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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2014 = 1597 + 377 + 34 + 5 + 1 = F16 + F13 + F8 + F4 + F1.
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Previous Results

Fibonacci Numbers: Fn+1 = Fn + Fn−1;
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example:
2014 = 1597 + 377 + 34 + 5 + 1 = F16 + F13 + F8 + F4 + F1.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Preliminaries: The Cookie Problem

The Cookie Problem
How many ways are there to divide C identical cookies among
P distinct people?
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Preliminaries: The Cookie Problem

The Cookie Problem
How many ways are there to divide C identical cookies among
P distinct people?

One wrong answer is PC .
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 8 cookies and 5 people (C = 8, P = 5):
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

10



Preliminaries Gaussianity Smaller Intervals References Appendices

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1 + k−1

k−1

)

=
(n−k

k−1

)

.
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Gaussian Behavior
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Generalizing Lekkerkerker

Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in
Zeckendorf’s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,

n! ≈ nne−n
√

2πn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hn+1 = c1Hn + c2Hn−1 + · · · + cLHn−L+1, n ≥ L

with H1 = 1, Hn+1 = c1Hn + c2Hn−1 + · · ·+ cnH1 + 1, n < L,
coefficients ci ≥ 0; c1, cL > 0 if L ≥ 2; c1 > 1 if L = 1.
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Generalizations

Zeckendorf: Every positive integer can be written uniquely
as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).
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Generalizations

Zeckendorf: Every positive integer can be written uniquely
as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).

Lekkerkerker: The average number of summands in the
generalized Zeckendorf decomposition for integers in
[Hn,Hn+1) tends to Cn + d as n → ∞, where C > 0 and d
are computable constants determined by the ci ’s.
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Generalizations

Zeckendorf: Every positive integer can be written uniquely
as

∑

aiHi with natural constraints on the ai ’s
(e.g. cannot use the recurrence relation to remove any
summand).

Lekkerkerker: The average number of summands in the
generalized Zeckendorf decomposition for integers in
[Hn,Hn+1) tends to Cn + d as n → ∞, where C > 0 and d
are computable constants determined by the ci ’s.

Central Limit Type Theorem: As n → ∞, the distribution of
the number of summands, i.e., a1 + a2 + · · ·+ am in the
generalized Zeckendorf decomposition

∑m
i=1 aiHi for

integers in [Hn,Hn+1) is Gaussian.
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Smaller Intervals
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Smaller Intervals

The previous techniques required the whole interval
[Fn,Fn+1).
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Smaller Intervals

The previous techniques required the whole interval
[Fn,Fn+1).

Goal: Show that we still get Gaussian behavior on smaller
intervals with high probability.
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Smaller Intervals

The previous techniques required the whole interval
[Fn,Fn+1).

Goal: Show that we still get Gaussian behavior on smaller
intervals with high probability.

Note that we can find specific subintervals over which the
number of summands is not close to Gaussian.
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Result

Theorem (SMALL 2014)

Let α(n) be an integer sequence with
limn→∞ α(n) = limn→∞ (n − α(n)) = ∞. Choose an integer
m ∈ [Fn,Fn+1) uniformly at random, and consider the number
of summands of integers in [m,m + Fα(n)). Then when
appropriately normalized, this distribution converges to a
Gaussian distribution for almost all choices of m.
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Plan of Attack

Special form: We will consider m of a special form, which
we’ll show occurs with probability 1 + o(1).
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Plan of Attack

Special form: We will consider m of a special form, which
we’ll show occurs with probability 1 + o(1).

We consider m such that there is a there is a gap of length
at least 3 for some index between α(n) + 1 and
α(n) + q(n).
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Plan of Attack

Special form: We will consider m of a special form, which
we’ll show occurs with probability 1 + o(1).

We consider m such that there is a there is a gap of length
at least 3 for some index between α(n) + 1 and
α(n) + q(n).

The benefit of choosing m of this form is that for any
k ∈ [m,m + Fα(n)), m and k have the same decomposition
for indices greater than α(n) + q(n).
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Plan of Attack

Special form: We will consider m of a special form, which
we’ll show occurs with probability 1 + o(1).

