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Introduction
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Summary

Quick review of Katz-Sarnak philosophy.

Symmetry type of compound families of L-functions.

New model (excised orthogonal ensemble) for zeros
of elliptic curve L-functions near the central point for
finite conductors.

Increasing support for n-level densities of
holomorphic cuspidal newforms: agree up to(
− 1

n−2 ,
1

n−2

)
(previous was 1

n−1 ).

1-level densities of level 1 Maass forms: up to (−4
3 ,

4
3)

(in progress, possibly larger when incorporate
non-trivial Kloosterman results).
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Measures of Spacings: n-Level Density and Families

φ(x) :=
∏

i φi(xi), φi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)

4



Introduction Elliptic Curves Maass Forms Cuspidal Newforms Recap/Refs Excised Ensembles

Measures of Spacings: n-Level Density and Families

φ(x) :=
∏

i φi(xi), φi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).
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Measures of Spacings: n-Level Density and Families

φ(x) :=
∏

i φi(xi), φi even Schwartz functions whose
Fourier Transforms are compactly supported.

n-level density

Dn,f (φ) =
∑

j1,...,jn
distinct

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)

1 Individual zeros contribute in limit.
2 Most of contribution is from low zeros.
3 Average over similar curves (family).

Katz-Sarnak Conjecture
For a ‘nice’ family of L-functions, the n-level density
depends only on a symmetry group attached to the family.
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Normalization of Zeros

Local (hard, use Cf ) vs Global (easier, use log C =
|FN |−1

∑
f∈FN

log Cf ). Hope: φ a good even test function
with compact support, as |F| → ∞,

1
|FN |

∑

f∈FN

Dn,f (φ) =
1

|FN |
∑

f∈FN

∑

j1,...,jn
ji 6=±jk

∏

i

φi

(
log Cf

2π
γ
(ji )
E

)

→
∫

· · ·
∫
φ(x)Wn,G(F)(x)dx .

Katz-Sarnak Conjecture

As Cf → ∞ the behavior of zeros near 1/2 agrees with
N → ∞ limit of eigenvalues of a classical compact group.

7



Introduction Elliptic Curves Maass Forms Cuspidal Newforms Recap/Refs Excised Ensembles

1-Level Densities

The Fourier Transforms for the 1-level densities are

̂W1,SO(even)(u) = δ0(u) +
1
2
η(u)

Ŵ1,SO(u) = δ0(u) +
1
2

̂W1,SO(odd)(u) = δ0(u)−
1
2
η(u) + 1

Ŵ1,Sp(u) = δ0(u)−
1
2
η(u)

Ŵ1,U(u) = δ0(u)

where δ0(u) is the Dirac Delta functional and

η(u) =

{ 1 if |u| < 1
1
2 if |u| = 1
0 if |u| > 1
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Some Number Theory Results

Orthogonal: Iwaniec-Luo-Sarnak; Ricotta-Royer; ...:
1-level density for holomorphic even weight k
cuspidal newforms of square-free level N (SO(even)
and SO(odd) if split by sign); Miller; Young; ...: One
and two-parameter families of elliptic curves.

Symplectic: Rubinstein; Gao; Levinson-Miller; Entin,
Roddity-Gershon and Rudnick; Ozluk-Snyder; ...:
n-level densities for twists L(s, χd) of the
zeta-function.

Unitary: Fiorilli-Miller; Hughes-Rudnick; ...: Families of
Primitive Dirichlet Characters.
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Applications of n-level density

Order of vanishing at the central point.
Average rank · φ(0) ≤

∫
φ(x)WG(F)(x)dx if φ non-negative.
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Applications of n-level density

Order of vanishing at the central point.
Average rank · φ(0) ≤

∫
φ(x)WG(F)(x)dx if φ non-negative.

Bound percentage vanish to order r :

Theorem (Miller, Hughes-Miller)

Using n-level arguments, for the family of cuspidal
newforms of prime level N → ∞ (split or not split by sign),
for any r there is a cr such that probability of at least r
zeros at the central point is at most cnr−n.

