Newman's Conjecture in Function Fields

Joint work with: Tomer Reiter, Dylan Yott Advisors: Steve Miller, Alan Chang

August 22, 2014

The Riemann Hypothesis and the ζ Function

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$

The Riemann Hypothesis and the ζ Function

$$\begin{aligned} \zeta(s) &:= \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1} \\ \xi(s) &= \xi(1 - s), \quad \xi(s) := \frac{s(s - 1)}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s) \end{aligned}$$

The Riemann Hypothesis and the ζ Function

$$\zeta(s) := \sum_{n \ge 1} \frac{1}{n^s} = \prod_{p \text{ prime}} (1 - p^{-s})^{-1}$$
$$\xi(s) = \xi(1 - s), \quad \xi(s) := \frac{s(s - 1)}{2} \pi^{-s/2} \Gamma\left(\frac{s}{2}\right) \zeta(s)$$

Conjecture: Riemann Hypothesis

$$\xi(s) = 0 \implies \Re(s) = \frac{1}{2}$$

$$\Xi(x) = \xi\left(\frac{1}{2} + ix\right)$$

$$\Xi(x) = \xi\left(\frac{1}{2} + ix\right)$$

• If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.

$$\Xi(x) = \xi\left(\frac{1}{2} + ix\right)$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- ► Riemann Hypothesis true \iff all zeros of $\Xi(x)$ are real.

$$\Xi(x) = \xi\left(\frac{1}{2} + ix\right)$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- ► Riemann Hypothesis true \iff all zeros of $\Xi(x)$ are real.

$$\Xi \rightsquigarrow \Phi(u) = \frac{1}{2\pi} \int_0^\infty \Xi(x) \cos ux \, dx \rightsquigarrow \Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du$$

$$\Xi(x) = \xi\left(\frac{1}{2} + ix\right)$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- ▶ Riemann Hypothesis true \iff all zeros of $\Xi(x)$ are real.

$$\Xi \rightsquigarrow \Phi(u) = \frac{1}{2\pi} \int_0^\infty \Xi(x) \cos ux \, dx \rightsquigarrow \Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du$$

$$\Xi(x) = \xi\left(\frac{1}{2} + ix\right)$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- ► Riemann Hypothesis true \iff all zeros of $\Xi(x)$ are real.

$$\Xi \rightsquigarrow \Phi(u) = \frac{1}{2\pi} \int_0^\infty \Xi(x) \cos ux \, dx \rightsquigarrow \Xi_t(x) = \int_0^\infty e^{tu^2} \Phi(u) \cos ux \, du$$

Theorem (De Bruijn, Newman)

There exists $\Lambda \in \mathbb{R}$ such that if $t < \Lambda$, Ξ_t has a nonreal zero, and if $t \ge \Lambda$, Ξ_t has only real zeros.

Theorem (De Bruijn, Newman)

There exists $\Lambda \in \mathbb{R}$ such that if $t < \Lambda$, Ξ_t has a nonreal zero, and if $t \ge \Lambda$, Ξ_t has only real zeros.

Riemann Hypothesis $\iff \Lambda \le 0$

Theorem (De Bruijn, Newman)

There exists $\Lambda \in \mathbb{R}$ such that if $t < \Lambda$, Ξ_t has a nonreal zero, and if $t \ge \Lambda$, Ξ_t has only real zeros.

Riemann Hypothesis $\iff \Lambda \leq 0$

Conjecture (Newman)

 $\Lambda \geq 0.$

Theorem (De Bruijn, Newman)

There exists $\Lambda \in \mathbb{R}$ such that if $t < \Lambda$, Ξ_t has a nonreal zero, and if $t \ge \Lambda$, Ξ_t has only real zeros.

Riemann Hypothesis $\iff \Lambda \leq 0$

Conjecture (Newman)

$\Lambda \geq 0.$

"The new conjecture is a quantitative version of the dictum that the Riemann hypothesis, if true, is only barely so." - Newman

Fact

It is known that $\Lambda \ge -1.2 \cdot 10^{-11}$.