We consider m such that there is a there is a gap of length
at least 3 for some index between α(n) + 1 and
α(n) + q(n).

The benefit of choosing m of this form is that for any
k ∈ [m,m + Fα(n)), m and k have the same decomposition
for indices greater than α(n) + q(n).

We then get Gaussian behavior out of the lower index
terms, and show that the remaining terms cannot distrub
this.
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Probability of Special Form

If m =
∑n

j=1 ajFj isn’t of the desired form, the only possible
choices for the coefficients between α(n) + 1 and
α(n) + q(n) are (1,0,1,0, ...,0) and (0,1,0,1, ...,1).
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Probability of Special Form

If m =
∑n

j=1 ajFj isn’t of the desired form, the only possible
choices for the coefficients between α(n) + 1 and
α(n) + q(n) are (1,0,1,0, ...,0) and (0,1,0,1, ...,1).

It is easy to see that these two cases happen with low
probability. Explicitly, they happen with probability

Fn−α(n)−q(n)−1Fα(n) + Fn−α(n)−q(n)−2Fα(n)+1

Fn−1
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Probability of Special Form

If m =
∑n

j=1 ajFj isn’t of the desired form, the only possible
choices for the coefficients between α(n) + 1 and
α(n) + q(n) are (1,0,1,0, ...,0) and (0,1,0,1, ...,1).

It is easy to see that these two cases happen with low
probability. Explicitly, they happen with probability

Fn−α(n)−q(n)−1Fα(n) + Fn−α(n)−q(n)−2Fα(n)+1

Fn−1

Using Binet’s formula, we see that this probability is o(1)
as long as q(n) → ∞, so m is of our special form with
probability 1 + o(1).
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Showing Gaussianity

We will now show that the number of summands of integers in
[m,m + Fα(n)), appropriately normalized, approaches a
Gaussian distribution as n → ∞ as long as m is in our special
form.

Define bijection t between the integers in [m,m + Fα(n)) and
those in [0,Fα) as follows. First let f (x) be the sum of the terms
of the decomposition of x up to Fα(n)−1. Now let

t(m + h) =
{

f (m) + h : f (m) + h < Fα(n)

f (m) + h − Fα(n) : f (m) + h ≥ Fα(n)
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Showing Gaussianity

From previous slide:

t(m + h) =
{

f (m) + h : f (m) + h < Fα(n)
f (m) + h − Fα(n) : f (m) + h ≥ Fα(n)
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Showing Gaussianity

From previous slide:

t(m + h) =
{

f (m) + h : f (m) + h < Fα(n)
f (m) + h − Fα(n) : f (m) + h ≥ Fα(n)

Note that for any x ∈ [m,m + Fα), the decompositions of x
and t(x) agree for coefficients less than α(n).
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Showing Gaussianity

From previous slide:

t(m + h) =
{

f (m) + h : f (m) + h < Fα(n)
f (m) + h − Fα(n) : f (m) + h ≥ Fα(n)

Note that for any x ∈ [m,m + Fα), the decompositions of x
and t(x) agree for coefficients less than α(n).

Let s(x) be the number of summands used in the
decomposition of x , so we have

|s(t(x)) + N − s(x)| < q(n)

Where N is the number of summands in m with index
greater than α(n) + q(n).
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Showing Gaussianity

The distribution of s(x) over [0,Fα(n)) is known to be
Gaussian.

Use the correspondence between the intervals to show
that it is Gaussian over [m,m + Fα(n)) as well.

The standard deviation σn of the distribution over [0,Fα(n))
is known to approach infinity.

If we restrict q(n) = o(σn), the result follows by comparing
cumulative distribution functions.
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General Linear Recurrences

Generalizations
Does it work for general linear recurrences Hn?
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We at least need some modifications: We no longer have
an obvious notion of what is a “legal” decomposition.
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We at least need some modifications: We no longer have
an obvious notion of what is a “legal” decomposition.

