Newman's Conjecture in Function Fields

Joint work with: Tomer Reiter, Dylan Yott Advisors: Steve Miller, Alan Chang

August 22, 2014

The Riemann Hypothesis and the ζ Function

$$
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1}
$$

The Riemann Hypothesis and the ζ Function

$$
\begin{gathered}
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1} \\
\xi(s)=\xi(1-s), \quad \xi(s):=\frac{s(s-1)}{2} \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
\end{gathered}
$$

The Riemann Hypothesis and the ζ Function

$$
\begin{gathered}
\zeta(s):=\sum_{n \geq 1} \frac{1}{n^{s}}=\prod_{p \text { prime }}\left(1-p^{-s}\right)^{-1} \\
\xi(s)=\xi(1-s), \quad \xi(s):=\frac{s(s-1)}{2} \pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
\end{gathered}
$$

Conjecture: Riemann Hypothesis

$$
\xi(s)=0 \Longrightarrow \Re(s)=\frac{1}{2}
$$

Pólya's idea

$$
\Xi(x)=\xi\left(\frac{1}{2}+i x\right)
$$

PÓLYA's IDEA

$$
\Xi(x)=\xi\left(\frac{1}{2}+i x\right)
$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.

PÓLYA'S IDEA

$$
\Xi(x)=\xi\left(\frac{1}{2}+i x\right)
$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- Riemann Hypothesis true \Longleftrightarrow all zeros of $\Xi(x)$ are real.

PÓLYA'S IDEA

$$
\Xi(x)=\xi\left(\frac{1}{2}+i x\right)
$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- Riemann Hypothesis true \Longleftrightarrow all zeros of $\Xi(x)$ are real.

$$
\Xi \rightsquigarrow \Phi(u)=\frac{1}{2 \pi} \int_{0}^{\infty} \Xi(x) \cos u x d x \rightsquigarrow \Xi_{t}(x)=\int_{0}^{\infty} e^{t u^{2}} \Phi(u) \cos u x d u
$$

PÓLYA'S IDEA

$$
\Xi(x)=\xi\left(\frac{1}{2}+i x\right)
$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- Riemann Hypothesis true \Longleftrightarrow all zeros of $\Xi(x)$ are real.

$$
\Xi \rightsquigarrow \Phi(u)=\frac{1}{2 \pi} \int_{0}^{\infty} \Xi(x) \cos u x d x \rightsquigarrow \Xi_{t}(x)=\int_{0}^{\infty} e^{t u^{2}} \Phi(u) \cos u x d u
$$

PÓLYA'S IDEA

$$
\Xi(x)=\xi\left(\frac{1}{2}+i x\right)
$$

- If $x \in \mathbb{R}$, then $\Xi(x) \in \mathbb{R}$.
- Riemann Hypothesis true \Longleftrightarrow all zeros of $\Xi(x)$ are real.

$$
\Xi \rightsquigarrow \Phi(u)=\frac{1}{2 \pi} \int_{0}^{\infty} \Xi(x) \cos u x d x \rightsquigarrow \Xi_{t}(x)=\int_{0}^{\infty} e^{t u^{2}} \Phi(u) \cos u x d u
$$

Newman's Conjecture

> Theorem (De Bruijn, Newman)
> There exists $\Lambda \in \mathbb{R}$ such that if $t<\Lambda, \Xi_{t}$ has a nonreal zero, and if $t \geq \Lambda, \Xi_{t}$ has only real zeros.

Newman's Conjecture

> Theorem (De Bruijn, Newman)
> There exists $\Lambda \in \mathbb{R}$ such that if $t<\Lambda, \Xi_{t}$ has a nonreal zero, and if $t \geq \Lambda, \Xi_{t}$ has only real zeros.

Riemann Hypothesis $\Longleftrightarrow \Lambda \leq 0$

Newman's Conjecture

> Theorem (De Bruijn, Newman)
> There exists $\Lambda \in \mathbb{R}$ such that if $t<\Lambda, \Xi_{t}$ has a nonreal zero, and if $t \geq \Lambda, \Xi_{t}$ has only real zeros.

Riemann Hypothesis $\Longleftrightarrow \Lambda \leq 0$

Conjecture (Newman)

$$
\Lambda \geq 0
$$

Newman's Conjecture

Theorem (De Bruijn, Newman)

There exists $\Lambda \in \mathbb{R}$ such that if $t<\Lambda, \Xi_{t}$ has a nonreal zero, and if $t \geq \Lambda, \Xi_{t}$ has only real zeros.

