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Abstract

The distribution of critical zeros of the Riemann zeta function ζ(s) and
other L-functions lies at the heart some of the most central problems in
number theory. The Euler product of ζ(s) translates information about
its zeros into knowledge about the distribution of the prime numbers;
similar arithmetically important results (such as the ranks of elliptic
curves and the size of the class number) hold for other L-functions. A
natural question to ask is how often large gaps occur between critical ze-
ros of L-functions relative to the normalized average gap size. A striking
connection to random matrix theory suggests that the spacing distribu-
tions between zeros of many classes of L-functions behave similarly to
the spacing distributions of eigenvalues of large Hermitian matrices. In
particular, it is believed that arbitrarily large gaps between zeros occur
infinitely often. However, few nontrivial results in this direction have
been established.

Through the work of many researchers, the best result to date for ζ(s)
is that gaps at least 2.69 times the mean spacing occur infinitely often,
assuming the Riemann hypothesis. In the present work, we prove the
first nontrivial result on the occurrence of large gaps between critical
zeros of L-functions associated to primitive holomorphic cusp forms f
of level one. Combining mean value estimates from Montgomery and
Vaughan and extending a method of Ramachandra, we develop a proce-
dure to compute shifted second moments, which are of interest to other
questions besides our own. Using the mixed second moments of deriva-
tives of L(1/2 + it, f), we prove that there are infinitely many gaps
between consecutive zeros of L(s, f) on the critical line which are at
least

√
3 times the average spacing. Our techniques are general and

promise similar results for other primitive GL(2) L-functions such as
L-functions associated to Maass forms.

1. Zeros of L-functions: background and motivation

The motivating case of ζ(s)
The Riemann zeta function ζ(s) is given for <(s) > 1 by the fol-
lowing absolutely convergent Dirichlet series and Euler prod-
uct:

ζ(s) =
∑
n

n−s =
∏
p

(
1 −

1
ps

)−1
, Re(s) > 1

Riemann Hypothesis: All non-trivial zeros have <(s) = 1
2.

Critical zeros of L-functions are of central importance to many
problems in number theory.

• The Euler product of ζ(s) translates knowledge about zeros of
ζ(s) to knowledge about the distribution of prime numbers.
•Other classes of L-functions encode information about many

mathematical objects, e.g., ranks of elliptic curves and class
numbers of imaginary quadratic fields.

Spacings between zeros
•Classical question: how are the spacings between consecu-

tive critical zeros distributed?
•Numerical observation: spacings between zeros behave sta-

tistically similarly to spacings between eigenvalues of large
complex Hermitian matrices.

Conjecture 1.1. Gaps that are arbitrarily large, relative to the average
gap size, appear infinitely often.

Letting λ = lim sup
(γ
′
− γ) logγ

2π
,

Conjecture 1.1 is equivalent to λ = ∞. Few nontrivial results have
been established. Even for the Riemann zeta function, uncondi-
tionally it is only known that

λ > 2.69.

2. GL(2) L-functions

What, really, is an L-function?
•Not any old Dirichlet series.
•Axiomatic definition of the Selberg class S: L is in S if it is

given by a Dirichlet series L(s) =
∑∞
n=1 a(n)n

−s absolutely
convergent for <(s) > 1 that satisfies the following:
– L(s) admits an Euler product over primes in terms of local

factors for <(s) > 1:

L(s) =
∏
p

Lp(s).

– L(s) admits an analytic continuation to a meromorphic
function on C and is of finite order.

– There exists a ‘local (gamma) factor at infinity’ L∞(s) s.t.
the completed L-function Λ(s) = L∞(s)L(s) obeys the
functional equation Λ(s) = Λ(1 − s).

– Ramanujan conjecture: a(1) = 1 and a(n)� no(1).

Another way that we characterize L-functions depends on a no-
tion of degree. An analytic way to characterize degree is to look at
the order in p−s of the local Lp factors in the Euler product (equal
to the number of Satake parameters).

ζp(s) =

(
1 −

1
ps

)−1
← degree 1 L-function

Lp(s, f) =
(

1 −
αf(p)

ps

)−1 (
1 −

βf(p)

ps

)−1
← degree 2 L-function

A primitive L-function is one that cannot be written as the product
of two L-functions. (For example, the Dedekind zeta function for
a quadratic number field K is not primitive because it factors as
ζK(s) = ζ(s)L(s,χd).
We expect the following to hold for primitive GL(2) L-functions:

• Ramanujan conjecture (∀L ∈ S): a(n)� no(1).