Better results using 2-level than Iwaniec-Luo-Sarnak
using the 1-level for r ≥ 5.
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Identifying the Symmetry Groups

Often an analysis of the monodromy group in the
function field case suggests the answer.

Tools: Explicit Formula, Orthogonality of Characters /
Petersson Formula.

How to identify symmetry group in general? One
possibility is by the signs of the functional equation:

Folklore Conjecture: If all signs are even and no
corresponding family with odd signs, Symplectic
symmetry; otherwise SO(even). (False!)
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Explicit Formula

π: cuspidal automorphic representation on GLn.
Qπ > 0: analytic conductor of L(s, π) =

∑
λπ(n)/ns.

By GRH the non-trivial zeros are 1
2 + iγπ,j.

Satake parameters {απ,i(p)}n
i=1;

λπ(pν) =
∑n

i=1 απ,i(p)ν .

L(s, π) =
∑

n
λπ(n)

ns =
∏

p

∏n
i=1 (1 − απ,i(p)p−s)

−1.

∑

j

g
(
γπ,j

log Qπ

2π

)
= ĝ(0)− 2

∑

p,ν

ĝ
(
ν log p
log Qπ

)
λπ(pν) log p
pν/2 log Qπ
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Some Results: Rankin-Selberg Convolution of Families

Symmetry constant: cL = 0 (resp, 1 or -1) if family L has
unitary (resp, symplectic or orthogonal) symmetry.

Rankin-Selberg convolution: Satake parameters for
π1,p × π2,p are

{απ1×π2(k)}nm
k=1 = {απ1(i) · απ2(j)} 1≤i≤n

1≤j≤m
.

Theorem (Dueñez-Miller)
If F and G are nice families of L-functions, then
cF×G = cF · cG.

Breaks analysis of compound families into simple ones.
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1-Level Density

Assuming conductors constant in family F , have to study

λf (pν) = αf ,1(p)ν + · · ·+ αf ,n(p)ν

S1(F) = −2
∑

p

ĝ
(

log p
log R

)
log p√
p log R

[
1
|F|

∑

f∈F
λf (p)

]

S2(F) = −2
∑

p

ĝ
(

2
log p
log R

)
log p

p log R

[
1
|F|

∑

f∈F
λf (p2)

]

The corresponding classical compact group is determined
by

1
|F|

∑

f∈F
λf (p2) = cF =





0 Unitary

1 Symplectic

−1 Orthogonal.
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Takeaways

Very similar to Central Limit Theorem.

Universal behavior: main term controlled by first two
moments of Satake parameters, agrees with RMT.

First moment zero save for families of elliptic curves.

Higher moments control convergence and can
depend on arithmetic of family.
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Elliptic Curves: First Zero Above Central Point
(With E. Dueñez, D. K. Huynh, J. P. Keating, N. Snaith)

17



Introduction Elliptic Curves Maass Forms Cuspidal Newforms Recap/Refs Excised Ensembles

Theoretical results

Theorem: M– ’04
For small support, one-param family of rank r over Q(T ):

lim
N→∞

1
|FN |

∑

Et∈FN

∑

j

ϕ

(
log CEt

2π
γEt ,j

)
=

∫
ϕ(x)ρG(x)dx + rϕ(0)

where G =





SO(odd) if half odd

SO(even) if all even

weighted average otherwise.

Supports Katz-Sarnak, B-SD, and Independent model in limit.
Independent Model:

A2N,2r =

{(
I2r×2r

g

)
: g ∈ SO(2N − 2r)

}
.
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RMT: Theoretical Results ( N → ∞)

0.5 1 1.5 2

0.5

1

1.5

2

1st normalized evalue above 1: SO(even)
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RMT: Theoretical Results ( N → ∞)
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0.6
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1st normalized evalue above 1: SO(odd)
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0

1 1.5 2 2.5

0.2

0.4

0.6

0.8

1

1.2

Figure 4a: 209 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [3.26, 9.98], median = 1.35, mean = 1.36
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Rank 0 Curves: 1st Norm Zero: 14 One-Param of Rank 0
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1.2

1.4

Figure 4b: 996 rank 0 curves from 14 rank 0 families,
log(cond) ∈ [15.00, 16.00], median = .81, mean = .86.
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Summary of Data

The repulsion of the low-lying zeros increased with
increasing rank, and was present even for rank 0
curves.