Riemann Hypothesis $\Longleftrightarrow \Lambda \leq 0$

Conjecture (Newman)

$$
\Lambda \geq 0
$$

"The new conjecture is a quantitative version of the dictum that the Riemann hypothesis, if true, is only barely so." - Newman

Newman's Conjecture

Fact
It is known that $\Lambda \geq-1.2 \cdot 10^{-11}$.

Perspective

"Experiments have Diracs number at 1.00115965221 (with an uncertainty of about 4 in the last digit); the theory puts it at 1.00115965246 (with an uncertainty of about five times as much). To give you a feeling for the accuracy of these numbers, it comes out something like this: If you were to measure the distance from Los Angeles to New York to this accuracy, it would be exact to the thickness of a human hair. Thats how delicately quantum electrodynamics has, in the past fifty years, been checked-both theoretically and experimentally." - R.
Feynman

Function Field Analogy

Slogan: Function fields behave a lot like number fields!

Function Field Analogy

Slogan: Function fields behave a lot like number fields!
Field \quad Number Fields and Function Fields $\mathbb{F}_{q}(T)$

Function Field Analogy

Slogan: Function fields behave a lot like number fields!

Number Fields and Function Fields

Field
Ring of Integers
$\begin{array}{cc}K & (\mathbb{Q}) \\ \mathcal{O}_{K} & (\mathbb{Z})\end{array}$

$$
\begin{gathered}
\mathbb{F}_{q}(T) \\
\mathbb{F}_{q}[T]
\end{gathered}
$$

Function Field Analogy

Slogan: Function fields behave a lot like number fields!

Number Fields and Function Fields

Field
Ring of Integers
Primes
$\left.\begin{array}{c|c}K \quad(\mathbb{Q}) & \mathbb{F}_{q}(T) \\ \mathcal{O}_{K} & (\mathbb{Z}) \\ \mathfrak{p} \subseteq \mathcal{O}_{K} & ((p) \subseteq \mathbb{Z})\end{array}\right] \pi \in \mathbb{F}_{q}[T]$ irreducible

Function Field Analogy

Slogan: Function fields behave a lot like number fields!

Number Fields and Function Fields

Field
Ring of Integers
Primes
Zeta Function

$$
\begin{gathered}
K \quad(\mathbb{Q}) \\
\mathfrak{\mathcal { O } _ { K }} \quad(\mathbb{Z}) \\
\mathfrak{p} \subseteq \mathcal{O}_{K} \quad((p) \subseteq \mathbb{Z}) \\
\zeta_{K} \quad\left(\zeta_{\mathbb{Q}}=\zeta\right)
\end{gathered}
$$

$$
\begin{aligned}
& \mathbb{F}_{q}(T) \\
& \mathbb{F}_{q}[T] \\
& q[T] \text { irreducible } \\
& \text { Zeta Function }
\end{aligned}
$$

Weil Zeta Function

Function Field Analogy

Slogan: Function fields behave a lot like number fields!

Number Fields and Function Fields

Field
Ring of Integers
Primes
Zeta Function

$K \quad(\mathbb{Q})$	$\mathbb{F}_{q}(T)$
$\mathcal{O}_{K} \quad(\mathbb{Z})$	$\mathbb{F}_{q}[T]$
$\mathfrak{p} \subseteq \mathcal{O}_{K} \quad((p) \subseteq \mathbb{Z})$	$\pi \in \mathbb{F}_{q}[T]$ irreducible
$\zeta_{K} \quad\left(\zeta_{\mathbb{Q}}=\zeta\right)$	Weil Zeta Function
Riemann Hypothesis	Weil Conjectures

Newman setup in Function Fields

Idea: Mimic Pólya's setup

$$
q=p^{n}, \quad D \in \mathbb{F}_{q}[x], \quad L\left(s, \chi_{D}\right):=\sum_{f \text { monic }} \frac{\chi_{D}(f)}{|f|^{s}}
$$