Perspective

"Experiments have Diracs number at 1.00115965221 (with an uncertainty of about 4 in the last digit); the theory puts it at 1.00115965246 (with an uncertainty of about five times as much). To give you a feeling for the accuracy of these numbers, it comes out something like this: If you were to measure the distance from Los Angeles to New York to this accuracy, it would be exact to the thickness of a human hair. Thats how delicately quantum electrodynamics has, in the past fifty years, been checked-both theoretically and experimentally." - R. Feynman

Number Fields and Function Fields			
Field	K (\mathbb{Q})	$\mathbb{F}_q(T)$	
Ring of Integers	\mathcal{O}_K (Z)	$\mathbb{F}_q[T]$	
Primes	$\mathfrak{p} \subseteq \mathcal{O}_K ((p) \subseteq \mathbb{Z})$	$\pi \in \mathbb{F}_q[T]$ irreducible	

Number Fields and Function Fields			
Field	K (Q)	$\mathbb{F}_q(T)$	
Ring of Integers	\mathcal{O}_K (Z)	$\mathbb{F}_q[T]$	
Primes	$\mathfrak{p} \subseteq \mathcal{O}_K ((p) \subseteq \mathbb{Z})$	$\pi \in \mathbb{F}_q[T]$ irreducible	
Zeta Function	$\zeta_K (\zeta_{\mathbb{Q}} = \zeta)$	Weil Zeta Function	

Idea: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

Idea: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

$$L(s,\chi_D) = \sum_{n=0}^{\infty} c_n \left(q^{-s}\right)^n, \qquad c_n = \sum_{\substack{f \text{ monic} \\ \deg f = n}} \chi_D(f)$$

Idea: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

$$L(s,\chi_D) = \sum_{n=0}^{\infty} c_n \left(q^{-s}\right)^n, \qquad c_n = \sum_{\substack{f \text{ monic} \\ \deg f = n}} \chi_D(f)$$

Idea: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

$$L(s,\chi_D) = \sum_{n=0}^{\infty} c_n \left(q^{-s}\right)^n, \qquad c_n = \sum_{\substack{f \text{ monic} \\ \deg f = n}} \chi_D(f)$$

$$L(s,\chi_D) \rightsquigarrow \xi(s,\chi_D) \rightsquigarrow \Xi(x,\chi_D) \rightsquigarrow \Xi_t(x,\chi_D)$$

Idea: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

$$L(s,\chi_D) = \sum_{n=0}^{\infty} c_n \left(q^{-s}\right)^n, \qquad c_n = \sum_{\substack{f \text{ monic} \\ \deg f = n}} \chi_D(f)$$

$$L(s,\chi_D) \rightsquigarrow \xi(s,\chi_D) \rightsquigarrow \Xi(x,\chi_D) \rightsquigarrow \Xi_t(x,\chi_D)$$

00

Idea: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

$$L(s,\chi_D) = \sum_{n=0}^{\infty} c_n \left(q^{-s}\right)^n, \qquad c_n = \sum_{\substack{f \text{ monic} \\ \deg f = n}} \chi_D(f)$$

$$L(s,\chi_D) \rightsquigarrow \xi(s,\chi_D) \rightsquigarrow \Xi(x,\chi_D) \rightsquigarrow \Xi_t(x,\chi_D)$$

00

Idea: Mimic Pólya's setup

$$q = p^n, \quad D \in \mathbb{F}_q[x], \quad L(s, \chi_D) := \sum_{f \text{ monic}} \frac{\chi_D(f)}{|f|^s}$$

$$L(s,\chi_D) = \sum_{n=0}^{\infty} c_n \left(q^{-s}\right)^n, \qquad c_n = \sum_{\substack{f \text{ monic} \\ \deg f = n}} \chi_D(f)$$

$$L(s,\chi_D) \rightsquigarrow \xi(s,\chi_D) \rightsquigarrow \Xi(x,\chi_D) \rightsquigarrow \Xi_t(x,\chi_D)$$
$$\Xi_t(x,\chi_D) := \Phi_0 + \sum_{n=1}^g \Phi_n e^{tn^2} \left(e^{inx} + e^{-inx} \right)$$

Lemma (Andrade, Chang, Miller 2013)

If $\Xi_t(x, \chi_D)$ has only real zeros for some $t \in \mathbb{R}$, then for all t' > t, $\Xi_{t'}(x, \chi_D)$ has only real zeros.

Lemma (Andrade, Chang, Miller 2013)

If $\Xi_t(x, \chi_D)$ has only real zeros for some $t \in \mathbb{R}$, then for all t' > t, $\Xi_{t'}(x, \chi_D)$ has only real zeros.

