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Maine-Québec Number Theory Confernece
October 3, 2015



Background Finite Fields Quaternions Acknowledgements References

Classical Ramsey Theory

Ramsey Theory is concerned with seeing how large a collection of
objects can be while avoiding a particular substructure.

Definition (Complete Graph)

The complete graph on n vertices is an undirected graph with n
vertices and a unique edge connecting each vertex.

A classic Ramsey problem is avoiding patterns in 2-colorings of the
edges of Kn, leading to the Friends and Strangers problem.
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Classical Ramsey Theory

Friends and Strangers Problem

What is the smallest group of people needed to guarantee k
mutual friends or n mutual strangers? Equivalently, what is the
smallest m = R(k , n) such that a 2-coloring of the edges of Km

contains a red Kk or blue Kn.

R(3, 3) = 6. One can prove any coloring of K6 has a red or blue
K3, and below is a non-viable coloring of K5.
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Previous Work

In 1961, Rankin tried to maximize the density of a subset of Z
avoiding 3-term geometric progressions.

Rankin (1961)

Rankin studied integers avoiding 3-term geometric progressions:
b, rb, r2b with b, rb, r2b ∈ Z. He used a greedy algorithm to
construct a set G ∗3 (Z) = {1, 2, 3, 5, 6, 7, 8, 10, 11, 13...}.

The elements of G ∗3 (Z) can be characterized by their prime
exponents.
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Previous Work

Rankin (1961)

Similarly, one can greedily construct the 3-term arithmetric
progression-free set A∗3(Z) = {0, 1, 3, 4, 9, 10, 12, 13, . . . }.

Write b, rb, r2b as pe1
1 . . . pen

n , p
f1
1 . . . p

fn
n , p

g1
1 . . . pgn

n . Then since
geometric progressions give arithmetic progressions in the prime
exponents, G ∗3 (Z) is exactly the elements whose prime exponents
are in A∗3(Z).

Calculated the asymptotic density d(G ∗3 (Z)) ≈ 0.71974.

The idea of determining elements in your greedy set by their prime
exponents appears a lot in this area.
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Previous Work

SMALL ’14: Generalization to Number Fields

Studied sets of ideals of number fields’ integer rings OK that avoid
3-term progressions. Replicated the greedy construction to get
large density sets of ideals containing no 3-term progressions, with
a similar formula for the density.

SMALL ’15: Finite Fields and Free Groups

The idea of sets without progressions was extended to finite fields,
Hurwitz quaternions, and free groups.
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Preliminaries

Functon Field

We view Fq[x ], with q = pn, as the ring of all polynomials with
coefficients in the finite field Fq.

Goal

Construct a Greedy Set of polynomials in Fq[x ] free of geometric
progressions.
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The Greedy Set

Rewrite any f (x) as f (x) = uPα1
1 · · ·P

αk
k where u is a unit,

and each Pi is a monic irreducible polynomial.

Exclude f (x) with
αi /∈ A∗3(Z) = {0, 1, 3, 4, 9, 10, 12, 13, . . . }.

Greedy Set in Fq[x ]

The Greedy Set is exactly the set of all f (x) ∈ Fq[x ] only with
prime exponents in A∗3(Z)
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Asymptotic Density

The asymptotic density of the greedy set G ∗3,q ⊆ Fq[x ] can be
expressed as

d(G ∗3 ) =

(
1− 1

q

) ∞∏
i=1

∞∏
n=1

(
1 + q−n3

i
)m(n,q)

,

where m(n, q) = 1
n

∑
d |n µ

(
n
d

)
qd gives the number of monic

irreducibles over Fq[x ].

Becomes a lower bound when truncated.
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Lower Bound

Table : Lower Bound for Density of G∗
3 (Fq[x ]).

q d(G ∗3 ) for Fq[x ]

2 .648361

3 .747027

4 .799231

5 .833069

7 .874948

8 .888862

q d(G ∗3 ) for Fq[x ]

9 .899985

25 .961538

27 .964286

49 .980000

125 .992063

343 .997093
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Bounds on Upper Densities

We can then use similar combinatorial methods to McNew, Riddell,
and Nathanson and O’Byrant to give lower and upper bounds for
the upper density of a progression free set for specific values of q.

