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Introduction
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Goals of the Talk

Explain consequences of combinatorial perspective.

Perspective important: misleading proofs.

Highlight techniques.

Some open problems.

Joint work at SMALL (Undergraduate REU Program) at
Williams College in 2010, 2011 and 2012.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2013 = 1597 + 377 + 34 + 5 = F16 + F13 + F8 + F4.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2013 = 1597 + 377 + 34 + 5 = F16 + F13 + F8 + F4.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Old Results

Central Limit Type Theorem

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is Gaussian
(normal).
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Figure: Number of summands in [F2010,F2011); F2010 ≈ 10420.
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New Results: Bulk Gaps: m ∈ [Fn,Fn+1) and φ = 1+
√

5
2

m =

k(m)=n
∑

j=1

Fij , νm;n(x) =
1

k(m)− 1

k(m)
∑

j=2

δ
(

x − (ij − ij−1)
)

.

Theorem (Zeckendorf Gap Distribution)

Gap measures νm;n converge almost surely to average gap
measure where P(k) = 1/φk for k ≥ 2.
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Figure: Distribution of gaps in [F1000,F1001); F2010 ≈ 10208.
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New Results: Longest Gap

Theorem (Longest Gap)

As n → ∞, the probability that m ∈ [Fn,Fn+1) has longest gap
less than or equal to f (n) converges to

Prob (Ln(m) ≤ f (n)) ≈ e−elog n−f (n)/ log φ

Immediate Corollary: If f (n) grows slower or faster than
logφ · log n, then Prob(Ln(m) ≤ f (n)) goes to 0 or 1,
respectively.
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Gaussian Behavior
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From The Cookie Problem to Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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From The Cookie Problem to Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.
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From The Cookie Problem to Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.
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From The Cookie Problem to Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.
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From The Cookie Problem to Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)

=
(n−k

k−1

)

.
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.

Zeckendorf: Every positive integer can be written uniquely
as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).

Lekkerkerker

Central Limit Type Theorem
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Example: the Special Case of L = 1, c1 = 10

Hn+1 = 10Hn, H1 = 1, Hn = 10n−1.

Legal decomposition is decimal expansion:
∑m

i=1 aiHi :

ai ∈ {0,1, . . . ,9} (1 ≤ i < m), am ∈ {1, . . . ,9}.

For N ∈ [Hn,Hn+1), m = n, i.e., first term is
anHn = an10n−1.

Ai : the corresponding random variable of ai .
The Ai ’s are independent.

For large n, the contribution of An is immaterial.
Ai (1 ≤ i < n) are identically distributed random variables
with mean 4.5 and variance 8.25.

Central Limit Theorem: A2 + A3 + · · · + An → Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the ±Fn’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 − F14 − F10 + F6 + F2.

K : # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’s Theorem
As n → ∞, E [K ] and E [L] → n/10. E [K ]− E [L] = ϕ/2 ≈ .809.

Central Limit Type Theorem

As n → ∞, K and L converges to a bivariate Gaussian.

corr(K ,L) = −(21 − 2ϕ)/(29 + 2ϕ) ≈ −.551, ϕ =
√

5+1
2 .

K + L and K − L are independent.
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Gaps in the Bulk
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?

Can ask similar questions about binary or other expansions:
2012 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 22.
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Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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Main Results

• Hn: Hn+1 = c1Hn + c2Hn−1 + · · ·+ cLHn+1−L a positive linear
recurrence of length L where ci ≥ 1 for all 1 ≤ i ≤ L.

• λ1 > 1: largest root (in absolute value) of characteristic
polynomial of Hn.

• Generalized Binet: Hn = a1λ
n
1 + · · · .

Theorem
Notation as above, probability of a gap of length j is















1 − ( a1
CLek

)(λ−n+2
1 − λ−n+1

1 + 2λ−1
1 + a−1

1 − 3) j = 0

λ−1
1 ( 1

CLek
)(λ1(1 − 2a1) + a1) j = 1

(λ1 − 1)2
(

a1
CLek

)

λ−j
1 j ≥ 2
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let Xi ,j = #{m ∈ [Fn,Fn+1): decomposition of m includes Fi ,
Fj , but not Fq for i < q < j}.

P(k) = lim
n→∞

∑n−k
i=1 Xi ,i+k

Fn−1
n

φ2+1

.
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Proof sketch of almost sure convergence

m =
∑k(m)

j=1 Fij ,

νm;n(x) = 1
k(m)−1

∑k(m)
j=2 δ

(

x − (ij − ij−1)
)

.

µm,n(t) =
∫

x t dνm;n(x).

Show Em[µm;n(t)] equals average gap moments, µ(t).

Show Em[(µm;n(t) − µ(t))2] and Em[(µm;n(t)− µ(t))4] tend
to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2)
use Xi ,i+g1,j ,j+g2

.
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