As the conductors increased, the repulsion
decreased.

Statistical tests failed to reject the hypothesis that, on
average, the first three zeros were all repelled equally
(i.e., shifted by the same amount).
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Spacings b/w Norm Zeros: Rank 0 One-Param Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of j th normalized zero above the central point;

863 rank 0 curves from the 14 one-param families of rank 0 over Q(T );

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T ).

863 Rank 0 Curves 701 Rank 2 Curves t-Statistic
Median z2 − z1 1.28 1.30
Mean z2 − z1 1.30 1.34 -1.60
StDev z2 − z1 0.49 0.51
Median z3 − z2 1.22 1.19
Mean z3 − z2 1.24 1.22 0.80
StDev z3 − z2 0.52 0.47
Median z3 − z1 2.54 2.56
Mean z3 − z1 2.55 2.56 -0.38
StDev z3 − z1 0.52 0.52
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Spacings b/w Norm Zeros: Rank 2 one-param families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T );

23 rank 4 curves from the 21 one-param families of rank 2 over Q(T ).

64 Rank 2 Curves 23 Rank 4 Curves t-Statistic
Median z2 − z1 1.26 1.27
Mean z2 − z1 1.36 1.29 0.59
StDev z2 − z1 0.50 0.42
Median z3 − z2 1.22 1.08
Mean z3 − z2 1.29 1.14 1.35
StDev z3 − z2 0.49 0.35
Median z3 − z1 2.66 2.46
Mean z3 − z1 2.65 2.43 2.05
StDev z3 − z1 0.44 0.42
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Rank 2 Curves from Rank 0 & Rank 2 Families over Q(T )

All curves have log(cond) ∈ [15,16];

zj = imaginary part of the j th norm zero above the central point;

701 rank 2 curves from the 21 one-param families of rank 0 over Q(T );

64 rank 2 curves from the 21 one-param families of rank 2 over Q(T ).

701 Rank 2 Curves 64 Rank 2 Curves t-Statistic
Median z2 − z1 1.30 1.26
Mean z2 − z1 1.34 1.36 0.69
StDev z2 − z1 0.51 0.50
Median z3 − z2 1.19 1.22
Mean z3 − z2 1.22 1.29 1.39
StDev z3 − z2 0.47 0.49
Median z3 − z1 2.56 2.66
Mean z3 − z1 2.56 2.65 1.93
StDev z3 − z1 0.52 0.44
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New Model for Finite Conductors

Replace conductor N with Neffective .
⋄ Arithmetic info, predict with L-function Ratios Conj.
⋄ Do the number theory computation.

Excised Orthogonal Ensembles.
⋄ L(1/2,E) discretized.
⋄ Study matrices in SO(2Neff ) with |ΛA(1)| ≥ ceN .

Painlevé VI differential equation solver.
⋄ Use explicit formulas for densities of Jacobi ensembles.
⋄ Key input: Selberg-Aomoto integral for initial conditions.
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0

 0.2
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 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart), lowest eigenvalue
of SO(2N) with Neff (solid), standard N0 (dashed).
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Modeling lowest zero of LE11
(s, χd ) with 0 < d < 400,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2

Lowest zero for LE11(s, χd) (bar chart); lowest eigenvalue
of SO(2N): Neff = 2 (solid) with discretisation, and

Neff = 2.32 (dashed) without discretisation.
29



Introduction Elliptic Curves Maass Forms Cuspidal Newforms Recap/Refs Excised Ensembles

Cuspidal Maass Forms
(Joint with Levent Alpoge)
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Maass Forms

Definition: Maass Forms
A Maass form on a group Γ ⊂ PSL(2,R) is a function
f : H → R which satisfies:

1 f (γz) = f (z) for all γ ∈ Γ,
2 f vanishes at the cusps of Γ, and
3 ∆f = λf for some λ = s(1 − s) > 0, where

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)

is the Laplace-Beltrami operator on H.