Newman setup in Function Fields

Idea: Mimic Pólya's setup

$$
\begin{aligned}
& q=p^{n}, \quad D \in \mathbb{F}_{q}[x], \quad L\left(s, \chi_{D}\right):=\sum_{f \text { monic }} \frac{\chi_{D}(f)}{|f|^{s}} \\
& L\left(s, \chi_{D}\right)=\sum_{n=0}^{\infty} c_{n}\left(q^{-s}\right)^{n}, \quad c_{n}=\sum_{\substack{f \text { monic } \\
\operatorname{deg} f=n}} \chi_{D}(f)
\end{aligned}
$$

Newman setup in Function Fields

Idea: Mimic Pólya's setup

$$
\begin{aligned}
& q=p^{n}, \quad D \in \mathbb{F}_{q}[x], \quad L\left(s, \chi_{D}\right):=\sum_{f \text { monic }} \frac{\chi_{D}(f)}{|f|^{s}} \\
& L\left(s, \chi_{D}\right)=\sum_{n=0}^{\infty} c_{n}\left(q^{-s}\right)^{n}, \quad c_{n}=\sum_{\substack{f \text { monic } \\
\operatorname{deg} f=n}} \chi_{D}(f)
\end{aligned}
$$

$L\left(s, \chi_{D}\right)$ is a polynomial in q^{-s} of degree $\operatorname{deg} D-1$.

Newman setup in Function Fields

Idea: Mimic Pólya's setup

$$
\begin{aligned}
& q=p^{n}, \quad D \in \mathbb{F}_{q}[x], \quad L\left(s, \chi_{D}\right):=\sum_{f \text { monic }} \frac{\chi_{D}(f)}{|f|^{s}} \\
& L\left(s, \chi_{D}\right)=\sum_{n=0}^{\infty} c_{n}\left(q^{-s}\right)^{n}, \quad c_{n}=\sum_{\substack{f \text { monic } \\
\operatorname{deg} f=n}} \chi_{D}(f)
\end{aligned}
$$

$L\left(s, \chi_{D}\right)$ is a polynomial in q^{-s} of degree $\operatorname{deg} D-1$.

$$
L\left(s, \chi_{D}\right) \rightsquigarrow \xi\left(s, \chi_{D}\right) \rightsquigarrow \Xi\left(x, \chi_{D}\right) \rightsquigarrow \Xi_{t}\left(x, \chi_{D}\right)
$$

Newman setup in Function Fields

Idea: Mimic Pólya's setup

$$
\begin{aligned}
& q=p^{n}, \quad D \in \mathbb{F}_{q}[x], \quad L\left(s, \chi_{D}\right):=\sum_{f \text { monic }} \frac{\chi_{D}(f)}{|f|^{s}} \\
& L\left(s, \chi_{D}\right)=\sum_{n=0}^{\infty} c_{n}\left(q^{-s}\right)^{n}, \quad c_{n}=\sum_{\substack{f \text { monic } \\
\operatorname{deg} f=n}} \chi_{D}(f)
\end{aligned}
$$

$L\left(s, \chi_{D}\right)$ is a polynomial in q^{-s} of degree $\operatorname{deg} D-1$.

$$
L\left(s, \chi_{D}\right) \rightsquigarrow \xi\left(s, \chi_{D}\right) \rightsquigarrow \Xi\left(x, \chi_{D}\right) \rightsquigarrow \Xi_{t}\left(x, \chi_{D}\right)
$$

Newman setup in Function Fields

Idea: Mimic Pólya's setup

$$
\begin{aligned}
& q=p^{n}, \quad D \in \mathbb{F}_{q}[x], \quad L\left(s, \chi_{D}\right):=\sum_{f \text { monic }} \frac{\chi_{D}(f)}{|f|^{s}} \\
& L\left(s, \chi_{D}\right)=\sum_{n=0}^{\infty} c_{n}\left(q^{-s}\right)^{n}, \quad c_{n}=\sum_{\substack{f \text { monic } \\
\operatorname{deg} f=n}} \chi_{D}(f)
\end{aligned}
$$

$L\left(s, \chi_{D}\right)$ is a polynomial in q^{-s} of degree $\operatorname{deg} D-1$.

$$
L\left(s, \chi_{D}\right) \rightsquigarrow \xi\left(s, \chi_{D}\right) \rightsquigarrow \Xi\left(x, \chi_{D}\right) \rightsquigarrow \Xi_{t}\left(x, \chi_{D}\right)
$$

