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Zeros of L-functions: background and motivation

The Riemann Zeta-Function

The Riemann zeta-function ζ(s) is given for <(s) > 1 by the
following absolutely convergent Dirichlet series and Euler
product:

ζ(s) =
∑
n

n−s =
∏
p

(
1 −

1
ps

)−1

.

Riemann Hypothesis: All non-trivial zeros have <(s) = 1
2 .
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Zeros of L-functions: background and motivation

Zeros of L-functions

Critical zeros of L-functions are of central importance to many
problems in number theory.

I The Euler product of ζ(s) translates knowledge about
zeros of ζ(s) to knowledge about the distribution of prime
numbers.

I Other classes of L-functions encode information about
many mathematical objects, e.g., ranks of elliptic curves
and class numbers of imaginary quadratic fields.
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Zeros of L-functions: background and motivation

Spacings between Zeros
I Classical question: how are the spacings between

consecutive critical zeros distributed?
I Numerical observation: spacings between zeros behave

statistically similarly to spacings between eigenvalues of
large complex Hermitian matrices.

Figure: Critical zeros of ζ(s) and Hermitian matrix eigenvalues.
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Zeros of L-functions: background and motivation

Large Gaps between Zeros

Conjecture.
Gaps that are arbitrarily large, relative to the average gap size, appear
infinitely often.

Letting Λ = lim sup
n→∞

γn+1 − γn
average spacing

,

this conjecture is equivalent to λ = ∞. Few nontrivial results
have been established. Even for the Riemann zeta function,
unconditionally it is only known that

Λ > 2.69.
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Characterizing L-functions

Types of L-functions
I One way that we characterize L-functions depends on a

notion of degree.
I An analytic way to characterize degree is to look at the

order in p−s of the local Lp factors in the Euler product.

ζ(s) =
∏
p

(
1 −

1
ps

)−1

← degree 1

L(s, f) =
∏
p

(
1 −

αf(p)

ps

)−1 (
1 −

βf(p)

ps

)−1

← degree 2

I A primitive L-function is one that cannot be written as the
product of two L-functions. (For example, the Dedekind
zeta function for a quadratic number field K is not
primitive because it factors as ζK(s) = ζ(s)L(s,χd).)
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Characterizing L-functions

Some degree one L-functions

I Riemann zeta function (<(s) > 1):

ζ(s) =
∑
n>1

1
ns

=
∏
p

(
1 −

1
ps

)−1

.

I More generally, let χ be a Dirichlet character. We then form
the Dirichlet L-function L(s,χ) for <(s) > 1 by the
following absolutely convergent Dirichlet series and Euler
product:

L(s,χ) =
∑
n>1

χ(n)

ns
=

∏
p

(
1 −

χ(p)

ps

)−1

.
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Characterizing L-functions

A degree 2 L-function
I We worked out results for one specific family of degree 2
L-functions.

I Start with a newform f on the full modular group.
f admits a Fourier expansion of the form

f(z) =

∞∑
n=1

λf(n)n
(k−1)/2e(nz).

These normalized Fourier coefficients λf(n) are of
arithmetic interest.

I Form the L-function associated to f from the absolutely
convergent Dirichlet series with the λf(n) as coefficients:

L(s, f) :=
∞∑
n=1

λf(n)

ns
(<(s) > 1).
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Characterizing L-functions

A primitive degree 2 L-function

I L(s, f) admits an Euler product of degree 2:

L(s, f) =
∏
p

(
1 −

λf(p)

ps
+

1
p2s

)−1

=
∏
p

(
1 −

αf(p)

ps

)−1 (
1 −

βf(p)

ps

)−1

(where αf(p) +βf(p) = λf(p) and αf(p)βf(p) = 1).