Coefficients contain information about partitions.
For full modular group, s = 1/2 + itj with tj ∈ R.
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L-function associated to Maass forms

Write Fourier expansion of Maass form uj as

uj(z) = cosh(tj)
∑

n 6=0

√
yλj(n)Kitj (2π|n|y)e2πinx .

Define L-function attached to uj as

L(s, uj) =
∑

n≥1

λj(n)
ns

=
∏

p

(
1 − αj(p)

ps

)−1(
1 − βj(p)

ps

)−1

where αj(p) + βj(p) = λj(p), αj(p)βj(p) = 1, λj(1) = 1.
Also,

λj(p) ≪ p7/64.
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Kuznetsov Trace Formula

∑

j

h(tj)
‖uj‖2

λj(m)λj(n) +
1

4π

∫

R

τ (m, r)τ (n, r)
h(r)

cosh(πr)
dr =

δn,m

π2

∫

R

r tanh(r)h(r)dr +
2i
π

∑

c≥1

S(n,m; c)
c

∫

R

Jir

(

4π
√

mn
c

)

h(r)r
cosh(πr)

dr

where
τ(m, r) = π

1
2+irΓ(1/2 + ir)−1ζ(1 + 2ir)−1n− 1

2
∑

ab=|m|
(

a
b

)ir
.

S(n,m; c) =
∑

0≤x≤c−1,gcd(x,c)=1

e2πi(nx+mx∗)/c

Jir(x) =
∞∑

m=0

(−1)m

m!Γ(m + ir + 1)

(
1
2

x
)2m+ir

.
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Main Result (in progress)

Theorem (Alpoge-Miller 2012)

For hT (r) = r
T h(ir/T )/ sinh(πr/T ) the Katz-Sarnak

conjecture holds for level 1 cuspidal Maass forms for test
functions whose Fourier transform is supported in
(−4/3, 4/3).

Write
∫∞
−∞ J2ir(X ) rhT (r)

cosh(πr)dr as sum of J2k+1(X ) and hT

at imaginary arguments and J2kT (X ) and h at k .

Bound contributions from sums. Apply Poisson
summation, analyze, and Poisson summation again.

Key steps: Taylor expanding, Fourier transform
identities relating differentiation and multiplication.
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Cuspidal Newforms
(Joint with C. Hughes, G. Iyer, N. Triantafillou)
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Modular Form Preliminaries

Γ0(N) =

{(
a b
c d

)
:

ad − bc = 1
c ≡ 0(N)

}

f is a weight k holomorphic cuspform of level N if

∀γ ∈ Γ0(N), f (γz) = (cz + d)k f (z).

Fourier Expansion: f (z) =
∑∞

n=1 af (n)e2πiz ,
L(s, f ) =

∑∞
n=1 ann−s.

Petersson Norm: 〈f , g〉 =
∫
Γ0(N)\H f (z)g(z)y k−2dxdy .

Normalized coefficients:

ψf (n) =

√
Γ(k − 1)
(4πn)k−1

1
||f ||af (n).
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Modular Form Preliminaries: Petersson Formula

Bk (N) an orthonormal basis for weight k level N. Define

∆k ,N(m, n) =
∑

f∈Bk (N)

ψf (m)ψf (n).

Petersson Formula

∆k ,N(m, n) = 2πik
∑

c≡0(N)

S(m, n, c)
c

Jk−1

(
4π

√
mn
c

)

+ δ(m, n).
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2-Level Density

∫ Rσ

x1=2

∫ Rσ

x2=2
φ̂

(
log x1

log R

)
φ̂

(
log x2

log R

)
Jk−1

(
4π

√
m2x1x2N

c

)
dx1dx2√

x1x2

Change of variables and Jacobian:

u2 = x1x2 x2 = u2
u1

u1 = x1 x1 = u1

∣∣∣∣
∂x
∂u

∣∣∣∣ =

∣∣∣∣∣
1 0

−u2
u2

1

1
u1

∣∣∣∣∣ =
1
u1
.

