Sets with More Sums Than Differences

1.1 Introduction

MSTD: A set A C N is called a more sums than differences set or MSTD if |A + A| =
{a+b:a,be A} >|A—A|l=|{a—Db : a,be A}|.

Martin and O’Bryant (2006): For n > 15, the proportion of subsets A C {0,...,n}
with |[A + A| > |A — Al is atleast4- 10" .

Example: Conway discovered the small MSTD set {0,2,3,4,7,11,12,14}. Nathanson
proved that this is in fact the smallest MSTD subset of N.

Explicit Constructions: Despite the fact that a uniformly random subset of {0,...,n}
is MSTD with positive probability, no one knows of an explicit family of MSTDs which has
O(1) density. Miller, Orosz and Sheinerman have constructed an explicit family of subsets
of {0,...,n} of density O(1/n*). Zhao later used the combinatorial idea of bidirectional
ballot sequences to improve this density to O(1/n).

We can extend some of these results to subsets of higher dimensional lattices!
1.2 Our Results

Theorem (Positive percent in Z?) : Let A be a uniformly random subset of the square
{0,...,n} x{0,...,n}. Then with positive probability, |A + A| > |A — A|.

Proof Idea: The probability that a given lattice point is in the sum or difference set ap-
proaches 1 as the point moves away from the corners, since points away from corners
have many possible representations as sums and differences. Thus, if we demand that
the corners of our sets A have a given fringe profile which is MSTD, then with high prob-
ability, all middle sums and differences will be present, and so the sumset will win. By
picking the fringes large enough, we can make sure the probability that A + A contains all
middle sums is at least some strictly positive constant independent of n.

Note: This technique, which is a generalization of Martin and O’Bryant’s technique for
one dimensional MSTD sets, also generalizes to higher dimensions and other shapes to
give the following theorem:

Theorem (Arbitrary lattices): Let A be a uniformly random subset of some Cartesian
product of intervals in d dimensions. Then with positive probability, |[A + A| > |A — A|.

We also generalize the results of Zhao, who showed that in 1 dimension, the proportion
of MSTD subsets of {0,...,n} converges to a limit as n — oc.

Theorem (Limiting proportions exist): The proportion of MSTD subsets of the d-cube
{0,...,n}? converges to a positive limit.

From Monte Carlo experiments, the limiting proportion when d = 1 appears to be roughly
4.5 -10~%, while when d = 2, it appears to be more like 5- 10~°. This and other evidence
leads us to conjecture...

Conjecture: The limiting proportion of subsets of the d-cube which are MSTD is mono-
tonically decreasing in d.

We have also explicitly constructed a family of MSTD subsets of the square with polyno-
mial density:
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Theorem: Set A C 7Z has property P, (or is a P,-set) if both its sum set and difference
set contain all but the first and last n possible elements (and of course they may or may
not contain some of these fringe elements). Explicitly, let « = min A and b = max A. Then,
Als a P,-set if

2a+n,2b—n]C A+ A
and
(=b—a)+n,(b—a)—n]C A—A.

Let A= LU RDbean MSTD P,-set with L C [0,n — 1], R C [n,2n — 1], and 0,2n — 1 € A.
Fix some k£ > n, and let s > 2n + 2k be arbitrary. Let A(M; k) = AU K UM, where A, K,
and M are defined as follows:

elet A'=LUR' where R' = (s —2n) + R. Let A = (A4")°.

elet V = {(0,0),(s —1,0),(0,s — 1),(s — 1,s — 1)}. Let kK(0) = [n,n + k — 1] and
k(s—1)=|s—n—k,s —n+1|. Foreach (v,v) € V, let

Ky(vy,v9) = k(vy) x [0,k — 1],
Ky(vy,v2) = [0,k — 1] x k(vg).

Finally, let

K= | (Ku(vi,00) UKy(vi, )
(v1,v9)€V

elet B=([0,s—1] x {0,s —1}) U ({0,5s — 1} x [0,s —1]). Let M c [0,s — 1]*\ (AU K)
such that it has no k-square of missing elements, and M N B has no run of more than k
missing elements. To be precise, every subset of M of the form [a,a+k—1] x [b, b+ k —1]
must contain at least one element of H, and further, every k£ consecutive points in M
that lie along an edge of our square S must contain at least one element of H.

