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Zeros of L-functions: background and motivation

The Riemann Zeta-Function

The Riemann zeta-function ((s) is given for $i(s) > 1 by the
following absolutely convergent Dirichlet series and Euler

product:
~1
((s) = ans :H <1—pls> .
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The Riemann Zeta-Function

The Riemann zeta-function ((s) is given for $i(s) > 1 by the
following absolutely convergent Dirichlet series and Euler

product:
~1
((s) = ans :H <1—pls> .

P

Riemann Hypothesis: All non-trivial zeros have R(s) = 3.
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Zeros of L-functions

Critical zeros of L-functions are of central importance to many
problems in number theory.
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zeros of ((s) to knowledge about the distribution of prime
numbers.
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Zeros of L-functions: background and motivation

Zeros of L-functions

Critical zeros of L-functions are of central importance to many
problems in number theory.

» The Euler product of ((s) translates knowledge about
zeros of ((s) to knowledge about the distribution of prime
numbers.

» Other classes of L-functions encode information about
many mathematical objects, e.g., ranks of elliptic curves
and class numbers of imaginary quadratic fields.



Introduction GL(2) L-functions Results Acknowledgements & References
fole] 1} 0000 000 o}
0000000 o
Zeros of L-functions: background and motivation

Spacings between Zeros

» Classical question: how are the spacings between
consecutive critical zeros distributed?

» Numerical observation: spacings between zeros behave
statistically similarly to spacings between eigenvalues of
large complex Hermitian matrices.
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Conjecture.

Gaps that are arbitrarily large, relative to the average gap size, appear
infinitely often.
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Zeros of L-functions: background and motivation

Large Gaps between Zeros

Conjecture.

Gaps that are arbitrarily large, relative to the average gap size, appear
infinitely often.

Letting A = limsup — LY
nsoo average spacing’

this conjecture is equivalent to A = co. Few nontrivial results
have been established. Even for the Riemann zeta function,
unconditionally it is only known that

A > 2.69.
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Characterizing L-functions

Types of L-functions

» One way that we characterize L-functions depends on a
notion of degree.

» An analytic way to characterize degree is to look at the
order in p~* of the local £, factors in the Euler product.

-1
C(s) = H <1 - p15> < degree 1

ar(p)\ [, Belp)\
L(s,f)zH(l— ps ) <1— ps ) + degree 2
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Types of L-functions

» One way that we characterize L-functions depends on a
notion of degree.

» An analytic way to characterize degree is to look at the
order in p~* of the local £, factors in the Euler product.

-1
C(s) = H <1 - p15> < degree 1

ar(p)\ [, Belp)\
L(s,f)zH(l— ps ) <1— ps ) + degree 2
P

» A primitive L-function is one that cannot be written as the
product of two L-functions. (For example, the Dedekind
zeta function for a quadratic number field K is not
primitive because it factors as Cx (s) = ¢(s)L(s,Xa).)
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Characterizing L-functions

Some degree one L-functions

» Riemann zeta function (JR(s) > 1):
-1
eI
n>1

» More generally, let X be a Dirichlet character. We then form
the Dirichlet L-function L(s,x) for %(s) > 1 by the
following absolutely convergent Dirichlet series and Euler
product:

x(n) x(p))
ns _H<1_ p )

n>l1 P
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Characterizing L-functions
A degree 2 L-function

» We worked out results for one specific family of degree 2
L-functions.
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A degree 2 L-function

» We worked out results for one specific family of degree 2
L-functions.

» Start with a newform f on the full modular group.
f admits a Fourier expansion of the form

Z?\f nk1/2¢(nz).

These normalized Fourier coefficients A¢(n) are of
arithmetic interest.
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Characterizing L-functions

A degree 2 L-function

» We worked out results for one specific family of degree 2
L-functions.

» Start with a newform f on the full modular group.
f admits a Fourier expansion of the form

Z?\f nk1/2¢(nz).

These normalized Fourier coefficients A¢(n) are of
arithmetic interest.

» Form the L-function associated to f from the absolutely
convergent Dirichlet series with the A¢(n) as coefficients:

(R(s) > 1).

11 /26
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A primitive degree 2 L-function

» L(s,f) admits an Euler product of degree 2:
AMe(p) | 1 >1
L(s,f) = <1 — + —
1;[ ps pZS
~1 ~1
:H<1_0<f(sp)> <1_f3f(sp)>
o p p

(where ot (p) + B(p) = Ae(p) and a¢(p)B(p) = 1).
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Characterizing L-functions

A primitive degree 2 L-function

» L(s,f) admits an Euler product of degree 2:

1
Ls, =] <1 - }‘;(f) n ple>

P
_ _cxf(p)>‘1< _ﬁf(p)>‘1
(-57) (-5

(where ot (p) + B¢(p) = A¢(p) and o (p)B¢(p) = 1).
» L(s,f) is primitive.
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Statement of results

We proved the following unconditional theorem:

Theorem 1 (BMMRTW ’14).

