton's inequalities and Maclaurin's inequalities, we get

$$\left(S(X,n,k)^{1/k}\right)^{\frac{k}{k+t}} = S(X,n,k)^{1/(k+t)} \leq S(X,n,k+t)^{1/(k+t)} \leq S(X,n,k)^{1/k}.$$

Proof of Theorem 1: $f(n) = o(\log \log n)$

Each entry of α is at least 1.

Let $f(n) = o(\log \log n)$. Set t = 1/2 and (j, k) = (1, 2f(n) - 1), so that tj + (1 - t)k = f(n). Niculescu's result yields

$$S(\alpha, n, f(n)) \geq \sqrt{S(\alpha, n, 1) \cdot S(\alpha, n, 2f(n) - 1)} > \sqrt{S(\alpha, n, 1)}.$$

Square both sides, raise to the power 1/f(n):

$$S(\alpha, n, f(n))^{2/f(n)} \geq S(\alpha, n, 1)^{1/f(n)}$$

From Khinchin almost surely if $g(n) = o(\log n)$

$$\lim_{n\to\infty}\frac{\mathsf{S}(\alpha,n,1)}{g(n)} = \infty.$$

Let $g(n) = \log n / \log \log n$. Taking logs:

$$\log\left(S(\alpha, n, 1)^{1/f(n)}\right) > \frac{\log g(n)}{f(n)} > \frac{\log \log n}{2f(n)}$$

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary) ○○○○○●○○○○○○○○	Main Results (Technical) ০০০	Refs o
Proof of Th	noorom 2			

Theorem 2: Let f(n) = o(n) as $n \to \infty$. Then, almost surely,

$$\lim_{n\to\infty} S(\alpha, n, n-f(n))^{1/(n-f(n))} = K_0.$$

Proof: Follows immediately from: For any constant 0 < c < 1 and almost all α have

$$K_0 \leq \limsup_{n \to \infty} S(\alpha, n, cn)^{1/cn} \leq K_0^{1/c} < \infty.$$

To see this, note

I

$$S(\alpha, n, cn)^{1/cn} = \left(\prod_{i=1}^{n} a_i(\alpha)^{1/n}\right)^{n/cn} \left(\frac{\sum_{i_1 < \cdots < i_{(1-c)n} \le n} 1/(a_{i_1}(\alpha) \cdots a_{i_{(1-c)n}}(\alpha))}{\binom{n}{cn}}\right)^{1/cn}$$

Intro 0000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

Limiting Behavior

Recall
$$S(\alpha, n, k) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < \cdots < i_k \le n} a_{i_1} \cdots a_{i_k}$$

and $S(\alpha, n, 1)^{1/1} \ge S(\alpha, n, 2)^{1/2} \ge \cdots \ge S(\alpha, n, n)^{1/n}$.

Proposition

For 0 < c < 1 and for almost every α

$$\mathcal{K}_0 \leq \limsup_{n \to \infty} \mathcal{S}(lpha, n, cn)^{1/cn} \leq \mathcal{K}_0^{1/c} (\mathcal{K}_{-1})^{1-1/c}$$

Conjecture

Almost surely $F^{\alpha}_{+}(c) = F^{\alpha}_{-}(c) = F(c)$ for all 0 < c < 1, with

$$\begin{aligned} \mathcal{F}^{\alpha}_{+}(\boldsymbol{c}) &= \limsup_{n \to \infty} \mathsf{S}(\alpha, n, \boldsymbol{cn})^{1/cn}, \\ \mathcal{F}^{\alpha}_{-}(\boldsymbol{c}) &= \liminf_{n \to \infty} \mathsf{S}(\alpha, n, \boldsymbol{cn})^{1/cn}. \end{aligned}$$

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary) ○○○○○○●○○○○○○	Main Results (Technical)	Refs o
Limiting	Behavior			

Recall

$$\begin{array}{lll} {\it F}^{\alpha}_{+}({\it c}) & = & \limsup_{n \to \infty} {\it S}(\alpha, {\it n}, {\it cn})^{1/cn} \\ {\it F}^{\alpha}_{-}({\it c}) & = & \liminf_{n \to \infty} {\it S}(\alpha, {\it n}, {\it cn})^{1/cn}, \end{array}$$

and we conjecture $F^{\alpha}_{+}(c) = F^{\alpha}_{-}(c) = F(c)$ a.s.