Left with
∫ ∫

φ̂

(
log u1

log R

)
φ̂




log
(

u2
u1

)

log R


 1√

u2
Jk−1

(
4π

√
m2u2N

c

)
du1du2

u1
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2-Level Density

Changing variables, u1-integral is
∫ σ

w1=
log u2
log R −σ

φ̂ (w1) φ̂

(
log u2

log R
− w1

)
dw1.

Support conditions imply

Ψ2

(
log u2

log R

)
=

∫ ∞

w1=−∞
φ̂ (w1) φ̂

(
log u2

log R
− w1

)
dw1.

Substituting gives
∫ ∞

u2=0
Jk−1

(
4π

√
m2u2N

c

)
Ψ2

(
log u2

log R

)
du2√

u2
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n-Level Density: Sketch of proof

Expand Bessel-Kloosterman piece, use GRH to drop
non-principal characters, change variables, main term is

b
√

N
2πm

∫ ∞

0
Jk−1(x)Φ̂n

(
2 log(bx

√
N/4πm)

log R

)
dx

log R

with Φn(x) = φ(x)n.

Main Idea
Difficulty in comparison with classical RMT is that instead
of having an n-dimensional integral of φ1(x1) · · ·φn(xn) we
have a 1-dimensional integral of a new test function. This
leads to harder combinatorics but allows us to appeal to
the result from ILS.
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Theorem (Iyer-Miller-Triantafillou):
The n-level densities agree for supp(φ̂) ⊂

(
− 1

n−2 ,
1

n−2

)
.

Philosophy:
Number theory harder - adapt tools to get an answer.
Random matrix theory easier - manipulate known answer.

Theorem (ILS)

Let Ψ be an even Schwartz function with supp(Ψ̂) ⊂ (−2, 2). Then

∑

m≤Nǫ

1

m2

∑

(b,N)=1

R(m2 , b)R(1, b)

ϕ(b)

∫ ∞

y=0
Jk−1(y)Ψ̂

(
2 log(by

√
N/4πm)

log R

)
dy

log R

= −1

2

[∫ ∞

−∞

Ψ(x)
sin 2πx

2πx
dx − 1

2
Ψ(0)

]
+ O

(
k log log kN

log kN

)
,

where R = k2N, ϕ is Euler’s totient function, and R(n, q) is a Ramanujan sum.
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Number Theory Side: Iyer-Miller-Triantafillou:
supp(φ̂) ⊂ (− 1

n−2 ,
1

n−2)

Sequence of Lemmas - New Contributions Arise

1 Apply Petersson Formula

2 Restrict Certain Sums

3 Convert Kloosterman Sums to Gauss Sums

4 Remove Non-Principal Characters

5 Convert Sums to Integrals
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New Results: Number Theory Side: Iyer-Miller-Triantafillo u:
supp(φ̂) ⊂ (− 1

n−2 ,
1

n−2)

Theorem
Fix n ≥ 4 and let φ be an even Schwartz function with
supp(φ̂) ⊂

(
− 1

n−2 ,
1

n−2

)
. Then, the nth centered moment

of the 1-level density for holomorphic cusp forms is

1 + (−1)n

2
(−1)n(n − 1)!!

(

2
∫ ∞

−∞

φ̂(y)2|y |dy
)n/2

± (−2)n−1
(
∫ ∞

−∞

φ(x)n sin 2πx
2πx

dx − 1
2
φ(0)n

)

∓ (−2)n−1n
(
∫ ∞

−∞

φ̂(x2)

∫ ∞

−∞

φn−1(x1)
sin(2πx1(1 + |x2|))

2πx1
dx1dx2 −

1
2
φn(0)

)

.

Agrees with RMT.
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n-Level Density: Katz-Sarnak Determinant Expansions

Example: SO(even)
∫ ∞

−∞
· · ·
∫ ∞

−∞
φ̂(x1) · · · φ̂(xn) det

(
K1(xj , xk)

)
1≤j ,k≤n

dx1 · · ·dxn,

where

K1(x , y) =
sin
(
π(x − y)

)

π(x − y)
+

sin
(
π(x + y)

)

π(x + y)
.