I L(s, f) is primitive.
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Statement of results

Statement of results

We proved the following unconditional theorem:

Theorem 1 (BMMRTW ’14).
Let {γ1,γ2, ...,γN} be the set of distinct zeros of L

(1
2 + it, f

)
in the interval [T , 2T ]. Let
κT = max{γn+1 − γn : T + 1 6 γn 6 2T − 1}. Then

κT >

√
3π

log T

(
1 +O

(
1
cf

(log T)−δ
))

,

where cf is a constant that encodes arithmetic information.
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Statement of results

Statement of results

If we assume GRH for interpretive purposes,
this means there are infinitely many normalized
gaps between consecutive zeroes that are at
least

√
3 times the mean spacing.
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Statement of results

Shifted Moment Result

In order to prove our theorem, we use a method due to R.R.
Hall, along with the following shifted moment result:

Theorem 2 (BMMRTW ’14).

∫ 2T

T

L

(
1
2
+ it+α, f

)
L

(
1
2
− it+β, f

)
dt

= cfT
∑
n>0

(−1)n2n+1(α+β)n(log T)n+1

(n+ 1)!
+O(T(log T)1−δ),

where α,β ∈ C and α,β� 1/ log T .

16 / 26



Introduction GL(2) L-functions Results Acknowledgements & References

Our Methods

Shifted Moments Proof Technique

I Following a method due to Ramachandra, we consider

L(s+α, f) =
∑
n>1

λf(n)

ns+α
e−

n
X + F(s)

∑
n6X

λf(n)

n1−s−α + E(s),

where λf(n) are the Fourier coefficients of L(s, f), F(s) is a
functional equation term, and E(s) is an error term.

I We have an analogous expression for L(1 − s+β, f)
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Our Methods

Shifted Moments Proof Technique

I We consider the product

L(s+α, f)L(1 − s+β, f).

where each factor gives rise to four products, resulting in
sixteen total products to estimate.

I Using a generalization of Montgomery and Vaughan’s
mean value theorem and contour integration we are able to
estimate this product and compute the resulting moments.
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Our Methods

Shifted Moment Result for Derivatives

I The shifted moment result allows us to deduce lower order
terms and moments of derivatives of L-functions by means
of differentiation and the Cauchy Integral Formula.

I We derive an expression for∫ 2T

T

L(µ)
(

1
2
+ it, f

)
L(ν)

(
1
2
− it, f

)
dt,

where T > 2 and µ,ν ∈ Z+. We use this result in Hall’s
method to obtain the lower bound stated in our Theorem.
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Our Methods

Modified Wirtinger Inequality

Using Hall’s method, we bound the gaps between zeroes. This
requires the following result, due to Wirtinger and modified by
Bredberg:

Lemma 1 (Bredberg).
Let y : [a,b]→ C be a continuously differentiable function
and suppose that y(a) = y(b) = 0. Then∫b

a

|y(x)|2dx 6

(
b− a

π

)2 ∫b
a

|y ′(x)|2dx.
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Our Methods

Proving our Result

I We define the function

g(t) :=
(
eiρt logT

)
L

(
1
2
+ it, f

)
.

We fix f and let γ̃ denote an ordinate zero of L(s, f) on the
critical line <(s) = 1

2 .

I The crucial property of this function is that it has the same
zeroes as L(s, f), namely g(t) = 0 when t = γ̃. We use this
function in the modified Wirtinger’s inequality.
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Our Methods

Proving our Result

I We apply sub-convexity bounds along the critical line to
establish:∫ 2T

T

|g(t)|2dt 6
κ2
T

π2

∫ 2T

T

|g ′(t)|2dt+O
(
T

2
3 (log T)

5
6

)
.

I Noting that our g(t) and g′(t) may be expressed in terms
of L

(1
2 + it, f

)
, we can write our inequality explicitly in

terms of formulæ given by our theorem(s) for moments of
L-functions.
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Our Methods

Finishing the Proof

I After substituting our formulæ, we have the inequality:

κ2
T

π2 >
3

3ρ2 − 6ρ+ 4
(log T)−2 (1 +O(log T)−δ

)
.

I We are able to minimize this by setting ρ = 1, so we have
our desired result

κT >

√
3π

log T

(
1 +O

(
1
cf

(log T)−δ
))

.
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