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L-Functions

Roughly, an L-function is a series

L(s, f ) :=
∞∑

n=1
af (n)n−s

that converges absolutely in some right half-plane and has properties like
those of the Riemann zeta function ζ(s).

1 af (n) ¿ nε for all ε> 0.

2 Euler product L(s, f ) =∏
p Lp(s, f ).

3 Meromorphic continuation to C.

4 Functional equation.

Interested in statistical behavior of zeros of L-functions.
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Montgomery-Dyson conjectured that, as T →∞,

spacings between critical zeros of ζ(s) near height T

→ spacings of eigenangles in the Gaussian Unitary Ensemble

The Katz-Sarnak Philosophy extends this to L-functions.

1 Should average over L-functions in “families” F . Elements of
conductor cf ³ N form a subfamily FN .

2 Should study zeros in the local regime near s = 1/2, in the limit
N →∞. Also called the low-lying zeros.

3 Can find classical compact matrix group G such that

average low-lying zero distribution in FN as N →∞
= distribution of eigenangles in G, as dimension →∞

(G = U,USp,SO(even),SO(odd).)
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Density Conjecture

Definition (1-Level Density)

Assume L(s, f ) has RH. Write its zeros in the form 1/2+ iγ. For all
integrable φ :R→C, let

Wf (φ) := lim
T→∞

∑
0≤γ≤T

φ

(
γ · logcf

2π

)

Above, (logcf )/2π normalizes the average consecutive spacing to be 1 in
the limit T →∞.

Conjecture that

EWf (φ) := 1

#FN

∑
f ∈FN

Wf (φ) →
∫
R
φ(t)WG(t)dt

as N →∞, where WG depends only on G.
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WG(t) =



1 G = U

1− sin2πt
2πt G = USp

1+ sin2πt
2πt G = SO(even)

Current results are limited to test functions φ such that φ̂ is supported in
some small interval [−σ,+σ].

1 Iwaniec-Luo-Sarnak (2000): Holomorphic cuspidal newforms of
weight k and level N , as kN →∞, should be orthogonal.

2 Rubinstein (2001), Gao (2013): Quadratic Dirichlet characters of
discriminant ≤ D, as D →∞, should be symplectic.

3 Hughes-Rudnick (2002): Dirichlet characters of prime conductor N ,
as N →∞, should be unitary.
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Three Regimes

1-level density is a low-lying statistic: Due to the (logcf )/2π³ logN term,
it “zooms in” on intervals that shrink as N →∞.

Can study intervals I in three regimes:

1 Local or low-lying regime. |I |¿ logN as N →∞.

2 Mesoscopic regime. |I |→ 0 but |I | logN →∞ as N →∞.

3 Global regime. I is fixed.

Decreasing order of difficulty ⇐⇒ fewer restrictions on φ.

Recently, interest in mesoscopic and global regimes for L-functions over
function fields.
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L-Functions over Fq(T)

Fix a prime power q. Then Fq[T ] is a “cousin” of the integers Z:

Z⊆Q Fq[T ] ⊆ Fq(T)
Positive n Monic f
Prime p Irreducible P
|n| = #Z/nZ |f | = #Fq[T ]/f Fq[T ] = qdeg f

ζ(s) =∑∞
n=1 n−s ζFq(T)(s) =∑′

f |f |−s

L(s,χ) =∑∞
n=1χ(n)n−s LFq(T)(s,χ) =∑′

f χ(f )|f |−s

where
∑′ means a sum over monic polynomials.
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For example, ζFq(T)(s) = (1−q1−s)−1. Its completed version is

ζ(s,P1
Fq

) = ζFq(T)(s)ζFq(T)(1− s) = 1

(1−q1−s)(1−q−s)

Other L-functions L(s, f ) over Fq(T) occur as factors of ζ(s,V )/ζ(s,P1
Fq

) for

some curve V /Fq.