Then,

(1) A(M; k) is an MSTD set, and so varying M gives us an infinite family of distinct MSTD
sets in Z:

(2) there is a constant ¢ > 0 such that the percentage of subsets of [0, s — 1]? that are in this
family (and thus are MSTD sets) is at least ¢/s7°.

2.1 Introduction

(p, p1, po)-Pairs: Consider the following variation of the MSTD problem. Instead of placing
each element in A with probability p, and then comparing |A + A| and |A — A|, we con-
struct a pair of correlated random subsets (A, B) as follows: with probability p, an element
a goes in A. Then, if a € A, we place it in B with probability p;. If a ¢ A, we place a in B
with probability po. Then we compare |A+ Bl and | + (A — B)|.

Remark: In the special case of (p, 1,0), this is the standard (A, A) problem. When p; = po,
this is the case of (A, B), where A and B are independently chosen random subsets. The
special case (p,0, 1) corresponds to the interesting case (A, A°).

2.2 Results

Theorem (Positive Limiting Probabilities Exist): For any g = (p, p1, p2) with p(p + p2) >
0, the probability that a p-correlated pair of subsets (A, B) C {0,...,n}is MSTD approches
a positive limit P(p) > 0 as n — oo.
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Proof Idea: We follow the main ideas of Zhao, who proved the result in the (A, A) case.
We show that in the limit, an MSTD pair is rich (meaning the sumset and difference set
contain all middle sums and differences) with probability 1. Rich MSTDs are easy to count
by their minimal fringe profiles, which we use to show the limit exists.

Conjecture: If we constrain p; = 1 — po, then for any fixed p, the function P(p) is continu-
ous and strictly increasing in po.

2.3 Probability Decaying in N

Hegarty and Miller, 2008: When elements chosen with probability p(N) — 0as N — oo,
then |A — A| > |A + A| almost surely.

Our goal: Extend these results to correlated random subsets.

Lemma: The probability for the event a; € A,b; € B or a; € B,b; € A happens for any
given (a;, b;) is p* = p*(2p1 — p5 + 2p(1 — p)po.

We believe the phase transition happens when Np* = ©(1). When (p1, p2) = (1,0), p* = p?,
so the phase transition is likely to occur when p = ©(N—1/2). When p; = ps = p, this is
equivalent to Np?(1 — p?) = ©(1). Since p — 0 as N — oo, this implies Np* = O(1) and so
again the phase transition is at p = O(N~1/2).

|. Asimov, The Endochronic Properties of Resublimated Thiotimoline, ASF, March 1948.

E. Fein and S. Schneider, The Rules for Online Dating: Capturing the Heart of Mr. Right
in Cyberspace, page 23.

P. V. Hegarty and S. J. Miller, When almost all sets are difference dom-
inated, Random Structures and Algorithms 35 (2009), no. 1, 118-136.
http://arxiv.org/abs/0707.3417

G. lyer, O. Lazarev, S. J. Miller and L. Zhang, Generalized More Sums Than Differences
Sets, Journal of Number Theory 132 (2012), no. 5, 1054-1073.

O. Lazarev, S. J. Miller and K. O’Bryant, Distribution of Missing Sums in Sumsets, Experi-
mental Mathematics 22 (2013), no. 2, 132—-156.

G. Martin and K. O’'Bryant, Many sets have more sums than differences, in Additive Com-
binatorics, CRM Proc. Lecture Notes, vol. 43, AMS, Providence, RI, 2007, pp. 287-305.

J. Stanfield Utilizing Infinite Loops to Compute an Approximate Value of Infinity, the Jour-
nal of Irreproducible Results 50 (2006), no. 2, page 26.

M. M. Tai, A Mathematical Model for the Determination of Total Area Under Glucose Tol-
erance and Other Metabolic Curves, Diabetes Care February 1994 vol. 17 no. 2 152-154

V. Ortiz-Somovilla, F. Espana-Espana, E.J. Pedro-Sanz, and A.J. Gaitan-duarado, Meat
Mixture Detection in Iberian Pork Sausages, Meat Science, Volume 71, Issue 3, Novem-
ber 2005, pages 490-497

Y. Zhao, Sets Characterized by Missing Sums and Differences, Journal of Number Theory
131 (2011), 2107-2134.



