Large gaps between zeros of GL(2)L-functions

Results

Owen Barrett ¹ Patrick Ryan ² Karl Winsor ³ JOINT WITH Brian McDonald, Steven J. Miller, Caroline Turnage-Butterbaugh

¹owen.barrett@yale.edu

²patrickryan01@college.harvard.edu

³krlwnsr@umich.edu

REU mini-conference Yale University July 25, 2014

Outline

Introduction

Zeros of L-functions: background and motivation

Results

GL(2) L-functions Characterizing L-functions

Results

Statement of results Our Methods

Acknowledgements & References Acknowledgements References

Outline

Introduction

Zeros of L-functions: background and motivation

Results

Our Methods

Acknowledgements & References Acknowledgements

Results

Zeros of L-functions: background and motivation

The Riemann Zeta-Function

The Riemann zeta-function $\zeta(s)$ is given for $\Re(s) > 1$ by the following absolutely convergent Dirichlet series and Euler product:

$$\zeta(s) = \sum_{n} n^{-s} = \prod_{p} \left(1 - \frac{1}{p^{s}} \right)^{-1}.$$

Zeros of L-functions: background and motivation

The Riemann Zeta-Function

The Riemann zeta-function $\zeta(s)$ is given for $\Re(s) > 1$ by the following absolutely convergent Dirichlet series and Euler product:

$$\zeta(s) = \sum_{n} n^{-s} = \prod_{p} \left(1 - \frac{1}{p^{s}} \right)^{-1}.$$

Riemann Hypothesis: All non-trivial zeros have $\Re(s) = \frac{1}{2}$.

Zeros of L-functions: background and motivation

Zeros of L-functions

Critical zeros of L-functions are of central importance to many problems in number theory.

Zeros of L-functions: background and motivation

Zeros of L-functions

Introduction

Critical zeros of L-functions are of central importance to many problems in number theory.

Results

▶ The Euler product of $\zeta(s)$ translates knowledge about zeros of $\zeta(s)$ to knowledge about the distribution of prime numbers.

Zeros of L-functions

Introduction

Critical zeros of L-functions are of central importance to many problems in number theory.

Results

- ▶ The Euler product of $\zeta(s)$ translates knowledge about zeros of $\zeta(s)$ to knowledge about the distribution of prime numbers.
- ▶ Other classes of L-functions encode information about many mathematical objects, e.g., ranks of elliptic curves and class numbers of imaginary quadratic fields.

Spacings between Zeros

- ► Classical question: how are the spacings between consecutive critical zeros distributed?
- ► Numerical observation: spacings between zeros behave statistically similarly to spacings between eigenvalues of large complex Hermitian matrices.

Figure: Critical zeros of $\zeta(s)$ and Hermitian matrix eigenvalues.

Acknowledgements & References

Zeros of L-functions: background and motivation

Large Gaps between Zeros

Conjecture.

Introduction

0000

Gaps that are arbitrarily large, relative to the average gap size, appear infinitely often.

Results

Large Gaps between Zeros

Conjecture.

Introduction

Gaps that are arbitrarily large, relative to the average gap size, appear infinitely often.

Results

Letting
$$\Lambda = \limsup_{n \to \infty} \frac{\gamma_{n+1} - \gamma_n}{\text{average spacing}}$$

this conjecture is equivalent to $\lambda=\infty$. Few nontrivial results have been established. Even for the Riemann zeta function, unconditionally it is only known that

$$\Lambda > 2.69$$
.

Outline

Zeros of L-functions: background and motivation

Results

GL(2) L-functions Characterizing L-functions

Our Methods

Acknowledgements & References Acknowledgements

Types of L-functions

▶ One way that we characterize L-functions depends on a notion of degree.

Results

► An analytic way to characterize degree is to look at the order in p^{-s} of the local \mathcal{L}_p factors in the Euler product.