With a few restrictions placed on Hn, it is known that the
longest gap in the decompositions of integers in [Hn,Hn+1)
has mean Θ(log n) and variance O(1).
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We at least need some modifications: We no longer have
an obvious notion of what is a “legal” decomposition.

With a few restrictions placed on Hn, it is known that the
longest gap in the decompositions of integers in [Hn,Hn+1)
has mean Θ(log n) and variance O(1).

By Chebyshev’s inequality, we obtain a gap of size at least
log log q(n) between α(n) + 1 and α(n) + q(n) with
probability 1 + o(1)
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General Linear Recurrences

A gap of length 3 was enough in the Fibonacci case. In the
general case, from an index up it is enough to have a gap
of size g(n) as long as g(n) → ∞.

Our log log q(n) gap suffices, and from this point forward
the argument follows very similarly to the Fibonacci case.
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Conclusions

We can extend the previous result of Gaussianity of the
number of summands over [Fn,Fn+1) to arbitrarily small
scales.

Our method also works for general linear recurrences.
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References
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Questions?
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn , Fn+1) is

fn(k) =
(

n−1−k
k

)

/Fn−1. Consider the density for the n + 1 case. Then we have, by Stirling

fn+1(k) =

(

n − k

k

)

1

Fn

=
(n − k)!

(n − 2k)!k !

1

Fn
=

1
√

2π

(n − k)n−k+ 1
2

k(k+ 1
2 )

(n − 2k)n−2k+ 1
2

1

Fn

plus a lower order correction term.

Also we can write Fn = 1
√

5
φn+1 = φ

√

5
φn for large n, where φ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F1 occurs once to help dealing with uniqueness and F2 = 2). We can now split the
terms that exponentially depend on n.

fn+1(k) =

(

1
√

2π

√

(n − k)

k(n − 2k)

√
5

φ

)(

φ
−n (n − k)n−k

kk (n − 2k)n−2k

)

.

Define

Nn =
1

√
2π

√

(n − k)

k(n − 2k)

√
5

φ
, Sn = φ

−n (n − k)n−k

kk (n − 2k)n−2k
.

Thus, write the density function as
fn+1(k) = NnSn

where Nn is the first term that is of order n−1/2 and Sn is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = µ + xσ where µ and σ are the
mean and the standard deviation, and depend on n. The discrete weights of fn(k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fn(k)dk = fn(µ + σx)σdx.

Using the change of variable, we can write Nn as

Nn =
1

√
2π

√

n − k

k(n − 2k)

φ
√

5

=
1

√
2πn

√

1 − k/n

(k/n)(1 − 2k/n)

√
5

φ

=
1

√
2πn

√

1 − (µ + σx)/n

((µ + σx)/n)(1 − 2(µ + σx)/n)

√
5

φ

=
1

√
2πn

√

1 − C − y

(C + y)(1 − 2C − 2y)

√
5

φ

where C = µ/n ≈ 1/(φ + 2) (note that φ2 = φ + 1) and y = σx/n. But for large n, the y term vanishes since

σ ∼
√

n and thus y ∼ n−1/2. Thus

Nn ≈
1

√
2πn

√

1 − C

C(1 − 2C)

√
5

φ
=

1
√

2πn

√

(φ + 1)(φ + 2)

φ

√
5

φ
=

1
√

2πn

√

5(φ + 2)

φ
=

1
√

2πσ2

since σ2 = n φ
5(φ+2) .
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(Sketch of the) Proof of Gaussianity

For the second term Sn , take the logarithm and once again change variables by k = µ + xσ,

log(Sn) = log

(

φ
−n (n − k)(n−k)

kk (n − 2k)(n−2k)

)

= −n log(φ) + (n − k) log(n − k) − (k) log(k)

− (n − 2k) log(n − 2k)

= −n log(φ) + (n − (µ + xσ)) log(n − (µ + xσ))

− (µ + xσ) log(µ + xσ)

− (n − 2(µ + xσ)) log(n − 2(µ + xσ))

= −n log(φ)

