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Elementary Facts

Fibonacci Recurrence

Fn+1 = Fn + Fn−1

F1 = 1,F2 = 2,F3 = 3,F4 = 5, . . .

Binet’s Formula

Fn =
1√
5

(
1 +
√

5
2

)n+1

− 1√
5

(
1−
√

5
2

)n+1
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A Beautiful Theorem

Theorem (Zeckendorf - 1939)
Every positive integer can be written uniquely as the sum of
non-consecutive Fibonacci numbers.

Example

12 = 8 + 3 + 1

= F5 + F3 + F1

2016 = 1597 + 377 + 34 + 8

= F16 + F13 + F8 + F5
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Counting the Summands

Theorem (Lekkerkerker - 1952)
The average number of Fibonacci summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to

n
ϕ2 + 1

≈ .276n (1)

where ϕ = 1+
√

5
2 is the golden mean.
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An Inquiry

Question
For a given set of numbers, how often would you expect a leading
digit of 1, 2, 3, 4, . . . , 9 to occur?

Perhaps, we expect something more uniform like this?

Not Quite!
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The Benford Distribution

In fact, it’s more like this!

Note
A leading digit 1 occurs with 30% frequency, while a leading digit 9
occurs with only 4.5 % frequency.
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History of Benford’s Law

Benford’s law is named after physicist Frank Benford in 1938.

Although it was discovered earlier by Simon Newcomb in 1881.

Figure: Newcomb and Benford
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Benford’s law

Definition (Benford’s Law in Arbitrary Base)
A dataset is said to follow Benford’s Law (base B) if the probability
of observing a first digit of d is

logB

(
1 +

1
d

)

Example

P(d = 1) = log10

(
1 +

1
1

)
≈ 0.301

P(d = 9) = log10

(
1 +

1
9

)
≈ 0.045
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First Digit Bias

Figure: Fibonacci numbers

Figure: iPhone passwords

Figure: # Twitter followers

Figure: Distance of stars from Earth
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Benford’s Law: Applications

3x + 1 problem.

Analyzing round-off errors.

Determining the optimal way to store numbers.

Detecting tax fraud and data integrity.
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Known Results

Fibonacci numbers are Benford.

Not every recurrence relation is Benford.

Example

an+2 = 2an+1 − an,with a1 = a2 = 1

Sequence: {1, 1, 1, 1, 1, 1, 1, 1, 1, . . .} is definitely not Benford.
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New Results: SMALL 2014

Benfordness in Interval: The distribution of the summands in
the Zeckendorf decompositions, averaged over the entire interval
[Fn,Fn+1).

Random Decomposition: If we choose each Fibonacci number
with probability q, disallowing the choice of two consecutive
Fibonacci numbers, the resulting sequence follows Benford’s
law.

Benfordness of Decomposition: If we pick a random integer M
in the interval [0,Fn+1), then as n→∞, its Zeckendorf
decomposition will follow Benford’s Law with high probabiltiy.
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Theorem 1 (SMALL 2014): Benfordness in Interval
The distribution of the summands in the Zeckendorf decompositions,
averaged over the entire interval [Fn,Fn+1), follows Benford’s Law.

Example

Looking at the interval [F5,F6) = [8, 13)

8 = 8 = F5

9 = 8 + 1 = F5 + F1

10 = 8 + 2 = F5 + F2

11 = 8 + 3 = F5 + F3

12 = 8 + 3 + 1 = F5 + F3 + F1
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Proof of Theorem 1

Let S be a subset of the Fibonacci numbers. Let q(S, n) be the density
of S over the Fibonacci numbers in the interval [1,Fn]. That is

q(S, n) =
#{Fj ∈ S | 1 ≤ j ≤ n}

n

In the case that limn→∞ q(S, n) exists, we define the asymptotic
density q(S) as

q(S) = lim
n→∞

q(S, n)
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Let Sd be the subset of the Fibonacci numbers which share a fixed
digit d where 1 ≤ d < B. It is a well-known result that

Theorem

q(Sd) = lim
n→∞

q(Sd, n) = logB

(
1 +

1
d

)

i.e. the Fibonacci numbers are Benford!
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Consider integers in the interval In := [Fn,Fn+1). Let X(In) be a
random variable, which takes Fibonacci numbers in [F1,Fn),
weighted by how often they occur in decompositions in In. Then,

P{X(In) = Fk} :=


Fk−1Fn−k−2
µnFn−1

, if 1 ≤ k ≤ n− 2

1
µn
, if k = n

0, otherwise

where µn is the average number of summands in Zeckendorf
decompositions of integers in the interval [Fn,Fn+1).
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We compute an approximation for P{X(In) = Fk} when
1 ≤ k ≤ n− 2.

P{X(In) = Fk} =
1

µnφ
√

5
+ O

(
φ−2k + φ−2n+2k)

Then, for a fixed integer r, we compute the approximation

∑
r<k<n−r

P{X(In) = Fk} = 1− r · O
(

1
n

)

Noting that the values of r for which the sum is vacuous do not hurt
our estimates.
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Set r :=
⌊

log n
logφ

⌋
. With these estimates, we may now compute the

density of S over the Zeckendorf summands in the interval
In = [Fn,Fn+1)

P{X(In) ∈ S} = nq(S)
µnφ
√

5
+ o(1)

In the limit, we have

lim
n→∞

P{X(In) ∈ S} = q(S)
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Remark

Stronger result than Benfordness of Zeckendorf summands.