Lemma (Andrade, Chang, Miller 2013)

There exists $\Lambda_D \in [-\infty, 0]$ such that

1. if $t \ge \Lambda$, then $\Xi_t(x, \chi_D)$ has only real zeros

2. if $t < \Lambda$, then $\Xi_t(x, \chi_D)$ has a non-real zero.

Example

$D = x^5 + x^4 + x^3 + 2x + 2 \in \mathbb{F}_5[x]:$

Example $D = x^5 + x^4 + x^3 + 2x + 2 \in \mathbb{F}_5[x]:$ $\Xi_t(x, D) = 10e^{4t} \cos 2x - 2\sqrt{5}e^t \cos x - 1$

Example $D = x^5 + x^4 + x^3 + 2x + 2 \in \mathbb{F}_5[x]:$ $\Xi_t(x, D) = 10e^{4t} \cos 2x - 2\sqrt{5}e^t \cos x - 1$ $\Lambda_D \approx -0.188565066$

Example

 $D(T) = T^3 + T \in \mathbb{F}_3[T]$

Example $D = x^5 + x^4 + x^3 + 2x + 2 \in \mathbb{F}_5[x]:$ $\Xi_t(x, D) = 10e^{4t} \cos 2x - 2\sqrt{5}e^t \cos x - 1$ $\Lambda_D \approx -0.188565066$

Example

$$D(T) = T^3 + T \in \mathbb{F}_3[T] \implies \Xi_t(x, \chi_D) = \sqrt{3}e^t \cos x$$

Example $D = x^5 + x^4 + x^3 + 2x + 2 \in \mathbb{F}_5[x]:$ $\Xi_t(x, D) = 10e^{4t} \cos 2x - 2\sqrt{5}e^t \cos x - 1$ $\Lambda_D \approx -0.188565066$

Example

$$D(T) = T^3 + T \in \mathbb{F}_3[T] \implies \Xi_t(x, \chi_D) = \sqrt{3}e^t \cos x$$

 $\Lambda_D = -\infty$

Conjecture

Fix q a power of an odd prime. Then

 $\sup_{D\in\mathbb{F}_q[T] \text{ good}} \Lambda_D \ge 0.$

Conjecture

Fix q a power of an odd prime. Then

 $\sup_{D\in\mathbb{F}_q[T] \text{ good}} \Lambda_D \ge 0.$

Conjecture

Fix $g \in \mathbb{N}$. Then

$$\sup_{\substack{D \text{ good, } \deg D = 2g+1\\q = p^k, \ p \ge 3}} \Lambda_D \ge 0.$$

Conjecture

Fix $D \in \mathbb{Z}[T]$ square-free. Let p be prime, and let $D_p \in \mathbb{F}_p[T]$ be the polynomial obtained by reducing D modulo p. Then

$$\sup_{\substack{D_p \text{ good} \\ p \ge 3}} \Lambda_{D_p} \ge 0.$$

PREVIOUS WORK

Theorem (Andrade, Chang, Miller 2013)

Let $D \in \mathbb{Z}[x]$ be square-free with deg D = 3. For each odd prime p, we can reduce D to $D_p \in \mathbb{F}_p[x]$. Then $\sup_p \Lambda_{D_p} = 0$.

PREVIOUS WORK

Theorem (Andrade, Chang, Miller 2013)

Let $D \in \mathbb{Z}[x]$ be square-free with deg D = 3. For each odd prime p, we can reduce D to $D_p \in \mathbb{F}_p[x]$. Then $\sup_p \Lambda_{D_p} = 0$.

Proof sketch.

Step 1: Show that

$$\Lambda_{D_p} = \log \frac{|a_p(D)|}{2\sqrt{p}}$$

where $a_p(D)$ is the trace of Frobenius. Step 2: Use the Sato–Tate conjecture.

MOTIVATION FOR OUR STRATEGY

• If $q = p^n$ is a square, then $2\sqrt{q} \in \mathbb{Z}$, so $|a_q(D)|$ can actually equal $2\sqrt{q}$. In this case, $\Lambda_D = \log 1 = 0$.

MOTIVATION FOR OUR STRATEGY

- If $q = p^n$ is a square, then $2\sqrt{q} \in \mathbb{Z}$, so $|a_q(D)|$ can actually equal $2\sqrt{q}$. In this case, $\Lambda_D = \log 1 = 0$.
- Weil conjectures ⇒ *E*/𝔽_p with the average number of points will acheive the maximum and minimum number of points possible over particular extensions of 𝔽_p.