1 Rationality. L(s, f ) is a polynomial in q−s.

2 Riemann Hypothesis. The zeros of L(s, f ) live on the line s = 1/2 (with
period 2π/logq).

Katz-Sarnak proved the (local) Density Conjecture in the limit q,g →∞.
Interested in the limit where q is fixed and g →∞.
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Motivation

Fix Q ∈ Fq[T ] of degree d > 0. Let L(s,χ) be a primitive Dirichlet L-function
over Fq(T) of conductor Q.

1 Faifman-Rudnick (2010) showed there are d|I |+O(d/logd)
normalized zeros of L(s,χ) in a fixed interval I ⊆ [−1/2,+1/2], as
d →∞.

2 Quadratic L(s,χ) are factors of ζ(s,C) for hyperelliptic C : Y 2 = Q.
Averaging over all C of fixed genus, the higher moments in the
distribution of zeros are Gaussian in the global and mesoscopic
regimes.

3 Xiong (2010) extended this work to `-fold covers Y ` = Q such that
`≡ 1 (mod q) and Q is `th-power-free.
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Instead of averaging over a “geometric” family of zeta functions, we will
average over the most naïve family of L-functions:

FQ = family of primitive Dirichlet characters modulo Q

as degQ →∞.

Our approach generalizes to test functions that are not indicator functions
of intervals.

1 Refine bounds in some cases.

2 Facilitate comparison between different regimes.
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Explicit Formula

Let FQ be the family of primitive Dirichlet characters modulo Q, where
d := degQ ≥ 2.

Theorem (A-M-P-T)

Let χ ∈FQ. Write the zeros of L(s,χ) in the form 1/2+ iγχ, and let dγχ be the

probability distribution of the normalized ordinates γχ · logq
2π ∈ [−1/2,+1/2].

Let ψ(s) =∑
n∈Z ψ̂(n)e−2πins be a test function on [−1/2,+1/2]. Then

Sχ(ψ) :=
∫ +1/2

−1/2
ψ(s)dγχ(s)

= ψ̂(0)− λ∞(χ)

d−1

∑
n∈Z

ψ̂(n)

q|n|/2
− 2

d−1

∞∑
n=0

∑
deg f =n

′
Λ(f )χ(f )

ψ̂(n)

qn/2

whereΛ is the von Mangoldt function and λ∞(χ) is 1 if χ is even and 0
otherwise.
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1 Let 1/2 < c < 1 and Tq = 2π/logq. By Cauchy’s Theorem,

Sχ(ψ) = ∑
γχ∈[0,Tq)

1

d−1
ψ(γχ/Tq)

= 1

2πi

(∫
`c

−
∫
`1−c

)
L′

L
(s,χ)

1

d−1
ψ

(
− i(s−1/2)

Tq

)
ds

= Sχ(ψ;c)−Sχ(ψ;1− c)

2 Replace the integral on the line 1− c using the functional equation of
L(s,χ) and send c → 1/2.

−Sχ(ψ;1/2)

= 1

Tq

∫ +Tq/2

−Tq/2
ψ

(
t

Tq

)
dt +Sχ(ψ;1/2)

+ λ∞(χ)

(d−1)Tq

∫ +Tq/2

−Tq/2

(
−1+ 1

1−q1/2+it
+ 1

1−q1/2−it

)
ψ(t/Tq)dt
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1 Main term is
∫ +1/2
−1/2 ψ(t)dt = ψ̂(0). Oscillatory term is Sχ(ψ;c).

2 Simplification of the gamma-factor term:

1

Tq

∫ +Tq/2
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)
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1−q−1/2+it

)
ψ(t/Tq)dt

=−
∫ +1/2

−1/2

( ∑
n∈Z

q−|n|/2e−2πins

)
ψ(u)du

=− ∑
n∈Z

ψ̂(n)

q|n|/2

Specific to the function-field setting.
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Global Regime

Theorem (A-M-P-T)

Suppose Q ∈ Fq[T ] is irreducible. Let ψ(s) =∑
n∈Z ψ̂(n)e−2πins be a test

function on [−1/2,+1/2] such that, for some ε> 0,

ψ̂(n) ¿ 1

n1+εqn/2

for all n large enough.