Let {y1,v2, ..., Y~/ be the set of distinct zeros of L (% + 1it, f)
in the interval [T, 2T]. Let

kKT =max{Yni1—VYn:T+1<vyn <2T —1}. Then

\fﬂ 1 _5
logT <1+O (Cf(logT) >> ,

where c¢ is a constant that encodes arithmetic information.
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Statement of results

If we assume GRH for interpretive purposes,
this means there are infinitely many normalized
gaps between consecutive zeroes that are at

least /3 times the mean spacing.

cknowledgements & References

5/26



Introduction GL(2) L-functions Results Acknowledgements & References

o

0000 0000 ooe
0000000 o

Statement of results

Shifted Moment Result

In order to prove our theorem, we use a method due to R.R.
Hall, along with the following shifted moment result:

Theorem 2 (BMMRTW ’14).

2T 1 1
J L<+it—i—oc,f>l_<—it+[3,f) dt
;2 2

_1\ynon+l n n+1
ety SRR PR8I oTiiog T2,

n>0

where o, 3 € Cand o, 3 < 1/logT.
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Shifted Moments Proof Technique

» Following a method due to Ramachandra, we consider

|

Lis+a,f) =) ﬁf(foz e X +F(s) ) n};f_(”_)“ +E(s),

n>1 n<X

where A¢(n) are the Fourier coefficients of L(s, ), F(s) is a
functional equation term, and E(s) is an error term.
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Shifted Moments Proof Technique

» Following a method due to Ramachandra, we consider

|

Lis+o,f)=) AN % 4 (o) > 2 ),

ns+t« nl—s—oc
n>1 n<X

where A¢(n) are the Fourier coefficients of L(s, ), F(s) is a
functional equation term, and E(s) is an error term.

» We have an analogous expression for L(1 —s + 3, f)
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Shifted Moments Proof Technique

» We consider the product
L(s+ o, f)L(1 —s+B,f).

where each factor gives rise to four products, resulting in
sixteen total products to estimate.

18 /26



Introduction GL(2) L-functions Results Acknowledgements & References
0000 0000 000 [e]
0e00000 [e]
Our Methods

Shifted Moments Proof Technique

» We consider the product
L(s+ o, f)L(1 —s+B,f).

where each factor gives rise to four products, resulting in
sixteen total products to estimate.

» Using a generalization of Montgomery and Vaughan'’s
mean value theorem and contour integration we are able to
estimate this product and compute the resulting moments.

18 /26
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Our Methods

Shifted Moment Result for Derivatives

» The shifted moment result allows us to deduce lower order
terms and moments of derivatives of L-functions by means
of differentiation and the Cauchy Integral Formula.
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Our Methods

Shifted Moment Result for Derivatives

» The shifted moment result allows us to deduce lower order
terms and moments of derivatives of L-functions by means
of differentiation and the Cauchy Integral Formula.

» We derive an expression for

2T 1 1
J LW < +it,f> L) < it,f> dt,
- 2 2

where T > 2 and u, v € Z". We use this result in Hall’s
method to obtain the lower bound stated in our Theorem.

19 /26
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Our Methods

Modified Wirtinger Inequality

Using Hall’s method, we bound the gaps between zeroes. This
requires the following result, due to Wirtinger and modified by
Bredberg:

Lemma 1 (Bredberg).
Lety : [a, b] — C be a continuously differentiable function
and suppose that y(a) =y(b) = 0. Then

b . 2 »b
J ly(x)dx < <bna> J y'(x)[dx.

a

20/2



Introduction GL(2) L-functions Results Acknowledgements & References

o

0000 0000 000
0000@00 o
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Proving our Result

» We define the function

. 1
g(t) = (elpthgT> L (2 +1it, f> .

We fix f and let ¥ denote an ordinate zero of L(s, f) on the

critical line R(s) = %
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Our Methods

Proving our Result

» We define the function

. 1
g(t) = (elpthgT> L (2 +1it, f> .

We fix f and let ¥ denote an ordinate zero of L(s, f) on the

critical line R(s) = %

» The crucial property of this function is that it has the same
zeroes as L(s, f), namely g(t) = 0 when t = ¥. We use this
function in the modified Wirtinger’s inequality.

21/26
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Proving our Result
» We apply sub-convexity bounds along the critical line to
establish:

27 , 2T , ;
| towpar< 51| Cigwpar+ o (Thaog ).
T T
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Our Methods

Proving our Result

» We apply sub-convexity bounds along the critical line to
establish:

27 , 2T , ;
| towpar< 51| Cigwpar+ o (Thaog ).
T T

» Noting that our g(t) and ¢’(t) may be expressed in terms
of L ($ +1t, f), we can write our inequality explicitly in
terms of formulee given by our theorem(s) for moments of
L-functions.
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Our Methods
Finishing the Proof

» After substituting our formulee, we have the inequality:

2
KT 3

2 2 37 —eprallosT) F (1+0(ogT) 7).
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Our Methods
Finishing the Proof

» After substituting our formulee, we have the inequality:

2
5T 3 -2 -5

> logT 14+ O(logT .
s 3p2—6p+4(Og )77 (1+0(ogT)™)

» We are able to minimize this by setting p = 1, so we have
our desired result

V3m 1 _5
KT = @ (1—1—0 <Cf(logT) >) .

N
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