Assuming conjecture, can show that the function $c \mapsto F(c)$ is continuous.

Assuming conjecture is false, we can show that for every 0 < c < 1 the set of limit points of the sequence $\{S(\alpha, n, cn)^{1/cn})\}_{n \in \mathbb{N}}$ is a non-empty interval inside $[K, K^{1/c}]$.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		0000000000000		

Evidence for Conjecture 1

•
$$n \mapsto S(\alpha, n, cn)^{1/cn}$$
 for $c = \frac{1}{4}, \frac{1}{2}, \frac{3}{4}$ and $\alpha = \pi - 3, \gamma, \sin(1)$.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		00000000000000		

• For
$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, 1, 2, ...],$$

$$\lim_{n \to \infty} S(\alpha, n, 1)^{1/1} = \frac{3}{2} \neq \infty$$
$$\lim_{n \to \infty} S(\alpha, n, n)^{1/n} = \sqrt{2} \neq K_0$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		00000000000000		

• For
$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, 1, 2, ...],$$

$$\lim_{n \to \infty} S(\alpha, n, 1)^{1/1} = \frac{3}{2} \neq \infty$$
$$\lim_{n \to \infty} S(\alpha, n, n)^{1/n} = \sqrt{2} \neq K_0$$

• What can we say about $\lim_{n\to\infty} S(\alpha, n, cn)^{1/cn}$?

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		00000000000000		

• For
$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, 1, 2, ...],$$

$$\lim_{n \to \infty} S(\alpha, n, 1)^{1/1} = \frac{3}{2} \neq \infty$$
$$\lim_{n \to \infty} S(\alpha, n, n)^{1/n} = \sqrt{2} \neq K_0$$

- What can we say about $\lim_{n\to\infty} S(\alpha, n, cn)^{1/cn}$?
- Consider the quadratic irrational $\alpha = [x, y, x, y, x, y, ...]$.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		00000000000000		

• For
$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, 1, 2, ...],$$

$$\lim_{n \to \infty} S(\alpha, n, 1)^{1/1} = \frac{3}{2} \neq \infty$$
$$\lim_{n \to \infty} S(\alpha, n, n)^{1/n} = \sqrt{2} \neq K_0$$

- What can we say about $\lim_{n\to\infty} S(\alpha, n, cn)^{1/cn}$?
- Consider the quadratic irrational $\alpha = [x, y, x, y, x, y, ...]$.
- Let us look at $S(\alpha, n, cn)^{1/cn}$ for c = 1/2.

$$S(\alpha, n, \lceil \frac{n}{2} \rceil) = \begin{cases} S(\alpha, n, \frac{n}{2}) & \text{if } n \equiv 0 \mod 2; \\ S(\alpha, n, \frac{n+1}{2}) & \text{if } n \equiv 1 \mod 2. \end{cases}$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		00000000000000		

• For
$$\alpha = \sqrt{3} - 1 = [1, 2, 1, 2, 1, 2, ...],$$

$$\lim_{n \to \infty} S(\alpha, n, 1)^{1/1} = \frac{3}{2} \neq \infty$$
$$\lim_{n \to \infty} S(\alpha, n, n)^{1/n} = \sqrt{2} \neq K_0$$

- What can we say about $\lim_{n\to\infty} S(\alpha, n, cn)^{1/cn}$?
- Consider the quadratic irrational $\alpha = [x, y, x, y, x, y, ...]$.
- Let us look at $S(\alpha, n, cn)^{1/cn}$ for c = 1/2.

$$S(\alpha, n, \lceil \frac{n}{2} \rceil) = \begin{cases} S(\alpha, n, \frac{n}{2}) & \text{if } n \equiv 0 \mod 2; \\ S(\alpha, n, \frac{n+1}{2}) & \text{if } n \equiv 1 \mod 2. \end{cases}$$

• We find the limit $\lim_{n\to\infty} S(\alpha, n, \lceil \frac{n}{2} \rceil)^{1/\lceil \frac{n}{2} \rceil}$ in terms of x, y.

