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The Random Matrix Theory Connection

Philosophy: Critical-zero statistics of L-functions agree with
eigenvalue statistics of large random matrices

I Montgomery - evidence for agreement between
pair-correlations of zeros of ζ(s) and eigenvalues of the
Gaussian Unitary Ensemble

I Hejhal, Rudnick and Sarnak - Higher correlations of
automorphic L-functions

I Odlyzko - further evidence through extensive numerical
computations
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Consecutive Zero Spacings

Figure: Consecutive zero spacings of ζ(s) versus GUE predictions
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Large Gaps between Zeros
Let 0 6 γ1 6 γ2 6 · · · 6 γi 6 · · · be the ordinates of the critical
zeros of an L-function.

Conjecture.
Gaps between consecutive zeros that are arbitrarily large, relative to
the average gap size, appear infinitely often.

Letting Λ = lim sup
n→∞

γn+1 − γn
average spacing

,

this conjecture is equivalent to Λ = ∞.
I The best unconditional result for the Riemann zeta

function is
Λ > 2.69.
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Degree 2 Case
Higher degree L-functions are mostly unexplored.

Theorem 1 (Turnage-Butterbaugh ’14).
Let T > 2 and ε > 0. Let ζK(s) be the Dedekind zeta
function attached to a quadratic number field K with
discriminant d satisfying |d| 6 T

7
9−ε. Let S := {γ1,γ2, ...,γN}

be the set of distinct zeros of ζK
(1

2 + it, f
)

in the interval
[T , 2T ]. Let κT denote the maximum gap between
consecutive zeros in S. Then

κT >
√

6
π

log
√
|d|T

(
1 +O(dε log T−1)

I Assuming GRH, this means Λ >
√

6.
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A Lower Bound on Large Gaps

We proved the following unconditional theorem for an
L-function associated to a holomorphic cusp form f.

Theorem 2 (BMMRTW ’14).
Let S := {γ1,γ2, ...,γN} be the set of distinct zeros of
L
(1

2 + it, f
)

in the interval [T , 2T ]. Let κT denote the
maximum gap between consecutive zeros in S. Then

κT >

√
3π

log T

(
1 +O

(
1
cf

(log T)−δ
))

,

where cf is the residue of the Rankin-Selberg convolution
L(s, f× f̄) at s = 1.
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Interpretation

If we assume GRH for interpretive purposes,
there are infinitely many normalized gaps
between consecutive zeros at least

√
3 times the

mean spacing, i.e.,

Λ >
√

3.
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Shifted Moment Result

In order to prove our theorem, we use a method due to R.R.
Hall, along with the following shifted moment result.

Theorem 3 (BMMRTW ’14).

∫ 2T

T

L

(
1
2
+ it+α, f

)
L

(
1
2
− it+β, f

)
dt

= cfT
∑
n>0

(−1)n2n+1(α+β)n(log T)n+1

(n+ 1)!
+O

(
T(log T)1−δ) ,

where α,β ∈ C and |α|, |β|� 1/ log T .
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Shifted Moments Proof Technique

I Following a method due to Ramachandra, we consider

L(s+α, f) =
∑
n>1

λf(n)

ns+α
e−

n
X + F(s)

∑
n6X

λf(n)

n1−s−α + E(s),

where λf(n) are the Fourier coefficients of L(s, f), F(s) is a
functional equation term, and E(s) is an error term.

I We have an analogous expression for L(1 − s+β, f).
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Shifted Moments Proof Technique

I We consider the product

L(s+α, f)L(1 − s+β, f),

where each factor gives rise to four products, resulting in
sixteen total products to estimate.

I Using a generalization of Montgomery and Vaughan’s
mean value theorem and contour integration we are able to
estimate this product and compute the resulting moments.
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Shifted Moment Result for Derivatives

I The shifted moment result allows us to deduce lower order
terms and moments of derivatives of L-functions by means
of differentiation and Cauchy’s integral formula.

I We derive an expression for∫ 2T

T

L(µ)
(

1
2
+ it, f

)
L(ν)

(
1
2
− it, f

)
dt,

where T > 2 and µ,ν ∈ Z+. We use this result in Hall’s
method to obtain the lower bound stated in our theorem.
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Modified Wirtinger Inequality

Using Hall’s method, we bound the gaps between zeroes. This
requires the following result, due to Wirtinger and modified by
Bredberg.