MOTIVATION FOR OUR STRATEGY

- If $q = p^n$ is a square, then $2\sqrt{q} \in \mathbb{Z}$, so $|a_q(D)|$ can actually equal $2\sqrt{q}$. In this case, $\Lambda_D = \log 1 = 0$.
- ▶ Weil conjectures ⇒ *E*/𝔽_p with the average number of points will acheive the maximum and minimum number of points possible over particular extensions of 𝔽_p.
- ▶ Judicious choices of D and p (such that $y^2 = D(x)$ has p + 1 points over \mathbb{F}_p) will give us Newman's conjecture in certain cases!

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_q . The Hasse-Weil zeta function of X is defined as $Z(X,s) = \exp\left(\sum_{m\geq 1} \frac{N_m}{m} (q^{-s})^m\right)$, where N_m is the number of points of X over \mathbb{F}_{q^m} .

Theorem (Weil Conjectures)

1.

Let X be a curve over \mathbb{F}_q . The Hasse-Weil zeta function of X is defined as $Z(X,s) = \exp\left(\sum_{m\geq 1} \frac{N_m}{m} (q^{-s})^m\right)$, where N_m is the number of points of X over \mathbb{F}_{q^m} .

$$Z(X,s) = \frac{P(T)}{(1-T)(1-qT)}, \qquad P \in \mathbb{Z}[T]$$

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_q . The Hasse-Weil zeta function of X is defined as $Z(X,s) = \exp\left(\sum_{m\geq 1} \frac{N_m}{m} (q^{-s})^m\right)$, where N_m is the number of points of X over \mathbb{F}_{q^m} . 1.

$$Z(X,s) = \frac{P(T)}{(1-T)(1-qT)}, \qquad P \in \mathbb{Z}[T]$$

2. $Z(X, n-s) = \pm q^{f(X)}Z(X, s).$

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_q . The Hasse-Weil zeta function of X is defined as $Z(X,s) = \exp\left(\sum_{m\geq 1} \frac{N_m}{m} (q^{-s})^m\right)$, where N_m is the number of points of X over \mathbb{F}_{q^m} . 1.

$$Z(X,s) = \frac{P(T)}{(1-T)(1-qT)}, \qquad P \in \mathbb{Z}[T]$$

Z(X, n − s) = ±q^{f(X)}Z(X, s).
 Let α be a root of P. Then |α| = q^{-1/2}.

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_q . The Hasse-Weil zeta function of X is defined as $Z(X,s) = \exp\left(\sum_{m\geq 1} \frac{N_m}{m} (q^{-s})^m\right)$, where N_m is the number of points of X over \mathbb{F}_{q^m} .

$$Z(X,s) = \frac{P(T)}{(1-T)(1-qT)}, \qquad P \in \mathbb{Z}[T]$$

Z(X, n − s) = ±q^{f(X)}Z(X, s).
 Let α be a root of P. Then |α| = q^{-1/2}.

Example:

1.

$$Z(\mathbb{P}^{1}, s) = \frac{1}{(1 - T)(1 - qT)}$$

A KEY LEMMA AND A KEY OBSERVATION

Lemma (Andrade, Chang, Miller 2013)

 $\Lambda_D = 0 \iff L(s, \chi_D)$ has a double root.

A KEY LEMMA AND A KEY OBSERVATION

Lemma (Andrade, Chang, Miller 2013)

 $\Lambda_D = 0 \iff L(s, \chi_D)$ has a double root.

Observation

 $L(s, \chi_D)$ is the numerator of the zeta function Z(X, s), $X: y^2 = D(x)$. More precisely, $Z(X, s) = Z(\mathbb{P}^1, s)L(s, \chi_D)$.

A KEY LEMMA AND A KEY OBSERVATION

Lemma (Andrade, Chang, Miller 2013)

 $\Lambda_D = 0 \iff L(s, \chi_D)$ has a double root.

Observation

 $L(s, \chi_D)$ is the numerator of the zeta function Z(X, s), $X: y^2 = D(x)$. More precisely, $Z(X, s) = Z(\mathbb{P}^1, s)L(s, \chi_D)$.

Proof (Idea)

Use the Euler products for Z(X,s), $L(s,\chi_D)$.

$$Z(X,s) = \prod (1 - N(\pi))^{-s}$$

 π monic, irred.

$$L(s, \chi_D) = \prod (1 - \chi(\pi)N(\pi)^{-s})^{-1}$$

Theorem

The L-function corresponding to $D(x) = x^q - x$ has a double root. This implies that $\Lambda_D = 0$ (considering D over \mathbb{F}_q).