Intro	

Maclaurin Inequalities

Main Results (Elementary)

Refs

Our results on periodic continued fraction averages 2/2

Theorem 3

Let $\alpha = [\overline{x, y}]$. Then $S(\alpha, n, \lceil \frac{n}{2} \rceil)^{1/\lceil \frac{n}{2} \rceil}$ converges as $n \to \infty$ to the $\frac{1}{2}$ -Hölder mean of x and y:

$$\lim_{n\to\infty} \mathsf{S}(\alpha,n,\lceil\frac{n}{2}\rceil)^{1/\lceil\frac{n}{2}\rceil} = \left(\frac{x^{1/2}+y^{1/2}}{2}\right)^2.$$

Intro	

Maclaurin Inequalities

Our results on periodic continued fraction averages 2/2

Theorem 3

Let $\alpha = [\overline{x, y}]$. Then $S(\alpha, n, \lceil \frac{n}{2} \rceil)^{1/\lceil \frac{n}{2} \rceil}$ converges as $n \to \infty$ to the $\frac{1}{2}$ -Hölder mean of x and y:

$$\lim_{n\to\infty} \mathsf{S}(\alpha, n, \lceil \frac{n}{2} \rceil)^{1/\lceil \frac{n}{2} \rceil} = \left(\frac{x^{1/2} + y^{1/2}}{2}\right)^2$$

Suffices to show for $n \equiv 0 \mod 2$, say n = 2k. In this case we have that $S(\alpha, 2k, k)^{1/k} \rightarrow \left(\frac{x^{1/2} + y^{1/2}}{2}\right)^2$ monotonically as $k \rightarrow \infty$.

Intro 0000000	Maclaurin Inequalities	Main Results (Elementary) ○○○○○○○○●○○○	Main Results (Technical)	Refs o

On the proof of Theorem 3, 1/2

Goal :
$$\alpha = [\overline{x, y}] \Rightarrow \lim_{n \to \infty} S(\alpha, n, \lceil \frac{n}{2} \rceil)^{1/\lceil \frac{n}{2} \rceil} = \left(\frac{x^{1/2} + y^{1/2}}{2}\right)^2.$$

The proof uses an asymptotic formula for Legendre polynomials P_k (with $t = \frac{x}{v} < 1$ and $u = \frac{1+t}{1-t} > 1$):

$$P_{k}(u) = \frac{1}{2^{k}} \sum_{j=0}^{k} {\binom{k}{j}}^{2} (u-1)^{k-j} (u+1)^{j}$$
$$S(\alpha, 2k, k) = \frac{1}{\binom{2k}{k}} \sum_{j=0}^{k} {\binom{k}{j}}^{2} x^{j} y^{k-j} = \frac{y^{k}}{\binom{2k}{k}} \sum_{j=0}^{k} {\binom{k}{j}}^{2} t^{j}$$
$$= \frac{y^{k}}{\binom{2k}{k}} (1-t)^{k} P_{k}(u).$$

Intro 0000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs o

On the proof of Theorem 3, 2/2

Goal :
$$\alpha = [\overline{x, y}] \Rightarrow \lim_{n \to \infty} S(\alpha, n, \lceil \frac{n}{2} \rceil)^{1/\lceil \frac{n}{2} \rceil} = \left(\frac{x^{1/2} + y^{1/2}}{2}\right)^2$$
.

Using the generalized Laplace-Heine asymptotic formula for $P_k(u)$ for u > 1 and $t = \frac{x}{y} < 1$ and $u = \frac{1+t}{1-t} > 1$ gives

$$S(\alpha, 2k, k)^{1/k} = y(1-t) \left(\frac{P_k(u)}{\binom{2k}{k}}\right)^{1/k} \\ \longrightarrow y(1-t) \frac{u + \sqrt{u^2 - 1}}{4} = y \left(\frac{1 + \sqrt{t}}{2}\right)^2 \\ = \left(\frac{x^{1/2} + y^{1/2}}{2}\right)^2.$$

A conjecture on periodic continued fraction averages 1/3

Expect the same result of Theorem 3 to hold for every quadratic irrational α and for every *c*.

