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The Riemann Hypothesis and the ζ Function

ζ(s) :=
∑
n≥1

1

ns
=

∏
p prime

(1− p−s)−1

ξ(s) = ξ(1− s), ξ(s) :=
s(s− 1)

2
π−s/2Γ
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)
ζ(s)

Conjecture: Riemann Hypothesis

ξ(s) = 0 =⇒ ℜ(s) = 1
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Pólya’s idea

Ξ(x) = ξ

(
1

2
+ ix

)

I If x ∈ R, then Ξ(x) ∈ R.
I Riemann Hypothesis true ⇐⇒ all zeros of Ξ(x) are real.

Ξ Φ(u) =
1

2π

∫ ∞

0
Ξ(x) cosux dx Ξt(x) =

∫ ∞

0
etu

2
Φ(u) cosux du
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Newman’s Conjecture

Theorem (De Bruijn, Newman)

There exists Λ ∈ R such that if t < Λ, Ξt has a nonreal zero,
and if t ≥ Λ, Ξt has only real zeros.

Riemann Hypothesis ⇐⇒ Λ ≤ 0

Conjecture (Newman)

Λ ≥ 0.

“The new conjecture is a quantitative version of the dictum that
the Riemann hypothesis, if true, is only barely so.” - Newman
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Newman’s Conjecture

Fact

It is known that Λ ≥ −1.2 · 10−11.

Perspective

“Experiments have Diracs number at 1.00115965221 (with an
uncertainty of about 4 in the last digit); the theory puts it at
1.00115965246 (with an uncertainty of about five times as
much). To give you a feeling for the accuracy of these numbers,
it comes out something like this: If you were to measure the
distance from Los Angeles to New York to this accuracy, it
would be exact to the thickness of a human hair. Thats how
delicately quantum electrodynamics has, in the past fifty years,
been checked-both theoretically and experimentally.” - R.
Feynman



Function Field Analogy

Slogan: Function fields behave a lot like number fields!

Number Fields and Function Fields
Field K (Q) Fq(T )
Ring of Integers OK (Z) Fq[T ]
Primes p ⊆ OK ((p) ⊆ Z) π ∈ Fq[T ] irreducible
Zeta Function ζK (ζQ = ζ) Weil Zeta Function

Riemann Hypothesis Weil Conjectures
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Newman setup in Function Fields

Idea: Mimic Pólya’s setup

q = pn, D ∈ Fq[x], L(s, χD) :=
∑

f monic

χD(f)

| f |s

L(s, χD) =

∞∑
n=0

cn
(
q−s

)n
, cn =

∑
f monic
deg f=n

χD(f)

L(s, χD) is a polynomial in q−s of degree degD − 1.

L(s, χD) ξ(s, χD) Ξ(x, χD) Ξt(x, χD)

Ξt(x, χD) := Φ0 +

g∑
n=1

Φne
tn2 (

einx + e−inx
)
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Newman’s Conjecture in Function Fields

Lemma (Andrade, Chang, Miller 2013)

If Ξt(x, χD) has only real zeros for some t ∈ R, then for all
t′ > t, Ξt′(x, χD) has only real zeros.

Lemma (Andrade, Chang, Miller 2013)

There exists ΛD ∈ [−∞, 0] such that

1. if t ≥ Λ, then Ξt(x, χD) has only real zeros

2. if t < Λ, then Ξt(x, χD) has a non-real zero.
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Examples

Example

D = x5 + x4 + x3 + 2x+ 2 ∈ F5[x] :

Ξt(x,D) = 10e4t cos 2x− 2
√
5et cosx− 1

ΛD ≈ −0.188565066

Example

D(T ) = T 3 + T ∈ F3[T ] =⇒ Ξt(x, χD) =
√
3et cosx

ΛD = −∞
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Newman’s Conjecture in Function Fields

Conjecture

Fix q a power of an odd prime. Then

sup
D∈Fq [T ] good

ΛD ≥ 0.