Lemma 1 (Bredberg).
Let y : [a,b]→ C be a continuously differentiable function
and suppose that y(a) = y(b) = 0. Then∫b

a

|y(x)|2dx 6

(
b− a

π

)2 ∫b
a

|y ′(x)|2dx.
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Proving our Result

I We define the function

g(t) := eiρt logTL
(1

2 + it, f
)

,

where ρ is a real parameter to be chosen later. We fix f and
let γ̃ denote an ordinate zero of L(s, f) on the critical line
<(s) = 1

2 .

I The crucial property of this function is that it has the same
zeroes as L(s, f), namely g(t) = 0 when t = γ̃. We use this
function in the modified Wirtinger’s inequality.
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Proving our Result

I We apply sub-convexity bounds along the critical line to
establish:∫ 2T

T

|g(t)|2dt 6
κ2
T

π2

∫ 2T

T

|g ′(t)|2dt+O
(
T

2
3 (log T)

5
6

)
.

I Noting that our g(t) and g′(t) may be expressed in terms
of L

(1
2 + it, f

)
and its derivatives, we can write our

inequality explicitly in terms of formulæ given by our
mixed moment theorem.
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Finishing the Proof

I After substituting our formulæ, we have the inequality:

κ2
T

π2 >
3

3ρ2 − 6ρ+ 4
(log T)−2 (1 +O(log T)−δ

)
.

I The polynomial in ρ finds its minimum at ρ = 1, yielding
the result

κT >

√
3π

log T

(
1 +O

(
1
cf

(log T)−δ
))

.

19 / 25
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Hypotheses
The success of these methods only depends on a few key
properties of the L-function in question. For f a primitive form
on GL(2) over Q given by a Dirichlet series

L(s, f) =
∞∑
n=1

af(n)

ns
, R(s) > 1,

we expect the same lower bound on large gaps of
√

3 given the
following assumptions:

I L(s, f) has an analytic continuation to an entire function of
order 1.

I L(s, f) satisfies a function equation of the form

Λ(s, f) := L(s, f∞)L(s, f) = εfΛ(1 − s, f̄)

where
L(s, f∞) = QsΓ

(s
2
+ µ1

)
Γ
(s

2
+ µ2

)
.

21 / 25



Gaps between Critical Zeros Results on Gaps and Shifted Second Moments Methods of Proof Extension to Maass Forms Acknowledgements

Hypotheses
The success of these methods only depends on a few key
properties of the L-function in question. For f a primitive form
on GL(2) over Q given by a Dirichlet series

L(s, f) =
∞∑
n=1

af(n)

ns
, R(s) > 1,

we expect the same lower bound on large gaps of
√

3 given the
following assumptions:

I L(s, f) has an analytic continuation to an entire function of
order 1.

I L(s, f) satisfies a function equation of the form

Λ(s, f) := L(s, f∞)L(s, f) = εfΛ(1 − s, f̄)

where
L(s, f∞) = QsΓ

(s
2
+ µ1

)
Γ
(s

2
+ µ2

)
.

21 / 25



Gaps between Critical Zeros Results on Gaps and Shifted Second Moments Methods of Proof Extension to Maass Forms Acknowledgements

Hypotheses
I The Rankin-Selberg convolution L(s, f× f̄), given by the

Dirichlet series ∞∑
n=1

|af(n)|
2

ns
, R(s) > 1,

is entire except for a simple pole at s = 1.

I The Fourier coefficients satisfy the asymptotic∑
n6x

|af(n)|
2 = Afx+ o(x).

I For some small δ > 0, we have a subconvexity bound∣∣∣∣L(1
2
+ it, f

)∣∣∣∣� |t|
1
2−δ.
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Hypotheses

I Michel and Venkatesh proved a subconvexity bound for
primitive GL(2) L-functions over Q.

I All hypotheses are known for holomorphic cusp form
L-functions.

I For L-functions associated to Maass forms, some are
conjectural.
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