Theorem

The L-function corresponding to $D(x) = x^q - x$ has a double root. This implies that $\Lambda_D = 0$ (considering D over \mathbb{F}_q).

Proof Sketch

The curve $X: y^2 = x^q - x$ carries an action of \mathbb{F}_q that commutes with Frobenius. These actions reduce to actions at the level of cohomology $H_{\ell}^*(X)$. For $X: y^2 = x^q - x$, $Z(X,s) = Z(\mathbb{P}^1, s)L(s, \chi_D)$. Next, recall that the *L*-function is defined as a Gauss sum. A result of Nick Katz $\implies L(s, \chi_D) = (T^2q \pm 1)^g$.

Corollary

If \mathcal{F} is a family of good polynomials over various finite fields, and contains at least one polynomial over \mathbb{F}_q of the form $x^q - x$ for some q, then

 $\sup_{D\in\mathcal{F}}\Lambda_D=0.$

In particular, $\mathcal{F} = \{D \in \mathbb{F}_q[T] \mid D \text{ good}\}$ and $\mathcal{F} = \{D \mid \deg D = 2g + 1, 2g + 1 = p^k \text{ for some } p\}$ are such families.

Corollary

If \mathcal{F} is a family of good polynomials over various finite fields, and contains at least one polynomial over \mathbb{F}_q of the form $x^q - x$ for some q, then

 $\sup_{D\in\mathcal{F}}\Lambda_D=0.$

In particular, $\mathcal{F} = \{D \in \mathbb{F}_q[T] \mid D \text{ good}\}$ and $\mathcal{F} = \{D \mid \deg D = 2g + 1, 2g + 1 = p^k \text{ for some } p\}$ are such families.

This sup is really a max!

CONTINUING PREVIOUS RESULTS

Theorem

Let $D \in \mathbb{Z}[T]$ be a square-free monic cubic polynomial. Then there exists a number field K/\mathbb{Q} such that

$$\sup_{\mathfrak{p}\subseteq\mathcal{O}_K}\Lambda_{D_{\mathfrak{p}}}=\max_{\mathfrak{p}\subseteq\mathcal{O}_K}\Lambda_{D_{\mathfrak{p}}}=0,$$

where $D_{\mathfrak{p}}$ denotes reduction modulo the prime ideal \mathfrak{p} .

FUTURE DIRECTIONS

► Degree greater than 3 case of the third Newman's conjecture.

FUTURE DIRECTIONS

- ► Degree greater than 3 case of the third Newman's conjecture.
- ► Fix a number field K/\mathbb{Q} and a square-free monic cubic $D \in \mathcal{O}_K[T]$. Does there exist a prime $\mathfrak{p} \subseteq \mathcal{O}_K$ such that $\Lambda_{D_{\mathfrak{p}}} = 0$ or a sequence of primes $\{\mathfrak{p}_n\}_{n \in \mathbb{N}}$ such that $\Lambda_{D_{\mathfrak{p}_i}} \to 0$?

FUTURE DIRECTIONS

- ► Degree greater than 3 case of the third Newman's conjecture.
- ► Fix a number field K/\mathbb{Q} and a square-free monic cubic $D \in \mathcal{O}_K[T]$. Does there exist a prime $\mathfrak{p} \subseteq \mathcal{O}_K$ such that $\Lambda_{D_{\mathfrak{p}}} = 0$ or a sequence of primes $\{\mathfrak{p}_n\}_{n \in \mathbb{N}}$ such that $\Lambda_{D_{\mathfrak{p}_i}} \to 0$?
- ▶ Does Newman's conjecture hold for the family $\mathcal{F} = \{D \mid \deg D = 2g + 1, g \in \mathbb{N}\}$ when 2g + 1 is not a power of a prime?

Acknowledgements

Presented by:

David Mehrle Joseph Stahl dmehrle@cmu.edu josephmichaelstahl@gmail.com

Joint work with:

Tomer Reiter Dylan Yott

Advised by:

Steven J. Miller Alan Chang tomer.reiter@gmail.com
dtyott@gmail.com

sjm1@williams.edu
alan.chang.math@gmail.com

Special thanks to:

The PROMYS Program Boston University The SMALL REU Williams College

Funded by: NSF Grants DMS1347804, DMS1265673, the PROMYS Program, and Williams College