•Convexity bound for growth in the critical strip – order of
growth is a function of degree of L.

•Conjecture: Rankin-Selberg convolution
∑
n
a(n)2

ns has a simple
pole at s = 1 ⇔ L(s) primitive. (The residue of this pole con-
tributes to the main term in our shifted moment result for new-
forms.)

• For GL(2) L-functions, we have the conjectural asymptotics∑
n6x |a(n)| = o(x) and

∑
n6x |a(n)|

2 = O(x).

• Selberg’s orthogonality conjectures: For GL(2) L-functions, we

have the asymptotic
∑
n6x

|a(p)|2

p = log log x+O(1).

3. Results

Our approach is sufficiently general to apply to any primitive
GL(2) L-function satisfying the properties described in the pre-
vious section. As a first example, we considered the specific ex-
ample the family of L-functions associated to holomorphic cusp
forms of weight k that are newforms for the full modular group
in the sense of Atkin-Lehner theory. We denote the L-function at-
tached to any such newform f ∈ H?

k(1) by L(s, f). We have proved
the following unconditional theorem:
Theorem 3.1. Let {γ1,γ2, ...,γN} be the set of distinct zeros of
L
(

1
2 + it, f

)
in the interval [T , 2T ]. Let

κT = max{γn+1 − γn : T + 1 6 γn 6 2T − 1}.

Then

κT >

√
3π

log T

(
1 +O

(
1
cf
(log T)−δ

))
.

In order to prove our theorem, we use a method due to R.R. Hall,
along with the following shifted moment result:
Theorem 3.2.∫2T

T
L

(
1
2
+ it+α, f

)
L

(
1
2
− it+β, f

)
dt

= cfT
∑
n>0

(−1)n2n+1(α+β)n(log T)n+1

(n+ 1)!
+O(T(log T)1−δ)

Obtaining this shifted moments result for L-functions of new-
forms of the full modular group was our first major task.
To arrive at Theorem 3.2, we considered the product

L(s+α, f)L(1 − s+β, f),

where both α,β ∈ C and α,β� 1/ log T . This product of shifted
L-functions gives rise to 16 products, each of which required es-
timation. We found that the contribution to our main term was
given by two such products, whereas the others were absorbed
into the error term.
The shifted moment result allows us to deduce lower order terms
and moments of derivatives of L-functions by means of differen-
tiation and the Cauchy Integral Formula. That is, we desired an
expression for∫2T

T
L(µ)

(
1
2
+ it, f

)
L(ν)

(
1
2
− it, f

)
dt,

where T > 2 and µ,ν ∈ Z+. We use this result in Hall’s method
to obtain the lower bound stated in Theorem 3.1.
Using Hall’s method, we bound the gaps between zeroes. This
requires the following result, due to Wirtinger and modified by
Bredberg:
Lemma 3.3. Let y : [a,b] → C be a continuously differentiable func-
tion and suppose that y(a) = y(b) = 0. Then∫b

a
|y(x)|2dx 6

(
b− a

π

)2 ∫b
a
|y ′(x)|2dx.

We define the function

g(t) := eiρ log TL

(
1
2
+ it, f

)
where ρ is a real constant established later. We fix f and let γ̃ de-
note an ordinate zero of L(s, f) on the critical line Re(s) = 1/2.
The crucial property of this function is that it has the same zeroes
as L(s, f), namely g(t) = 0 when t = γ̃. We use this function in
the modified Wirtinger’s inequality.
We apply sub-convexity bounds along the critical line to estab-
lish: ∫2T

T
|g(t)|2dt 6

κ2
T

π2

∫2T

T
|g ′(t)|2dt+O

(
T

2
3(log T)

5
6

)
Noting that our g(t) and g′(t) may be expressed in terms of
L
(

1
2 + it, f

)
, we can write our inequality explicitly in terms of for-

mulægiven by our theorem(s) for moments of L-functions.
After substituting our formulæ, we have the inequality:

κ2
T

π2 >
3

3ρ2 − 6ρ+ 4
(log T)−2

(
1 +O(log T)−δ

)
.

We are able to minimize this by setting ρ = 1, so we have our
desired result

κT >

√
3π

log T

(
1 +O

(
1
cf
(log T)−δ

))
.
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