Conjecture 2

For every
$$\alpha = [\overline{x_1, \dots, x_L}]$$
 and every $0 \le c \le 1$ the limit

$$\lim_{n\to\infty} S(\alpha, n, \lceil cn \rceil)^{1/\lceil cn \rceil} =: F(\alpha, c)$$

exists and it is a continuous function of *c*.

Notice $c \mapsto F(\alpha, c)$ is automatically decreasing by Maclaurin's inequalities.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
		000000000000000		

A conjecture on periodic continued fraction averages 2/3

Conjecture 2 for period 2 and period 3, $0 \le c \le 1$.

55

Intro 0000000	Maclaurin Inequalities	Main Results (Elementary) ೦೦೦೦೦೦೦೦೦೦೦೦೦೦	Main Results (Technical)	Refs ○

Main Results (Sketch of More Technical Arguments)

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical) ●○○	Refs o

Explicit Formula for F(c)

Result of Halász and Székely yields conjecture and F(c).

Theorem 4

If
$$\lim_{n\to\infty} \frac{k}{n} = c \in (0, 1]$$
, then for almost all $\alpha \in [0, 1]$

$$\lim_{n\to\infty} S(\alpha, n, k)^{1/k} =: F(c)$$

exists, and F(c) is continuous and given explicitly by

$$c(1-c)^{\frac{1-c}{c}}\exp\left\{\frac{1}{c}\left((c-1)\log r_c-\sum_{k=1}^{\infty}\log \left(r_c+k\right)\log_2\left(1-\frac{1}{(k+1)^2}\right)\right)\right\},$$

where r_c is the unique nonnegative solution of the equation

$$\sum_{k=1}^{\infty} \frac{r}{r+k} \log_2\left(1 - \frac{1}{(k+1)^2}\right) = c - 1.$$

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
00000000		০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	○●○	o
Droof: Wo	urk of Holácz ond	l Szákoly		

Proof: Work of Halász and Székely

- Halász and Székely calculate asymptotic properties of iidrv ξ_1, \ldots, ξ_n when $\diamond c = \lim_{n \to \infty} k/n \in [0, 1].$ $\diamond \xi_j$ non-negative. $\diamond \mathbb{E}[\log \xi_j] < \infty$ if c = 1. $\diamond \mathbb{E}[\log(1 + \xi_j) < \infty$ if 0 < c < 1. $\diamond \mathbb{E}[\xi_j] < \infty$ if c = 0.
- Prove lim_{n→∞} ^k√S(ξ, n, k)/ ⁿ_k) exists with probability 1 and determine it.

Intro	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs
0000000		০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	○○●	o
Proof: Wo	ork of Halász and	Székely		

Random variables $a_i(\alpha)$ not independent, but Halász and Székely only use independence to conclude sum of the form

$$\frac{1}{n}\sum_{k=1}^n f(T^k(\alpha))$$

(where *T* is the Gauss map and *f* is some function integrable with respect to the Gauss measure) converges a.e. to $\mathbb{E}f$ as $n \to \infty$.

Arrive at the same conclusion by appealing to the pointwise ergodic theorem.

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary) ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Main Results (Technical)	Refs o

References

Intro 00000000	Maclaurin Inequalities	Main Results (Elementary)	Main Results (Technical)	Refs ●
Reference	S			

- I. Ben-Ari and K. Conrad, *Maclaurin's inequality and a generalized Bernoulli inequality*, Math. Mag. **87** (2014), 14–24.
- F. Cellarosi, D. Hensley, S. J. Miller and J. Wellens, *Continued Fraction Digit Averages and Maclaurin's Inequalities*, to appear in Experimental Mathematics. http://arxiv.org/abs/1402.0208.
- H. G. Diamond and J. D. Vaaler, *Estimates for Partial Sums of Continued Fraction Partial Quotients*, Pacific Journal of Mathematics **122** (1986), 73–82.
- G. Halász and G. J. Székely, *On the elementary symmetric polynomials of independent random variables*, Acta Math. Acad. Sci. Hungar. **28** (1976), no. 3-4, 397–400.
- A. Y. Khinchin, *Continued Fractions*, 3rd edition, University of Chicago Press, Chicago, 1964.

Work supported by AMS-Simons Travel grant, NSF grants DMS0850577, DMS0970067, DMS1265673 and DMS1363227, and Williams College.