Problem: n-dimensional integral - looks very different.
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Preliminaries

Easier to work with cumulants.
∞∑

n=1

Cn
(it)n

n!
= log P̂(t),

where P is the probability density function.

µ′
n = Cn +

n−1∑

m=1

(
n − 1
m − 1

)
Cmµ

′
n−m,

where µ′
n is uncentered moment.
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Preliminaries

Manipulating determinant expansions leads to analysis of

K (y1, . . . , yn) =

n∑

m=1

∑

λ1+...+λm=n
λj≥1

(−1)m+1

m
n!

λ1! · · ·λm!

∑

ǫ1,...,ǫn=±1

m∏

ℓ=1

χ{|∑n
j=1 η(ℓ,j)ǫj yj |≤1},

where

η(ℓ, j) =

{
+1 if j ≤

∑ℓ
k=1 λk

−1 if j >
∑ℓ

k=1 λk .
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New Result: Iyer-Miller-Triantafillou: Large Support:
supp(φ̂) ⊆

(
− 1

n−2 ,
1

n−2

)

Hughes-Miller solved for supp(φ̂) ⊆ (− 1
n−1 ,

1
n−1).

New Complications: If supp(φ̂) ⊆ (− 1
n−2 ,

1
n−2),

1 η(ℓ, j)ǫjyj need not have same sign (at most one can
differ);

2 more than one term in product can be zero (for fixed
m, λj , ǫj ).

Solution: Double count terms and subtract a correcting
term ρj .
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New Result: Iyer-Miller-Triantafillou: Large Support:
supp(φ̂) ⊆

(
− 1

n−2 ,
1

n−2

)

After Fourier transform identities:

CSO
n (φ) =

(−1)n−1

2

(∫ ∞

−∞
φ(x)n sin 2πx

2πx
dx − 1

2
φ(0)n

)

+
n(−1)n

2

(∫ ∞

−∞
φ̂(x2)

∫ ∞

−∞
φn−1(x1)

sin(2πx1(1 + |x2|))
2πx1

dx1dx2 −
1
2
φn(0)

)
.

Agrees with number theory!
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Conclusion and
Bibliography
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Recap

Understand compound families in terms of simple
ones.

Choose combinatorics to simplify calculations.

Extending support often related to deep arithmetic
questions.

50



Introduction Elliptic Curves Maass Forms Cuspidal Newforms Recap/Refs Excised Ensembles

References

1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries,
Compositio Mathematica 140 (2004), 952–992. http://arxiv.org/pdf/math/0310159

Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15
(2006), no. 3, 257–279. http://arxiv.org/pdf/math/0508150

Low lying zeros of L–functions with orthogonal symmetry (with Christopher Hughes), Duke Mathematical
Journal 136 (2007), no. 1, 115–172. http://arxiv.org/abs/math/0507450

Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137
(2009), 51–98.

The effect of convolving families of L-functions on the underlying group symmetries (with Eduardo Dueñez),
Proceedings of the London Mathematical Society, 2009; doi: 10.1112/plms/pdp018.
http://arxiv.org/pdf/math/0607688.pdf

The lowest eigenvalue of Jacobi Random Matrix Ensembles and Painlevé VI, (with Eduardo Dueñez, Duc
Khiem Huynh, Jon Keating and Nina Snaith), Journal of Physics A: Mathematical and Theoretical 43 (2010)
405204 (27pp). http://arxiv.org/pdf/1005.1298

Models for zeros at the central point in families of elliptic curves (with Eduardo Dueñez, Duc Khiem Huynh,
Jon Keating and Nina Snaith), J. Phys. A: Math. Theor. 45 (2012) 115207
(32pp).http://arxiv.org/pdf/1107.4426

The low-lying zeros of level 1 Maass forms (with Levent Alpoge), preprint 2013.

Moment Formulas for Ensembles of Classical Compact Groups (with Geoffrey Iyer and Nicholas
Triantafillou), preprint 2013.