Table : New upper bounds (q-smooth) compared to the old upper
bounds, as well as the lower bounds for the supremum of upper densities.

q New Bound Old Bound Lower Bound
(q-smooth)

2 .846435547 .857142857 .845397956

3 .921933009 .923076923 .921857532

4 .967684196 .96774193 .967680495

5 .967684196 .967741935 .967680495

7 .982448450 .982456140 .982447814
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Question

Previous work has always been done in a commutative setting.
How does non-commutivity affect the problem in, say, free groups
or the Hurwitz quaternions H? How does the lack of unique
factorization affect the problem in H?

Building on methods of McNew, SMALL ’14, and Rankin, we
construct large subsets of H that avoid 3-term geometric
progressions.



Background Finite Fields Quaternions Acknowledgements References

Question

Previous work has always been done in a commutative setting.
How does non-commutivity affect the problem in, say, free groups
or the Hurwitz quaternions H? How does the lack of unique
factorization affect the problem in H?

Building on methods of McNew, SMALL ’14, and Rankin, we
construct large subsets of H that avoid 3-term geometric
progressions.



Background Finite Fields Quaternions Acknowledgements References

Types of Quaternions

Definition

Quaternions constitute the algebra over the reals generated by
units i , j , and k such that

i2 = j2 = k2 = ijk = −1.

Quaternions can be written as a + bi + cj + dk for a, b, c , d ∈ R.

Definition

We say that a + bi + cj + dk is in the Hurwitz Order, H, if
a, b, c , d are all integers or halves of odd integers.

Definition

The Norm of a quaternion Q = a + bi + cj + dk is given by
Norm[Q] = a2 + b2 + c2 + d2.
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Counting Quaternions

The number of Hurwitz Quaternions below a given norm is given
by the corresponding number of lattice points in a 4-dimensional
hypersphere.

Fact

The number of Hurwitz quaternions of norm N is:

S({N}) = 24
∑
2-d |N

d ,

the sum of the odd divisors of N multiplied by 24.
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Units and Factorization

Fact

The Hurwitz Order contains 24 units, namely

±1,±i ,±j ,±k and ± 1

2
± 1

2
i ± 1

2
j ± 1

2
k .

Fact

Let Q be a Hurwitz quaternion of norm q. For any factorization of
q into a product p0p1 · · · pk of integer primes, there is a
factorization

Q = P0P1 · · ·Pk

where Pi is a Hurwitz prime of norm pi .
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The Goal

Goal

Construct and bound Greedy and maximally sized sets of
quaternions of the Hurwitz Order free of three-term geometric
progressions. For definiteness, we exclude progressions of the form

Q, QR, QR2

where Q,R ∈ H and Norm[R] 6= 1.
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The Hurwitz Quaternions are particularly tricky to work with
because they lack unique factorization. While it is hard to
characterize a true greedy set by its primes, we can consider the
set of Hurwitz Quaternions with norm in G ∗3 (Z), which is 3-term
progression-free.

Want: formula for the proportion of quaternions whose norm is
divisible by pn and not pn+1. We study the proportion of (Hurwitz)
quaternions up to norm N whose norm is exactly divisible by pn.
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Quats with norm div by pn - Quats with norm div by pn+1

Quats with norm ≤ N

=
(Quats with norm pn)(Quats with norm ≤ N/pn)

24 · (Quats with norm ≤ N)
−

(Quats with norm pn+1)(Quats with norm ≤ N/pn+1)

24 · (Quats with norm ≤ N)

=

(∑
2-d |pn d

)
V4(
√

N/pn)−
(∑

2-d |pn+1 d
)

V4(
√

N/pn+1)

V4(
√

N)
+ error,

where V4(M) denotes the volume of a 4-dimensional sphere of
radius M. For p odd∑

2-d |pn
d = 1 + · · ·+ pn = (pn+1 − 1)/(p − 1).