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1} \leftarrow \text{degree 1}$$

$$L(s, f) = \prod_{p} \left(1 - \frac{\alpha_f(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta_f(p)}{p^s} \right)^{-1} \leftarrow \text{degree 2}$$

Types of L-functions

- ▶ One way that we characterize L-functions depends on a notion of *degree*.
- ▶ An analytic way to characterize degree is to look at the order in p^{-s} of the local \mathcal{L}_p factors in the Euler product.

$$\zeta(s) = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1} \leftarrow \text{degree 1}$$

$$L(s, f) = \prod_{p} \left(1 - \frac{\alpha_f(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta_f(p)}{p^s} \right)^{-1} \leftarrow \text{degree 2}$$

▶ A *primitive* L-function is one that cannot be written as the product of two L-functions. (For example, the Dedekind zeta function for a quadratic number field K is not primitive because it factors as $\zeta_K(s) = \zeta(s)L(s,\chi_d)$.)

Results 000 0000000

Characterizing L-functions

Some degree one L-functions

Characterizing L-functions

Some degree one L-functions

▶ Riemann zeta function ($\Re(s) > 1$):

$$\zeta(s) = \sum_{n \geqslant 1} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1}.$$

Some degree one L-functions

▶ Riemann zeta function ($\Re(s) > 1$):

$$\zeta(s) = \sum_{n \geqslant 1} \frac{1}{n^s} = \prod_{p} \left(1 - \frac{1}{p^s} \right)^{-1}.$$

Results

 \blacktriangleright More generally, let χ be a Dirichlet character. We then form the Dirichlet L-function $L(s,\chi)$ for $\Re(s) > 1$ by the following absolutely convergent Dirichlet series and Euler product:

$$L(s,\chi) = \sum_{n \ge 1} \frac{\chi(n)}{n^s} = \prod_{p} \left(1 - \frac{\chi(p)}{p^s} \right)^{-1}.$$

Characterizing L-functions

Introduction

A degree 2 L-function

▶ We worked out results for one specific family of degree 2 L-functions.

Results

Characterizing L-functions

Introduction

A degree 2 L-function

► We worked out results for one specific family of degree 2 L-functions.

Results

► Start with a newform f on the full modular group. f admits a Fourier expansion of the form

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz).$$

These normalized Fourier coefficients $\lambda_f(n)$ are of arithmetic interest.

A degree 2 L-function

▶ We worked out results for one specific family of degree 2 L-functions.

Results

► Start with a newform f on the full modular group. f admits a Fourier expansion of the form

$$f(z) = \sum_{n=1}^{\infty} \lambda_f(n) n^{(k-1)/2} e(nz).$$

These normalized Fourier coefficients $\lambda_f(n)$ are of arithmetic interest.

► Form the L-function associated to f from the absolutely convergent Dirichlet series with the $\lambda_f(n)$ as coefficients:

$$L(s,f) := \sum_{n=1}^{\infty} \frac{\lambda_f(n)}{n^s} \qquad (\Re(s) > 1).$$

A primitive degree 2 L-function

► L(s, f) admits an Euler product of degree 2:

$$\begin{split} L(s,f) &= \prod_{p} \left(1 - \frac{\lambda_f(p)}{p^s} + \frac{1}{p^{2s}} \right)^{-1} \\ &= \prod_{p} \left(1 - \frac{\alpha_f(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta_f(p)}{p^s} \right)^{-1} \end{split}$$

Results

(where
$$\alpha_f(p) + \beta_f(p) = \lambda_f(p)$$
 and $\alpha_f(p)\beta_f(p) = 1$).

A primitive degree 2 L-function

► L(s, f) admits an Euler product of degree 2:

$$\begin{split} L(s,f) &= \prod_{p} \left(1 - \frac{\lambda_f(p)}{p^s} + \frac{1}{p^{2s}} \right)^{-1} \\ &= \prod_{p} \left(1 - \frac{\alpha_f(p)}{p^s} \right)^{-1} \left(1 - \frac{\beta_f(p)}{p^s} \right)^{-1} \end{split}$$

Results

(where $\alpha_f(p) + \beta_f(p) = \lambda_f(p)$ and $\alpha_f(p)\beta_f(p) = 1$).

 \blacktriangleright L(s, f) is primitive.

Zeros of L-functions: background and motivation

Results

Results

Statement of results Our Methods

Acknowledgements & References Acknowledgements

Statement of results

We proved the following unconditional theorem:

Theorem 1 (BMMRTW '14).