Conjecture

Fix g ∈ N. Then

sup
D good, degD=2g+1

q=pk, p≥3

ΛD ≥ 0.
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Newman’s Conjecture in Function Fields

Conjecture

Fix D ∈ Z[T ] square-free. Let p be prime, and let Dp ∈ Fp[T ]
be the polynomial obtained by reducing D modulo p. Then

sup
Dp good

p≥3

ΛDp ≥ 0.



Previous Work

Theorem (Andrade, Chang, Miller 2013)

Let D ∈ Z[x] be square-free with degD = 3. For each odd prime
p, we can reduce D to Dp ∈ Fp[x]. Then supp ΛDp = 0.

Proof sketch.

Step 1: Show that

ΛDp = log
|ap(D)|
2
√
p

where ap(D) is the trace of Frobenius.
Step 2: Use the Sato–Tate conjecture.
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Motivation For Our Strategy

I If q = pn is a square, then 2
√
q ∈ Z, so |aq(D)| can actually

equal 2
√
q. In this case, ΛD = log 1 = 0.

I Weil conjectures =⇒ E/Fp with the average number of
points will acheive the maximum and minimum number of
points possible over particular extensions of Fp.

I Judicious choices of D and p (such that y2 = D(x) has
p+ 1 points over Fp) will give us Newman’s conjecture in
certain cases!
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The Weil Conjectures for Curves

Theorem (Weil Conjectures)

Let X be a curve over Fq. The Hasse-Weil zeta function of X is

defined as Z(X, s) = exp
(∑

m≥1
Nm
m (q−s)

m
)
, where Nm is the

number of points of X over Fqm.

1.

Z(X, s) =
P (T )

(1− T )(1− qT )
, P ∈ Z[T ]

2. Z(X,n− s) = ±qf(X)Z(X, s).

3. Let α be a root of P . Then |α| = q−1/2.

Example:

Z(P1, s) =
1

(1− T )(1− qT )
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A Key Lemma and a Key Observation

Lemma (Andrade, Chang, Miller 2013)

ΛD = 0 ⇐⇒ L(s, χD) has a double root.

Observation

L(s, χD) is the numerator of the zeta function Z(X, s),
X : y2 = D(x). More precisely, Z(X, s) = Z(P1, s)L(s, χD).

Proof (Idea)

Use the Euler products for Z(X, s), L(s, χD).

Z(X, s) =
∏

π monic, irred.

(1−N(π))−s

L(s, χD) =
∏
π

(
1− χ(π)N(π)−s

)−1
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Results

Theorem

The L-function corresponding to D(x) = xq − x has a double
root. This implies that ΛD = 0 (considering D over Fq).

Proof Sketch

The curve X : y2 = xq − x carries an action of Fq that
commutes with Frobenius. These actions reduce to actions at
the level of cohomology H∗

ℓ (X). For X : y2 = xq − x,
Z(X, s) = Z(P1, s)L(s, χD). Next, recall that the L-function is
defined as a Gauss sum. A result of Nick Katz
=⇒ L(s, χD) = (T 2q ± 1)g.
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Results

Corollary

If F is a family of good polynomials over various finite fields,
and contains at least one polynomial over Fq of the form xq − x
for some q, then

sup
D∈F

ΛD = 0.

In particular, F = {D ∈ Fq[T ] | D good} and
F = {D | degD = 2g + 1, 2g + 1 = pk for some p} are such
families.

This sup is really a max!
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Continuing Previous Results

Theorem

Let D ∈ Z[T ] be a square-free monic cubic polynomial. Then
there exists a number field K/Q such that

sup
p⊆OK

ΛDp = max
p⊆OK

ΛDp = 0,

where Dp denotes reduction modulo the prime ideal p.



Future Directions

I Degree greater than 3 case of the third Newman’s
conjecture.

I Fix a number field K/Q and a square-free monic cubic
D ∈ OK [T ]. Does there exist a prime p ⊆ OK such that
ΛDp = 0 or a sequence of primes {pn}n∈N such that
ΛDpi

→ 0?

I Does Newman’s conjecture hold for the family
F = {D | degD = 2g + 1, g ∈ N} when 2g + 1 is not a
power of a prime?
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