Newman setup in Function Fields

Idea: Mimic Pólya's setup

$$
\begin{aligned}
& q=p^{n}, \quad D \in \mathbb{F}_{q}[x], \quad L\left(s, \chi_{D}\right):=\sum_{f \text { monic }} \frac{\chi_{D}(f)}{|f|^{s}} \\
& L\left(s, \chi_{D}\right)=\sum_{n=0}^{\infty} c_{n}\left(q^{-s}\right)^{n}, \quad c_{n}=\sum_{\substack{f \text { monic } \\
\operatorname{deg} f=n}} \chi_{D}(f)
\end{aligned}
$$

$L\left(s, \chi_{D}\right)$ is a polynomial in q^{-s} of degree $\operatorname{deg} D-1$.

$$
\begin{array}{r}
L\left(s, \chi_{D}\right) \rightsquigarrow \xi\left(s, \chi_{D}\right) \rightsquigarrow \Xi\left(x, \chi_{D}\right) \rightsquigarrow \Xi_{t}\left(x, \chi_{D}\right) \\
\Xi_{t}\left(x, \chi_{D}\right):=\Phi_{0}+\sum_{n=1}^{g} \Phi_{n} e^{t n^{2}}\left(e^{i n x}+e^{-i n x}\right)
\end{array}
$$

Newman's Conjecture in Function Fields

Lemma (Andrade, Chang, Miller 2013)
 If $\Xi_{t}\left(x, \chi_{D}\right)$ has only real zeros for some $t \in \mathbb{R}$, then for all
 $t^{\prime}>t, \Xi_{t^{\prime}}\left(x, \chi_{D}\right)$ has only real zeros.

Newman's Conjecture in Function Fields

Lemma (Andrade, Chang, Miller 2013)

If $\Xi_{t}\left(x, \chi_{D}\right)$ has only real zeros for some $t \in \mathbb{R}$, then for all $t^{\prime}>t, \Xi_{t^{\prime}}\left(x, \chi_{D}\right)$ has only real zeros.

Lemma (Andrade, Chang, Miller 2013)
There exists $\Lambda_{D} \in[-\infty, 0]$ such that

1. if $t \geq \Lambda$, then $\Xi_{t}\left(x, \chi_{D}\right)$ has only real zeros
2. if $t<\Lambda$, then $\Xi_{t}\left(x, \chi_{D}\right)$ has a non-real zero.

Examples

Example
$D=x^{5}+x^{4}+x^{3}+2 x+2 \in \mathbb{F}_{5}[x]:$

ExAmples

Example

$D=x^{5}+x^{4}+x^{3}+2 x+2 \in \mathbb{F}_{5}[x]:$

$$
\Xi_{t}(x, D)=10 e^{4 t} \cos 2 x-2 \sqrt{5} e^{t} \cos x-1
$$

ExAmples

Example
$D=x^{5}+x^{4}+x^{3}+2 x+2 \in \mathbb{F}_{5}[x]:$

$$
\Xi_{t}(x, D)=10 e^{4 t} \cos 2 x-2 \sqrt{5} e^{t} \cos x-1
$$

$\Lambda_{D} \approx-0.188565066$

ExAmples

Example
$D=x^{5}+x^{4}+x^{3}+2 x+2 \in \mathbb{F}_{5}[x]:$

$$
\Xi_{t}(x, D)=10 e^{4 t} \cos 2 x-2 \sqrt{5} e^{t} \cos x-1
$$

$\Lambda_{D} \approx-0.188565066$

Example

$$
D(T)=T^{3}+T \in \mathbb{F}_{3}[T]
$$

Examples

Example
$D=x^{5}+x^{4}+x^{3}+2 x+2 \in \mathbb{F}_{5}[x]:$

$$
\Xi_{t}(x, D)=10 e^{4 t} \cos 2 x-2 \sqrt{5} e^{t} \cos x-1
$$

$\Lambda_{D} \approx-0.188565066$

Example

$$
D(T)=T^{3}+T \in \mathbb{F}_{3}[T] \Longrightarrow \Xi_{t}\left(x, \chi_{D}\right)=\sqrt{3} e^{t} \cos x
$$