Let $\{\gamma_1, \gamma_2, ..., \gamma_N\}$ be the set of distinct zeros of L $(\frac{1}{2} + it, f)$ in the interval [T, 2T]. Let

Results

$$\kappa_T = max\{\gamma_{n+1} - \gamma_n : T+1 \leqslant \gamma_n \leqslant 2T-1\}.$$
 Then

$$\kappa_T \geqslant \frac{\sqrt{3}\pi}{\log T} \left(1 + O\left(\frac{1}{c_f} (\log T)^{-\delta}\right) \right),$$

where c_f is a constant that encodes arithmetic information.

Statement of results

Introduction

Statement of results

If we assume GRH for interpretive purposes, this means there are infinitely many normalized gaps between consecutive zeroes that are at least $\sqrt{3}$ times the mean spacing.

Results

Shifted Moment Result

In order to prove our theorem, we use a method due to R.R. Hall, along with the following shifted moment result:

Results

Theorem 2 (BMMRTW '14).

$$\begin{split} &\int_{T}^{2T} L\left(\frac{1}{2}+it+\alpha,f\right) L\left(\frac{1}{2}-it+\beta,f\right) dt \\ &= c_f T \sum_{n\geqslant 0} \frac{(-1)^n 2^{n+1} (\alpha+\beta)^n (\log T)^{n+1}}{(n+1)!} + O(T(\log T)^{1-\delta}), \end{split}$$

where $\alpha, \beta \in \mathbf{C}$ and $\alpha, \beta \ll 1/\log T$.

Introduction

Shifted Moments Proof Technique

▶ Following a method due to Ramachandra, we consider

$$L(s+\alpha,f) = \sum_{n\geqslant 1} \frac{\lambda_f(n)}{n^{s+\alpha}} e^{-\frac{n}{X}} + F(s) \sum_{n\leqslant X} \frac{\lambda_f(n)}{n^{1-s-\alpha}} + E(s),$$

Results

•000000

where $\lambda_f(n)$ are the Fourier coefficients of L(s, f), F(s) is a functional equation term, and E(s) is an error term.

Introduction

Shifted Moments Proof Technique

▶ Following a method due to Ramachandra, we consider

$$L(s+\alpha,f) = \sum_{n\geqslant 1} \frac{\lambda_f(n)}{n^{s+\alpha}} e^{-\frac{n}{X}} + F(s) \sum_{n\leqslant X} \frac{\lambda_f(n)}{n^{1-s-\alpha}} + E(s),$$

Results

•000000

where $\lambda_f(n)$ are the Fourier coefficients of L(s, f), F(s) is a functional equation term, and E(s) is an error term.

▶ We have an analogous expression for $L(1 - s + \beta, f)$

Introduction

Shifted Moments Proof Technique

► We consider the product

$$L(s + \alpha, f)L(1 - s + \beta, f)$$
.

where each factor gives rise to four products, resulting in sixteen total products to estimate.

Shifted Moments Proof Technique

► We consider the product

$$L(s + \alpha, f)L(1 - s + \beta, f)$$
.

Results

0000000

where each factor gives rise to four products, resulting in sixteen total products to estimate.

▶ Using a generalization of Montgomery and Vaughan's mean value theorem and contour integration we are able to estimate this product and compute the resulting moments.

Introduction

Shifted Moment Result for Derivatives

► The shifted moment result allows us to deduce lower order terms and moments of derivatives of L-functions by means of differentiation and the Cauchy Integral Formula.

Introduction

Shifted Moment Result for Derivatives

▶ The shifted moment result allows us to deduce lower order terms and moments of derivatives of L-functions by means of differentiation and the Cauchy Integral Formula.

Results

0000000

► We derive an expression for

$$\int_{T}^{2T} L^{(\mu)} \left(\frac{1}{2} + it, f\right) L^{(\nu)} \left(\frac{1}{2} - it, f\right) dt,$$

where $T \ge 2$ and $\mu, \nu \in \mathbf{Z}^+$. We use this result in Hall's method to obtain the lower bound stated in our Theorem.

Introduction

Modified Wirtinger Inequality

Using Hall's method, we bound the gaps between zeroes. This requires the following result, due to Wirtinger and modified by Bredberg:

Results

0000000

Lemma 1 (Bredberg).

