Amanda Bower (UM-Dearborn), Louis Gaudet (Yale University), Rachel Insoft (Wellesley College), Shiyu Li (Berkeley), Steven J. Miller and Philip **Tosteson (Williams College)**

http://www.williams.edu/Mathematics/sjmiller

AMS Session on Number Theory, I Room 12, Mezzanine Level, San Diego Wednesday January 9, 2013, 3:30p.m.

Intro

Goals of the Talk

- Explain consequences of combinatorial perspective.
- Perspective important: misleading proofs.
- Highlight techniques.
- Some open problems.

Joint work at SMALL (Undergraduate REU Program) at Williams College in 2010, 2011 and 2012.

Intro

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Previous Results

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Previous Results

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4$$
.

Previous Results

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
; $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,...$

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:
$$2013 = 1597 + 377 + 34 + 5 = F_{16} + F_{13} + F_8 + F_4$$
.

Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Old Results

Intro

Central Limit Type Theorem

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ is Gaussian (normal).

Figure: Number of summands in $[F_{2010}, F_{2011})$; $F_{2010} \approx 10^{420}$.

New Results: Bulk Gaps: $m \in [F_n, F_{n+1})$ and $\phi = \frac{1+\sqrt{5}}{2}$

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x - (i_j - i_{j-1})\right).$$

Theorem (Zeckendorf Gap Distribution)

Gap measures $\nu_{m;n}$ converge almost surely to average gap measure where $P(k) = 1/\phi^k$ for $k \ge 2$.

Figure: Distribution of gaps in $[F_{1000}, F_{1001})$; $F_{2010} \approx 10^{208}$.

Gaps (Bulk)

New Results: Longest Gap

Theorem (Longest Gap)

As $n \to \infty$, the probability that $m \in [F_n, F_{n+1})$ has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \; \approx \; \operatorname{e}^{-\operatorname{e}^{\log n - f(n)/\log \phi}}$$

Immediate Corollary: If f(n) grows **slower** or **faster** than $\log \phi \cdot \log n$, then $\operatorname{Prob}(L_n(m) \leq f(n))$ goes to **0** or **1**, respectively.

Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

Gaps (Bulk)

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

Reinterpreting the Cookie (or Stars and Bars) Problem

Gaps (Bulk)

The number of solutions to $x_1 + \cdots + x_p = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ N has exactly k summands.

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$\begin{split} N &= F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n, \\ 1 &\leq i_1 < i_2 < \dots < i_{k-1} < i_k = n, \ i_j - i_{j-1} \geq 2. \end{split}$$

Reinterpreting the Cookie (or Stars and Bars) Problem

Gaps (Bulk)

The number of solutions to $x_1 + \cdots + x_p = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ N has exactly k summands.

For
$$N \in [F_n, F_{n+1})$$
, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_i \ge 0.$$

Reinterpreting the Cookie (or Stars and Bars) Problem

Gaps (Bulk)

The number of solutions to $x_1 + \cdots + x_p = C$ with $x_i > 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } \}$ N has exactly k summands.

For
$$N \in [F_n, F_{n+1})$$
, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_i \ge 0.$$

Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}$.

Generalizations

Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

Gaps (Bulk)

with $H_1 = 1$, $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_n H_1 + 1$, n < L, coefficients $c_i \ge 0$; $c_1, c_l > 0$ if L > 2; $c_1 > 1$ if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as $\sum a_i H_i$ with natural constraints on the a_i 's (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

Example: the Special Case of L=1, $c_1=10$

$$H_{n+1} = 10H_n$$
, $H_1 = 1$, $H_n = 10^{n-1}$.

