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Goals of the Talk

@ Explain consequences of combinatorial perspective.
@ Perspective important: misleading proofs.

@ Highlight techniques.

@ Some open problems.

Joint work at SMALL (Undergraduate REU Program) at
Williams College in 2010, 2011 and 2012.




Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....
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Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Fibonacci Numbers: Fni1 = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2013 = 1597 + 377 + 34 4+ 5 = F16 + F13 + Fg + F4.
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Previous Results

Fibonacci Numbers: Fniq = Fn + Fp_1;
Fl:]-’ F2:2, F3:3, F4:5,....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2013 = 1597 + 377+ 34+ 5 = F]_6 + F]_3 + Fg + F4.
Lekkerkerker’'s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [F,, Fry1) tends to ﬁ A .276n,

where ¢ = 1+2—‘@ is the golden mean.
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Old Results

Central Limit Type Theorem

As n — oo, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fp, Fr11) is Gaussian
(normal).
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Figure: Number of summands in [F2o10, F2011); F2010 ~ 10%%°.




Theorem (Zeckendorf Gap Distribution)

Gap measures v, converge almost surely to average gap
measure where P (k) = 1/¢X for k > 2.
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Figure: Distribution of gaps in [F1000, F1001); F2010 ~ 10?%8,




New Results: Longest Gap

Theorem (Longest Gap)

As n — oo, the probability that m € [F,, F,,11) has longest gap
less than or equal to f(n) converges to

Prob(Ln(m) < f(n)) =~ g—elun—i(/logé

Immediate Corollary: If f(n) grows slower or faster than
log ¢ - log n, then Prob(Ln(m) < f(n)) goesto 0 or 1,
respectively.
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From The Cookie Problem to Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-
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From The Cookie Problem to Gaussian Behavior

Reinterpreting the Cookie (or Stars and Bars) Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fnt1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
dq Z:il—l,dj Z:ij —ij_l—Z(j >1).
d1+d2+---+dk :n72k+1,dj > 0.

(n—2k+1 + k—l) _ (n—k).

Cookie counting = pp i = k_1 k—1
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hnhy1 =CiHn+CoHp 1 + - +ClHp L1, N> L
with Hy =1, Hht1 =ciHh+CcHp1 + - +cpHi +1, n <L,
coefficients ¢; > 0; cy,c. >0ifL>2;¢c; >1ifL=1.

@ Zeckendorf: Every positive integer can be written uniquely
as Y ajH; with natural constraints on the a;’s
(e.g. cannot use the recurrence relation to remove any
summand).

@ Lekkerkerker
@ Central Limit Type Theorem
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Example: the Special Caseof L =1, ¢c; =10

Hny1 = 10H,, Hy = 1, H, = 10" L.
@ Legal decomposition is decimal expansion: Zim:l ajH;:
a€40,1,...,9} (1 <i<m),ame{1,...,9}.
® ForN € [Hp,Hny1), m=n,i.e, first term is
apHp = a,10" 1,
@ A;: the corresponding random variable of a;.
The A;j’s are independent.

@ For large n, the contribution of A, is immaterial.
Ai (1 <i < n)are identically distributed random variables
with mean 4.5 and variance 8.25.

@ Central Limit Theorem: Ay + Az + - - - + Ay — Gaussian
with mean 4.5n + O(1)
and variance 8.25n + O(1).
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Far-difference Representation

Theorem (Alpert, 2009) (Analogue to Zeckendorf)

Every integer can be written uniquely as a sum of the +F,’s,
such that every two terms of the same (opposite) sign differ in
index by at least 4 (3).

Example: 1900 = F17 — F14 — F19 + Fg + F».

K: # of positive terms, L: # of negative terms.

Generalized Lekkerkerker’'s Theorem

Asn — oo, E[K] and E[L] — n/10. E[K] — E[L] = ¢/2 ~ .809.

Central Limit Type Theorem

As n — oo, K and L converges to a bivariate Gaussian.
@ corr(K,L) = —(21 — 2¢)/(29 + 2p) ~ —.551, o = YL,
@ K +LandK — L are independent.
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.
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Let Pn(k) be the probability that a gap for a decomposition in
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in—1,In—1 —Ih—2,...,02 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fny1) is of length k.

What is P(k) = limp_c Pn(k)?

Can ask similar questions about binary or other expansions:
2012 =210 + 29 1 28 1 27 4 26 4 24 1 23 4 22,
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Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (5_133#, and fork > 1,

P(k) = cgB, with cg = E-D38-2),

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P (k) = % for k > 2, with

¢ = 155 the golden mean.
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Main Results

e Hy: Hpp1 = ciHn +CoHpo1 + - - - + ¢ Hh 1 @ positive linear
recurrence of length L where ¢; > 1forall1 <i <L.

e )\ > 1: largest root (in absolute value) of characteristic
polynomial of H,,.

e Generalized Binet: Hy, = ag\} + - -

Theorem
Notation as above, probability of a gap of length j is

(CLek )( —n+2 n+1 + 2)\;1 + aIl - 3) J -0
1(ch)()\1(1*2a1)+a1) i=1

(1 -1 (&) 2 j>2
yEEEEEEEOSOSTSTSSSSSSSS
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Proof of Fibonacci Result

Lekkerkerker = total number of gaps ~ Fn,lﬁ.
Let Xi; = #{m < [Fn,Fn;1): decomposition of m includes F;,

F;, but not Fq fori < q <j}.

n—k
f X ;
P(k) = lim 7%'—1 L
= Fpn_175.7
¢?+1
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Proof sketch of almost sure convergence

®m= Z,!(:(T) Fi,
k . .
Vm;n(X) = k(m—l)—l ZJ:(ZI) 5 (X — (IJ — |j_l)) .

%] ‘LLm7n(t) = thdl/m’n(X)
@ Show En[um:n(t)] equals average gap moments, u(t).

® Show Em[(1min(t) — 4(t))?] and Em[(umn(t) — u(t))*] tend
to zero.

Key ideas: (1) Replace k(m) with average (Gaussianity); (2)
use Xii+gyj.i+9,-
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