Global property of the Fibonacci numbers can be carried over
locally into the Zeckendorf summands.

If we have a subset of the Fibonacci numbers S with asymptotic
density q(S), then the density of the set S over the Zeckendorf
summands will converge to this asymptotic density.



22/41

Introduction Benfordness in Interval Random Decomposition Benfordness of Decompositions Acknowledgements

Table of Contents

1 Introduction

2 Benfordness in Interval

3 Random Decomposition

4 Benfordness of Decompositions

5 Acknowledgements



23/41

Introduction Benfordness in Interval Random Decomposition Benfordness of Decompositions Acknowledgements

Theorem 2 (SMALL 2014): Random Decomposition
If we choose each Fibonacci number with probability q, disallowing
the choice of two consecutive Fibonacci numbers, the resulting
sequence follows Benford’s law.
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Example: n = 10

F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10

= 2 + 8 + 21 + 89

= 120
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Choosing a Random Decomposition

Select a random subset A of the Fibonaccis in the following way.
Given some q ∈ (0, 1). Let A0 := ∅.

For n ≥ 1, if Fn−1 ∈ An−1, let An := An−1. Otherwise, let An equal

An−1 ∪ {Fn} with probability q and An−1 with probability 1− q.

Let A :=
⋃

n An.
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Goal

We will prove that, with probability 1, A is Benford.

Stronger claim: For any subset S of the Fibonaccis with density d in
the Fibonaccis, with probability 1, S ∩ A will have density d in A.
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The probability that Fk ∈ A

The probability that Fk ∈ A is

Lemma

pk =
q

1 + q
+ O(qk).
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Expected Value of Xn

Define Xn := #An. Using elementary techniques, we get

Lemma

E[Xn] =
nq

1 + q
+ O(1)
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Expected Value of Xn

Xn := #An. Let

xk :=

{
1 ifFk ∈ A
0 ifFk /∈ A.

And note that Xn :=
∑n

k=1 xk. Then

E[Xn] =
n∑

k=1

E[xk]

=

n∑
k=1

pk

=
nq

1 + q
+ O(1).
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Variance of Xn

Xn := #An. Via standard calculations, we get

Lemma

Var[Xn] = O(n).

By Chebyshev’s inequality, we deduce that

Corollary

Xn = E[Xn] + o(n)

=
nq

1 + q
+ o(n)

with probability 1 + o(1).
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Expected Value of Yn

Define Yn,S := #An ∩ S. Using standard techniques, we get

Lemma

E[Yn] =
nqd

1 + q
+ o(n).
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Variance of Yn,S

Yn,S := #An ∩ S

Lemma

Var[Yn,S] = o(n2)

Corollary

Yn,S =
nqd

1 + q
+ o(n)

with probability 1 + o(1)
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Lemma

lim
n→∞

Yn,S

Xn
= lim

n→∞

#An ∩ S
#An

= lim
n→∞

nqd
1+q + o(n)
nq

1+q + o(n)

= d

with probability 1.

But by definition, this means that A ∩ S has density d in A. Therefore,
our claim is proven.
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Theorem 3 (SMALL 2014): Benfordness of Decomposition

If we pick a random integer M in the interval [0,Fn+1), then as
n→∞, its Zeckendorf decomposition will follow Benford’s Law
with high probabiltiy.
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Proof of Theorem 3

Let M be an integer in [0,Fn+1) with decomposition
M = Fa1 + Fa2 + · · ·+ Fa` . Then the probability that M =

∑
Fk∈An

Fk

is

pM =

{
q`(1− q)n−2`if a` ≤ n

q`(1− q)n−2`+1if a` = n
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Choosing q = 1
ϕ2 , the previous formula simplifies to

Lemma

pM =

{
ϕ−nif M ∈ [0,Fn)

ϕ−n−1if M ∈ [Fn,Fn+1)

We can prove that when selecting integers from [0,Fn+1) uniformly at
random, for any ε > 0 the proportion of the summands of M which
are in S will be within ε of S with probability 1 + o(1).
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Appendix

We know that the probability of choosing M = Fa1 + Fa2 + · · ·+ Fa`
is

pM equals q`(1− q)n−2` if a` ≤ n and q`(1− q)n−2`+1 if a` = n.

Choosing q = 1
ϕ2 gives

pM equals ϕ−n if M ∈ [0,Fn) and ϕ−n−1 if M ∈ [Fn,Fn+1).
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Let en(x) =
∣∣∣#DM∩S

DM
− d
∣∣∣, where DM is the decomposition of M. Let

E = {M ∈ [0,Fn+1) : e(x) ≥ ε}.
Let Bn =

∑
Fk∈An

Fk, so that p(M) = P(Bn = M). For sufficiently

large n, we have Fn+1 ≥ φn+1
√

5
. Now let Mn be a random variable

selected uniformly at random from the integers in [0,Fn+1). Then

P(Mn ∈ En) =
#En

Fn+1
=
∑

M∈En

1
Fn+1

(2)

≤
√

5
∑

M∈En

φ−n−1 ≤
√

5
∑

M∈En

p(M) (3)

=
√

5P(Bn ∈ En) = o(1) (4)

Therefore, we have proved that when selecting integers from [0,Fn+1)
uniformly at random, for any ε > 0 the proportion of the summands
of x which are in S will be within ε of S with probability 1 + o(1).


	Introduction
	Benfordness in Interval
	Random Decomposition
	Benfordness of Decompositions
	Acknowledgements