Let $y : [a, b] \to C$ be a continuously differentiable function and suppose that y(a) = y(b) = 0. Then

$$\int_a^b |y(x)|^2 dx \leqslant \left(\frac{b-a}{\pi}\right)^2 \int_a^b |y'(x)|^2 dx.$$

Proving our Result

▶ We define the function

$$g(t) := \left(e^{i\rho t \log T}\right) L\left(\frac{1}{2} + it, f\right).$$

We fix f and let $\tilde{\gamma}$ denote an ordinate zero of L(s, f) on the critical line $\Re(s) = \frac{1}{2}$.

Introduction

Proving our Result

▶ We define the function

$$g(t) := \left(e^{i\rho t \log T}\right) L\left(\frac{1}{2} + it, f\right).$$

Results

0000000

We fix f and let $\tilde{\gamma}$ denote an ordinate zero of L(s, f) on the critical line $\Re(s) = \frac{1}{2}$.

▶ The crucial property of this function is that it has the same zeroes as L(s, f), namely g(t) = 0 when $t = \tilde{\gamma}$. We use this function in the modified Wirtinger's inequality.

Proving our Result

► We apply sub-convexity bounds along the critical line to establish:

$$\int_{T}^{2T} |g(t)|^2 dt \leqslant \frac{\kappa_T^2}{\pi^2} \int_{T}^{2T} |g'(t)|^2 dt + O\left(T^{\frac{2}{3}} (\log T)^{\frac{5}{6}}\right).$$

Proving our Result

► We apply sub-convexity bounds along the critical line to establish:

$$\int_{T}^{2T} |g(t)|^2 dt \leqslant \frac{\kappa_T^2}{\pi^2} \int_{T}^{2T} |g'(t)|^2 dt + O\left(T^{\frac{2}{3}} (\log T)^{\frac{5}{6}}\right).$$

Results

0000000

Noting that our g(t) and g'(t) may be expressed in terms of $L(\frac{1}{2} + it, f)$, we can write our inequality explicitly in terms of formulæ given by our theorem(s) for moments of L-functions.

Finishing the Proof

▶ After substituting our formulæ, we have the inequality:

$$\frac{\kappa_T^2}{\pi^2} \geqslant \frac{3}{3\rho^2 - 6\rho + 4} (\log T)^{-2} \left(1 + O(\log T)^{-\delta} \right).$$

Finishing the Proof

▶ After substituting our formulæ, we have the inequality:

$$\frac{\kappa_{\mathsf{T}}^2}{\pi^2} \geqslant \frac{3}{3\rho^2 - 6\rho + 4} (\log \mathsf{T})^{-2} \left(1 + O(\log \mathsf{T})^{-\delta} \right).$$

Results

0000000

• We are able to minimize this by setting $\rho = 1$, so we have our desired result

$$\kappa_{\mathsf{T}} \geqslant \frac{\sqrt{3}\pi}{\log \mathsf{T}} \left(1 + O\left(\frac{1}{c_{\mathsf{f}}} (\log \mathsf{T})^{-\delta}\right) \right).$$

Outline

Zeros of L-functions: background and motivation

Results

Our Methods

Acknowledgements & References Acknowledgements References

Acknowledgements

We would like extend our deepest thanks to our advisors, Caroline Turnage-Butterbaugh and Steven Miller.

Results

We would also like to acknowledge the support of NSF Grant DMS1347804 and Williams College.

Last, thank YOU!

References

- Anton Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1982), 278–295.
- [Har03] Gergely Harcos, New bounds for automorphic L-functions, Ph.D. thesis, Princeton University, 2003.
- [MN13] Micah B. Milinovich and Nathan Ng, Simple zeros of modular L-functions, 2013.

Results

- [MN14] Micah B. Milinovich and Nathan Ng, Lower bounds for moments of $\zeta'(\mathfrak{p})$, International Mathematics Research Notices 2014 (2014), no. 12, 3190–3216.
- [Ram79] K Ramachandra, Some remarks on a theorem of Montgomery and Vaughan, Journal of Number Theory 11 (1979), no. 3, 465 – 471.
- R.A. Rankin, Sums of powers of cusp form coefficients. II, Mathematische [Ran85] Annalen 272 (1985), no. 4, 593–600 (English).
- [TB14] Caroline L. Turnage-Butterbaugh, Gaps between zeros of Dedekind zeta-functions of quadratic number fields, Journal of Mathematical Analysis and Applications 418 (2014), no. 1, 100 – 107.