Examples

Example
$D=x^{5}+x^{4}+x^{3}+2 x+2 \in \mathbb{F}_{5}[x]:$

$$
\Xi_{t}(x, D)=10 e^{4 t} \cos 2 x-2 \sqrt{5} e^{t} \cos x-1
$$

$\Lambda_{D} \approx-0.188565066$

Example

$$
D(T)=T^{3}+T \in \mathbb{F}_{3}[T] \Longrightarrow \Xi_{t}\left(x, \chi_{D}\right)=\sqrt{3} e^{t} \cos x
$$

$$
\Lambda_{D}=-\infty
$$

Newman's Conjecture in Function Fields

Conjecture

Fix q a power of an odd prime. Then

$$
\sup _{D \in \mathbb{F}_{q}[T] \operatorname{good}} \Lambda_{D} \geq 0 .
$$

Newman's Conjecture in Function Fields

Conjecture

Fix q a power of an odd prime. Then

$$
\sup _{D \in \mathbb{F}_{q}[T] \operatorname{good}} \Lambda_{D} \geq 0
$$

Conjecture

Fix $g \in \mathbb{N}$. Then

$$
\sup _{\substack{D \operatorname{good,} \operatorname{deg} D=2 g+1 \\ q=p^{k}, p \geq 3}}
$$

Newman's Conjecture in Function Fields

Conjecture

Fix $D \in \mathbb{Z}[T]$ square-free. Let p be prime, and let $D_{p} \in \mathbb{F}_{p}[T]$ be the polynomial obtained by reducing D modulo p. Then

$$
\sup _{\substack{D_{p} \text { good } \\ p \geq 3}} \Lambda_{D_{p}} \geq 0
$$

Previous Work

Theorem (Andrade, Chang, Miller 2013)
Let $D \in \mathbb{Z}[x]$ be square-free with $\operatorname{deg} D=3$. For each odd prime p, we can reduce D to $D_{p} \in \mathbb{F}_{p}[x]$. Then $\sup _{p} \Lambda_{D_{p}}=0$.

Previous Work

Theorem (Andrade, Chang, Miller 2013)
Let $D \in \mathbb{Z}[x]$ be square-free with $\operatorname{deg} D=3$. For each odd prime p, we can reduce D to $D_{p} \in \mathbb{F}_{p}[x]$. Then $\sup _{p} \Lambda_{D_{p}}=0$.

Proof sketch.

Step 1: Show that

$$
\Lambda_{D_{p}}=\log \frac{\left|a_{p}(D)\right|}{2 \sqrt{p}}
$$

where $a_{p}(D)$ is the trace of Frobenius.
Step 2: Use the Sato-Tate conjecture.

Motivation For Our Strategy

- If $q=p^{n}$ is a square, then $2 \sqrt{q} \in \mathbb{Z}$, so $\left|a_{q}(D)\right|$ can actually equal $2 \sqrt{q}$. In this case, $\Lambda_{D}=\log 1=0$.

Motivation For Our Strategy

- If $q=p^{n}$ is a square, then $2 \sqrt{q} \in \mathbb{Z}$, so $\left|a_{q}(D)\right|$ can actually equal $2 \sqrt{q}$. In this case, $\Lambda_{D}=\log 1=0$.
- Weil conjectures $\Longrightarrow \mathcal{E} / \mathbb{F}_{p}$ with the average number of points will acheive the maximum and minimum number of points possible over particular extensions of \mathbb{F}_{p}.

Motivation For Our Strategy

- If $q=p^{n}$ is a square, then $2 \sqrt{q} \in \mathbb{Z}$, so $\left|a_{q}(D)\right|$ can actually equal $2 \sqrt{q}$. In this case, $\Lambda_{D}=\log 1=0$.
- Weil conjectures $\Longrightarrow \mathcal{E} / \mathbb{F}_{p}$ with the average number of points will acheive the maximum and minimum number of points possible over particular extensions of \mathbb{F}_{p}.
- Judicious choices of D and p (such that $y^{2}=D(x)$ has $p+1$ points over \mathbb{F}_{p}) will give us Newman's conjecture in certain cases!

The Weil Conjectures for Curves

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_{q}. The Hasse-Weil zeta function of X is defined as $Z(X, s)=\exp \left(\sum_{m \geq 1} \frac{N_{m}}{m}\left(q^{-s}\right)^{m}\right)$, where N_{m} is the number of points of X over $\mathbb{F}_{q^{m}}$.