+ (n − (µ + xσ))

(

log(n − µ) + log
(

1 −
xσ

n − µ

))

− (µ + xσ)

(

log(µ) + log
(

1 +
xσ

µ

))

− (n − 2(µ + xσ))

(

log(n − 2µ) + log
(

1 −
xσ

n − 2µ

))

= −n log(φ)

+ (n − (µ + xσ))

(

log
(

n

µ
− 1
)

+ log
(

1 −
xσ

n − µ

))

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ))

(

log
(

n

µ
− 2
)

+ log
(

1 −
xσ

n − 2µ

))

.
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(Sketch of the) Proof of Gaussianity

Note that, since n/µ = φ + 2 for large n, the constant terms vanish. We have log(Sn)

= −n log(φ) + (n − k) log
(

n

µ
− 1

)

− (n − 2k) log
(

n

µ
− 2
)

+ (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= −n log(φ) + (n − k) log (φ + 1) − (n − 2k) log (φ) + (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 −
xσ

n − 2µ

)

= n(− log(φ) + log
(

φ
2
)

− log (φ)) + k(log(φ2
) + 2 log(φ)) + (n − (µ + xσ)) log

(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

= (n − (µ + xσ)) log
(

1 −
xσ

n − µ

)

− (µ + xσ) log
(

1 +
xσ

µ

)

− (n − 2(µ + xσ)) log
(

1 − 2
xσ

n − 2µ

)

.
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xσ/n.

log(Sn) = (n − (µ + xσ))

(

−
xσ

n − µ
−

1

2

(

xσ

n − µ

)2
+ . . .

)

− (µ + xσ)

(

xσ

µ
−

1

2

(

xσ

µ

)2
+ . . .

)

− (n − 2(µ + xσ))

(

−2
xσ

n − 2µ
−

1

2

(

2
xσ

n − 2µ

)2
+ . . .

)

= (n − (µ + xσ))



−
xσ

n (φ+1)
(φ+2)

−
1

2





xσ

n (φ+1)
(φ+2)





2

+ . . .





− (µ + xσ)





xσ
n

φ+2

−
1

2





xσ
n

φ+2





2

+ . . .





− (n − 2(µ + xσ))



−
2xσ

n φ
φ+2

−
1

2





2xσ

n φ
φ+2





2

+ . . .





=
xσ

n
n

(

−

(

1 −
1

φ + 2

)

(φ + 2)

(φ + 1)
− 1 + 2

(

1 −
2

φ + 2

)

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n
(

−2
φ + 2

φ + 1
+

φ + 2

φ + 1
+ 2(φ + 2) − (φ + 2) + 4

φ + 2

φ

)

+O
(

n (xσ/n)3
)
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(Sketch of the) Proof of Gaussianity

log(Sn) =
xσ

n
n
(

−
φ + 1

φ + 2

φ + 2

φ + 1
− 1 + 2

φ

φ + 2

φ + 2

φ

)

−
1

2

(

xσ

n

)2
n(φ + 2)

(

−
1

φ + 1
+ 1 +

4

φ

)

+O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4

φ(φ + 1)
+ 1

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2

(xσ)2

n
(φ + 2)

(

3φ + 4 + 2φ + 1

φ(φ + 1)

)

+ O

(

n
(

xσ

n

)3
)

= −
1

2
x2

σ
2
(

5(φ + 2)

φn

)

+ O
(

n (xσ/n)3
)

.
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(Sketch of the) Proof of Gaussianity

But recall that

σ
2
=

φn

5(φ + 2)
.

Also, since σ ∼ n−1/2, n
(

xσ
n

)3
∼ n−1/2. So for large n, the O

(

n
(

xσ
n

)3
)

term vanishes. Thus we are left

with

log Sn = −
1

2
x2

Sn = e−
1
2 x2

.

Hence, as n gets large, the density converges to the normal distribution:

fn(k)dk = NnSndk

=
1

√
2πσ2

e−
1
2 x2

σdx

=
1

√
2π

e−
1
2 x2

dx.

�
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