Then

ESχ(ψ) := 1

#FQ

∑
χ∈FQ

Sχ(ψ)

= ψ̂(0)− 1

(d−1)(q−1)

∑
n∈Z

ψ̂(n)

q|n|/2
+O

(
1

εd1+εqd

)
as d →∞.
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1 Using Schur Orthogonality, reduce to estimating

ESχ(ψ;1/2) = 2

d−1

|Q|−1

|Q|−2

∞∑
n=0

∑
deg f =n

f ≡1 (mod Q)

′
Λ(f )

ψ̂(n)

qn/2

2 Apply version of Brun-Titchmarsh for function fields by C. Hsu (1999)
to handleΛ(f ).

3 We “win” as long as d−1 ∑
n≥d qn/2−dψ̂(n) → 0 as d →∞. In particular,

this happens when

ψ̂(n) ¿ 1

n1+εqn/2

for some ε> 0.
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Local Regime

Corollary (A-M-P-T)

Suppose Q ∈ Fq[T ] is irreducible. Let Tq = 2π/logq. Let φ be a rapid-decay
test function on R, and let

Wχ(φ) := ∑
γχ∈[0,Tq)

∑
n∈Z

φ

(
(d−1)

(
γχ

Tq
+n

))

1 If supp φ̂⊆ [−2,+2]. then EWχ(φ) = φ̂(0)+O(1/d).
2 Let

σ(φ)2 =
∫

|t|φ̂(t)2 dt +O(1/d)

If supp φ̂⊆ (−2/m,+2/m), then

E(Wχ(φ)−EWχ(φ))m =
{

m!
2m/2(m/2)!

σ(φ)m m even

0 m odd
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Gaussian vs. Mock-Gaussian

The local-regime results seem to give Gaussian behavior for the centered
moments of Wχ(φ).

1 Cannot be the case, because if φ is an indicator function, then the
limiting distribution is discrete.

2 If we extend the support past [−2,+2], then the distribution should
be mock-Gaussian.

In the mesoscopic and global regimes, we do not zoom in as fast as
O(degQ).

1 Here, we can prove Gaussian behavior for test functions ψ on
[−1/2,+1/2] that are indicator functions, approximating them with
Beurling-Selberg polynomials.

2 Compare to work of Faifman-Rudnick on hyperelliptic ensemble.
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1 Here, we can prove Gaussian behavior for test functions ψ on
[−1/2,+1/2] that are indicator functions, approximating them with
Beurling-Selberg polynomials.

2 Compare to work of Faifman-Rudnick on hyperelliptic ensemble.



Conditional Improvements

Fiorilli-Miller (2013) showed that certain arithmetic hypotheses beyond
GRH allow one to extend the support for φ̂ in the local regime, on the
number-field side.

Their function-field analogues, in the global regime, again allow us to
remove restrictions on ψ.

Conjecture (Montgomery-A-M-P-T)

Let Q ∈ Fq[T ] be of degree d ≥ 2. Let s = 1/2+ iγχ run through zeros of
L(s,χ) ∈FQ. Then there exists δ> 0 such that∑

χ 6=χ0

∑
γχ

qinγχ ¿ (d−1)(#FQ)1−δ

for all n.
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Theorem (A-M-P-T)

Let Q ∈ Fq[T ] be of degree d ≥ 2. Let s = 1/2+ iγχ run through zeros of
L(s,χ) ∈FQ. Suppose that for some 0 ≤ ε1,ε2 < 1,∑

χ 6=χ0

∑
γχ

qinγχ,j ¿ (d−1)1−ε1 #F
1−ε2
Q

holds for all n. Then

ESχ(ψ) = ψ̂(0)+O

(
ε2d

dε1 (#FQ)ε2

)
for all test functions ψ(s) =∑

n∈Z ψ̂(n)e−2πins.

Proof by Erdős-Turán.
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