The Weil Conjectures for Curves

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_{q}. The Hasse-Weil zeta function of X is defined as $Z(X, s)=\exp \left(\sum_{m \geq 1} \frac{N_{m}}{m}\left(q^{-s}\right)^{m}\right)$, where N_{m} is the number of points of X over $\mathbb{F}_{q^{m}}$.
1.

$$
Z(X, s)=\frac{P(T)}{(1-T)(1-q T)}, \quad P \in \mathbb{Z}[T]
$$

The Weil Conjectures for Curves

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_{q}. The Hasse-Weil zeta function of X is defined as $Z(X, s)=\exp \left(\sum_{m \geq 1} \frac{N_{m}}{m}\left(q^{-s}\right)^{m}\right)$, where N_{m} is the number of points of X over $\mathbb{F}_{q^{m}}$.
1.

$$
Z(X, s)=\frac{P(T)}{(1-T)(1-q T)}, \quad P \in \mathbb{Z}[T]
$$

2. $Z(X, n-s)= \pm q^{f(X)} Z(X, s)$.

The Weil Conjectures for Curves

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_{q}. The Hasse-Weil zeta function of X is defined as $Z(X, s)=\exp \left(\sum_{m \geq 1} \frac{N_{m}}{m}\left(q^{-s}\right)^{m}\right)$, where N_{m} is the number of points of X over $\mathbb{F}_{q^{m}}$.
1.

$$
Z(X, s)=\frac{P(T)}{(1-T)(1-q T)}, \quad P \in \mathbb{Z}[T]
$$

2. $Z(X, n-s)= \pm q^{f(X)} Z(X, s)$.
3. Let α be a root of P. Then $|\alpha|=q^{-1 / 2}$.

The Weil Conjectures for Curves

Theorem (Weil Conjectures)

Let X be a curve over \mathbb{F}_{q}. The Hasse-Weil zeta function of X is defined as $Z(X, s)=\exp \left(\sum_{m \geq 1} \frac{N_{m}}{m}\left(q^{-s}\right)^{m}\right)$, where N_{m} is the number of points of X over $\mathbb{F}_{q^{m}}$.
1.

$$
Z(X, s)=\frac{P(T)}{(1-T)(1-q T)}, \quad P \in \mathbb{Z}[T]
$$

2. $Z(X, n-s)= \pm q^{f(X)} Z(X, s)$.
3. Let α be a root of P. Then $|\alpha|=q^{-1 / 2}$.

Example:

$$
Z\left(\mathbb{P}^{1}, s\right)=\frac{1}{(1-T)(1-q T)}
$$

A Key Lemma and a Key Observation

Lemma (Andrade, Chang, Miller 2013)
$\Lambda_{D}=0 \Longleftrightarrow L\left(s, \chi_{D}\right)$ has a double root.

A Key Lemma and a Key Observation

Lemma (Andrade, Chang, Miller 2013)
$\Lambda_{D}=0 \Longleftrightarrow L\left(s, \chi_{D}\right)$ has a double root.

Observation

$L\left(s, \chi_{D}\right)$ is the numerator of the zeta function $Z(X, s)$, $X: y^{2}=D(x)$. More precisely, $Z(X, s)=Z\left(\mathbb{P}^{1}, s\right) L\left(s, \chi_{D}\right)$.

A Key Lemma and a Key Observation

Lemma (Andrade, Chang, Miller 2013)
$\Lambda_{D}=0 \Longleftrightarrow L\left(s, \chi_{D}\right)$ has a double root.

Observation

$L\left(s, \chi_{D}\right)$ is the numerator of the zeta function $Z(X, s)$,
$X: y^{2}=D(x)$. More precisely, $Z(X, s)=Z\left(\mathbb{P}^{1}, s\right) L\left(s, \chi_{D}\right)$.

Proof (Idea)

Use the Euler products for $Z(X, s), L\left(s, \chi_{D}\right)$.

$$
\begin{aligned}
Z(X, s) & =\prod_{\pi \text { monic, irred. }}(1-N(\pi))^{-s} \\
L\left(s, \chi_{D}\right) & =\prod_{\pi}\left(1-\chi(\pi) N(\pi)^{-s}\right)^{-1}
\end{aligned}
$$

Results

Theorem

The L-function corresponding to $D(x)=x^{q}-x$ has a double root. This implies that $\Lambda_{D}=0$ (considering D over \mathbb{F}_{q}).

Results

Theorem

The L-function corresponding to $D(x)=x^{q}-x$ has a double root. This implies that $\Lambda_{D}=0$ (considering D over \mathbb{F}_{q}).