• Legal decomposition is decimal expansion: $\sum_{i=1}^{m} a_i H_i$: $a_i \in \{0, 1, \dots, 9\} \ (1 \le i < m), \ a_m \in \{1, \dots, 9\}.$

- For $N \in [H_n, H_{n+1})$, m = n, i.e., first term is $a_n H_n = a_n 10^{n-1}$.
- A_i: the corresponding random variable of a_i. The A_i 's are independent.
- For large n, the contribution of A_n is immaterial. A_i (1 $\leq i < n$) are identically distributed random variables with mean 4.5 and variance 8.25.
- Central Limit Theorem: $A_2 + A_3 + \cdots + A_n \rightarrow Gaussian$ with mean 4.5n + O(1)and variance 8.25n + O(1).

Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the $\pm F_n$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3).

Gaps (Bulk)

Example: $1900 = F_{17} - F_{14} - F_{10} + F_{6} + F_{2}$.

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker's Theorem

As $n \to \infty$, E[K] and $E[L] \to n/10$. $E[K] - E[L] = \varphi/2 \approx .809$.

Central Limit Type Theorem

As $n \to \infty$, K and L converges to a bivariate Gaussian.

- $\operatorname{corr}(K, L) = -(21 2\varphi)/(29 + 2\varphi) \approx -.551, \varphi = \frac{\sqrt{5+1}}{2}$.
- K + L and K L are independent.

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$

Gaps (Bulk)

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1.$

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is
$$P(k) = \lim_{n \to \infty} P_n(k)$$
?

For
$$F_{i_1} + F_{i_2} + \cdots + F_{i_n}$$
, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

Gaps (Bulk)

What is
$$P(k) = \lim_{n \to \infty} P_n(k)$$
?

Can ask similar questions about binary or other expansions: $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$

Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Gaps (Bulk)

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{A}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

Main Results

• H_n : $H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_l H_{n+1-l}$ a positive linear recurrence of length *L* where $c_i > 1$ for all 1 < i < L.

Gaps (Bulk)

- $\lambda_1 > 1$: largest root (in absolute value) of characteristic polynomial of H_n .
- Generalized Binet: $H_n = a_1 \lambda_1^n + \cdots$

Theorem

Notation as above, probability of a gap of length i is

$$\begin{cases} 1 - (\frac{a_1}{C_{Lek}})(\lambda_1^{-n+2} - \lambda_1^{-n+1} + 2\lambda_1^{-1} + a_1^{-1} - 3) & j = 0 \\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & j = 1 \\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-j} & j \geq 2 \end{cases}$$

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\sqrt{2}+1}$.

Let $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i,$ F_i , but not F_q for i < q < j.

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Proof sketch of almost sure convergence

- $m = \sum_{i=1}^{k(m)} F_{i}$, $\nu_{m,n}(x) = \frac{1}{k(m)-1} \sum_{i=2}^{k(m)} \delta(x - (i_j - i_{j-1})).$
- $\bullet \ \mu_{m,n}(t) = \int x^t d\nu_{m,n}(x).$
- Show $\mathbb{E}_m[\mu_{m:n}(t)]$ equals average gap moments, $\mu(t)$.
- Show $\mathbb{E}_m[(\mu_{m:n}(t) \mu(t))^2]$ and $\mathbb{E}_m[(\mu_{m:n}(t) \mu(t))^4]$ tend to zero.

Gaps (Bulk)

Key ideas: (1) Replace k(m) with average (Gaussianity); (2) use $X_{i,i+q_1,j,j+q_2}$.

References

References

References

 Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions, to appear in the Fibonacci Quarterly, http://arxiv.org/abs/1208.5820

- Kologlu, Kopp, Miller and Wang: Gaussianity for Fibonacci case, Fibonacci Quarterly 49 (2011), no. 2, 116–130, http://arxiv.org/pdf/1008.3204
- Miller and Wang, From Fibonacci numbers to Central Limit Type Theorems, Journal of Combinatorial Theory, Series A 119 (2012), no. 7, 1398–1413, http://arxiv.org/pdf/1008.3202
- Miller and Wang, Gaussian Behavior in Generalized Zeckendorf Decompositions (with Yinghui Wang), to appear in the conference proceedings of the 2011 Combinatorial and Additive Number Theory Conference, http://arxiv.org/pdf/1107.2718