51

http://arxiv.org/pdf/math/0310159
http://arxiv.org/pdf/math/0508150
http://arxiv.org/abs/math/0507450
http://arxiv.org/pdf/math/0607688.pdf
http://arxiv.org/pdf/1005.1298
http://arxiv.org/pdf/1107.4426


Introduction Elliptic Curves Maass Forms Cuspidal Newforms Recap/Refs Excised Ensembles

Excised Orthogonal Ensembles
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Excised Orthogonal Ensemble: Preliminaries

Characteristic polynomial of A ∈ SO(2N) is

ΛA(eiθ,N) := det(I−Ae−iθ) =

N∏

k=1

(1−ei(θk−θ))(1−ei(−θk−θ)),

with e±iθ1 , . . . , e±iθN the eigenvalues of A.

Motivated by the arithmetical size constraint on the central
values of the L-functions, consider Excised Orthogonal
Ensemble TX : A ∈ SO(2N) with |ΛA(1,N)| ≥ exp(X ).
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised orthogonal ensemble:

RTX

1 (θ1) := CX · N
∫ π

0
· · ·

∫ π

0
H(log |ΛA(1,N)| − X )×

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN ,

Here H(x) denotes the Heaviside function

H(x) =

{

1 for x > 0

0 for x < 0,

and CX is a normalization constant.
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One-Level Densities

One-level density RG(N)
1 for a (circular) ensemble G(N):

RG(N)
1 (θ) = N

∫

. . .

∫

P(θ, θ2, . . . , θN)dθ2 . . . dθN ,

where P(θ, θ2, . . . , θN) is the joint probability density function of eigenphases.
The one-level density excised of the orthogonal ensemble is

RTX

1 (θ1) =
CX

2πi

∫ c+i∞

c−i∞
2Nr exp(−rX )

r
RJN

1 (θ1; r − 1/2,−1/2)dr ,

where CX is a normalization constant and

RJN
1 (θ1; r − 1/2,−1/2) = N

∫ π

0
· · ·

∫ π

0

N
∏

j=1

w (r−1/2,−1/2)(cos θj)

×
∏

j<k

(cos θj − cos θk )
2dθ2 · · · dθN

is the one-level density for the Jacobi ensemble JN with weight function

w (α,β)(cos θ) = (1−cos θ)α+1/2(1+cos θ)β+1/2, α = r − 1/2 and β = −1/2.
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Results

With CX normalization constant and P(N, r , θ) defined in terms of
Jacobi polynomials,

RTX

1 (θ) =
CX

2πi

∫ c+i∞

c−i∞

exp(−rX )

r
2N2+2Nr−N×

×
N−1
∏

j=0

Γ(2 + j)Γ(1/2 + j)Γ(r + 1/2 + j)
Γ(r + N + j)

×

× (1 − cos θ)r 21−r

2N + r − 1
Γ(N + 1)Γ(N + r)

Γ(N + r − 1/2)Γ(N − 1/2)
P(N, r , θ)dr .

Residue calculus implies RTX

1 (θ) = 0 for d(θ,X ) < 0 and

RTX

1 (θ) = RSO(2N)
1 (θ) + CX

∞
∑

k=0

bk exp((k + 1/2)X ) for d(θ,X ) ≥ 0,

where d(θ,X ) := (2N − 1) log 2 + log(1 − cos θ)− X and bk are
coefficients arising from the residues. As X → −∞, θ fixed,
RTX

1 (θ) → RSO(2N)
1 (θ).
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Numerical check
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R_1: formula
R_1: data

Figure: One-level density of excized SO(2N),N = 2 with cut-off
|ΛA(1,N)| ≥ 0.1. The red curve uses our formula. The blue crosses
give the empirical one-level density of 200,000 numerically generated
matrices.
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Theory vs Experiment
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Figure: Cumulative probability density of the first eigenvalue from
3 × 106 numerically generated matrices A ∈ SO(2Nstd) with
|ΛA(1,Nstd)| ≥ 2.188 × exp(−Nstd/2) and Nstd = 12 red dots compared
with the first zero of even quadratic twists LE11(s, χd ) with prime
fundamental discriminants 0 < d ≤ 400,000 blue crosses. The
random matrix data is scaled so that the means of the two
distributions agree.
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