Proof Sketch

The curve $X: y^{2}=x^{q}-x$ carries an action of \mathbb{F}_{q} that commutes with Frobenius. These actions reduce to actions at the level of cohomology $H_{\ell}^{*}(X)$. For $X: y^{2}=x^{q}-x$, $Z(X, s)=Z\left(\mathbb{P}^{1}, s\right) L\left(s, \chi_{D}\right)$. Next, recall that the L-function is defined as a Gauss sum. A result of Nick Katz
$\Longrightarrow L\left(s, \chi_{D}\right)=\left(T^{2} q \pm 1\right)^{g}$.

Results

Corollary

If \mathcal{F} is a family of good polynomials over various finite fields, and contains at least one polynomial over \mathbb{F}_{q} of the form $x^{q}-x$ for some q, then

$$
\sup _{D \in \mathcal{F}} \Lambda_{D}=0
$$

In particular, $\mathcal{F}=\left\{D \in \mathbb{F}_{q}[T] \mid D\right.$ good $\}$ and
$\mathcal{F}=\left\{D \mid \operatorname{deg} D=2 g+1,2 g+1=p^{k}\right.$ for some $\left.p\right\}$ are such families.

Results

Corollary

If \mathcal{F} is a family of good polynomials over various finite fields, and contains at least one polynomial over \mathbb{F}_{q} of the form $x^{q}-x$ for some q, then

$$
\sup _{D \in \mathcal{F}} \Lambda_{D}=0
$$

In particular, $\mathcal{F}=\left\{D \in \mathbb{F}_{q}[T] \mid D\right.$ good $\}$ and
$\mathcal{F}=\left\{D \mid \operatorname{deg} D=2 g+1,2 g+1=p^{k}\right.$ for some $\left.p\right\}$ are such families.

This sup is really a max!

Continuing Previous Results

Theorem

Let $D \in \mathbb{Z}[T]$ be a square-free monic cubic polynomial. Then there exists a number field K / \mathbb{Q} such that

$$
\sup _{\mathfrak{p} \subseteq \mathcal{O}_{K}} \Lambda_{D_{\mathfrak{p}}}=\max _{\mathfrak{p} \subseteq \mathcal{O}_{K}} \Lambda_{D_{\mathfrak{p}}}=0
$$

where $D_{\mathfrak{p}}$ denotes reduction modulo the prime ideal \mathfrak{p}.

Future Directions

- Degree greater than 3 case of the third Newman's conjecture.

Future Directions

- Degree greater than 3 case of the third Newman's conjecture.
- Fix a number field K / \mathbb{Q} and a square-free monic cubic $D \in \mathcal{O}_{K}[T]$. Does there exist a prime $\mathfrak{p} \subseteq \mathcal{O}_{K}$ such that $\Lambda_{D_{\mathfrak{p}}}=0$ or a sequence of primes $\left\{\mathfrak{p}_{n}\right\}_{n \in \mathbb{N}}$ such that $\Lambda_{D_{\mathfrak{p}_{i}}} \rightarrow 0$?

Future Directions

- Degree greater than 3 case of the third Newman's conjecture.
- Fix a number field K / \mathbb{Q} and a square-free monic cubic $D \in \mathcal{O}_{K}[T]$. Does there exist a prime $\mathfrak{p} \subseteq \mathcal{O}_{K}$ such that $\Lambda_{D_{\mathfrak{p}}}=0$ or a sequence of primes $\left\{\mathfrak{p}_{n}\right\}_{n \in \mathbb{N}}$ such that $\Lambda_{D_{\mathfrak{p}_{i}}} \rightarrow 0$?
- Does Newman's conjecture hold for the family $\mathcal{F}=\{D \mid \operatorname{deg} D=2 g+1, g \in \mathbb{N}\}$ when $2 g+1$ is not a power of a prime?

Acknowledgements

Presented by:

David Mehrle	dmehrle@cmu.edu
Joseph Stahl	josephmichaelstahl@gmail.com

Joint work with:
Tomer Reiter tomer.reiter@gmail.com
Dylan Yott dtyott@gmail.com

Advised by:

Steven J. Miller
sjm1@williams.edu
Alan Chang
alan.chang.math@gmail.com
Special thanks to:
The PROMYS Program Boston University
The SMALL REU Williams College

Funded by:

NSF Grants DMS1347804, DMS1265673,
the PROMYS Program, and Williams College