For p = 2, the quantity is 1.
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We sum up probabilities of having norm divisible by pn to find the
proportion of quaternions whose norm is exactly divisible by pn for
p fixed, n ∈ A∗3(Z):

∑
n∈A∗

3 (Z)

pn+3 − pn+2 − p2 + 1

p2(p − 1)p2n
.

To find the density of {q ∈ H : Norm[q] ∈ G ∗3 (Z)}, we multiply
these terms to get all norms with prime powers in A∗3(Z), i.e.,
norms in G ∗3 (Z).

d({q ∈ H : N[q] ∈ G ∗3 (Z)}) =

 ∑
n∈A∗

3 (Z)

22 − 1

2222n


×
∏
p odd

 ∑
n∈A∗

3 (Z)

pn+3 − pn+2 − p2 + 1

p2(p − 1)p2n


≈ .77132.
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Instead of studying large density sets avoiding 3-term progressions,
we can also try to maximize the upper density.

Definition (Upper Density)

The upper density of a set A ⊂ H is

lim sup
N→∞

|A ∩ {q ∈ H : Norm[q] ≤ N}|
|{q ∈ H : Norm[q] ≤ N}|

We wish to study lower bounds for the supremum of upper
densities of 3-term progression-free sets.
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Lower Bound for the Supremum

For a lower bound, we construct a set with large upper density.
Consider
SN =

(
N
48 ,

N
45

]
∪
(
N
40 ,

N
36

]
∪
(
N
32 ,

N
27

]
∪
(
N
24 ,

N
12

]
∪
(
N
9 ,

N
8

]
∪

(
N
4 ,N

]
Then the quaternions with norm in SN have no 3-term progressions
in their norms, and thus no 3-term progressions in the elements
themselves.
By spacing out copies of {q ∈ H : Norm[q] ∈ SN}, we construct a
set with upper density

lim
N→∞

{q ∈ H : Norm[q] ∈ SN}
{q ∈ H : Norm[q] ≤ N}

≈ .946589.
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The Greedy Set

Recall Rankin’s greedy set, G ∗3 :
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...

48, 51...

Norms of elements in our greedy set:
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 49, 51...

Reasons for discrepancies: Try 312. Recall

S({N}) = 24
∑
2-d |N

d .

Then S({312}) = 24
∑

2-d |312 d . However, the number of ways to

write a quaternion of norm 312 as the square of a quaternion of
norm 31 multiplied by a unit is

S({312}) ≥ 24
∑

2-31d |312
d = 24 ∗ 31

∑
2-d |31

d > 24S({31}).
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48, 49, 51...

Reasons for discrepancies: Try 312. Recall

S({N}) = 24
∑
2-d |N

d .

Then S({312}) = 24
∑

2-d |312 d . However, the number of ways to

write a quaternion of norm 312 as the square of a quaternion of
norm 31 multiplied by a unit is

S({312}) ≥ 24
∑

2-31d |312
d = 24 ∗ 31

∑
2-d |31

d > 24S({31}).
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Future Work

Questions

How does the density of the set constructed by taking norms
from Rankin’s greedy set of integers compare to the density of
the greedy subset of quaternions?

Can a trivial upper or lower bound be found for the greedy
set?
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Upper Bound for the Supremum

From a progression-free set, we must exclude one of {b, br , br2}
from any such tuple. By looking at a large number of disjoint such
tuples, we can force a proportion of exclusions. Picking r minimal
will yield more exclusions.

Note that
∑

2-d |2 d = 1, so up to units there is one prime of norm
2. So it is easy to detect ”coprime-ness” to this prime.

Fix r of norm 2, consider quaternions up to norm M. If
Norm[b] ≤ M/4 and N[b] has no factor of r , then b, br , br2 forms
a progression, and different b yield disjoint tuples.
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As a result, we can exclude

lim
M→∞

1− (Proportion coprime to r)
Number of quats up to M/4

Number of quats up to M

= 1− (3/4)(1/24)

= 1− 3/26 ≈ .953125.

Like the lower bound, we can repeat this in multiple annuli to get
an upper bound of

1− 3

26
·
∞∑
i=0

1

26i
≈ .952381.
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