A Ramsey Theoretic Approach to Finite Fields and Quaternions

Sarah Manski, Kalamazoo College sarah.manski12@kzoo.edu

Joint work with Megumi Asada, Eva Fourakis, Eli Goldstein, Gwyneth Moreland Advisors: Nathan McNew and Steven J. Miller

> Maine-Québec Number Theory Confernece October 3, 2015

Classical Ramsey Theory

Ramsey Theory is concerned with seeing how large a collection of objects can be while avoiding a particular substructure.

References

References

Classical Ramsey Theory

Background

Ramsey Theory is concerned with seeing how large a collection of objects can be while avoiding a particular substructure.

Definition (Complete Graph)

The complete graph on n vertices is an undirected graph with n vertices and a unique edge connecting each vertex.

References

Classical Ramsey Theory

Background

Ramsey Theory is concerned with seeing how large a collection of objects can be while avoiding a particular substructure.

Definition (Complete Graph)

The complete graph on n vertices is an undirected graph with n vertices and a unique edge connecting each vertex.

A classic Ramsey problem is avoiding patterns in 2-colorings of the edges of K_n , leading to the Friends and Strangers problem.

Classical Ramsey Theory

Friends and Strangers Problem

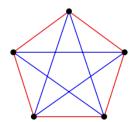
What is the smallest group of people needed to guarantee k mutual friends or n mutual strangers? Equivalently, what is the smallest m = R(k, n) such that a 2-coloring of the edges of K_m contains a red K_k or blue K_n .

Classical Ramsey Theory

Friends and Strangers Problem

What is the smallest group of people needed to guarantee k mutual friends or n mutual strangers? Equivalently, what is the smallest m = R(k, n) such that a 2-coloring of the edges of K_m contains a red K_k or blue K_n .

R(3,3) = 6. One can prove any coloring of K_6 has a red or blue K_3 , and below is a non-viable coloring of K_5 .



00000

In 1961, Rankin tried to maximize the density of a subset of $\mathbb Z$ avoiding 3-term geometric progressions.

Previous Work

In 1961, Rankin tried to maximize the density of a subset of $\ensuremath{\mathbb{Z}}$ avoiding 3-term geometric progressions.

Rankin (1961)

Rankin studied integers avoiding 3-term geometric progressions: b, rb, r^2b with $b, rb, r^2b \in \mathbb{Z}$. He used a greedy algorithm to construct a set $G_3^*(\mathbb{Z}) = \{1, 2, 3, 5, 6, 7, 8, 10, 11, 13...\}$.

The elements of $G_3^*(\mathbb{Z})$ can be characterized by their prime exponents.

Previous Work

Background

Rankin (1961)

Similarly, one can greedily construct the 3-term arithmetric progression-free set $A_3^*(\mathbb{Z}) = \{0, 1, 3, 4, 9, 10, 12, 13, \dots\}.$

Write b, rb, r^2b as $p_1^{e_1} \dots p_n^{e_n}, p_1^{f_1} \dots p_n^{f_n}, p_1^{g_1} \dots p_n^{g_n}$. Then since geometric progressions give arithmetic progressions in the prime exponents, $G_3^*(\mathbb{Z})$ is exactly the elements whose prime exponents are in $A_3^*(\mathbb{Z})$.

Calculated the asymptotic density $d(G_3^*(\mathbb{Z})) \approx 0.71974$.

Acknowledgements

Previous Work

Rankin (1961)

Similarly, one can greedily construct the 3-term arithmetric progression-free set $A_3^*(\mathbb{Z}) = \{0, 1, 3, 4, 9, 10, 12, 13, \dots\}.$

Write b, rb, r^2b as $p_1^{e_1} \dots p_n^{e_n}, p_1^{f_1} \dots p_n^{f_n}, p_1^{g_1} \dots p_n^{g_n}$. Then since geometric progressions give arithmetic progressions in the prime exponents, $G_3^*(\mathbb{Z})$ is exactly the elements whose prime exponents are in $A_3^*(\mathbb{Z})$.

Calculated the asymptotic density $d(G_3^*(\mathbb{Z})) \approx 0.71974$.

The idea of determining elements in your greedy set by their prime exponents appears a lot in this area.

Previous Work

SMALL '14: Generalization to Number Fields

Studied sets of ideals of number fields' integer rings \mathcal{O}_K that avoid 3-term progressions. Replicated the greedy construction to get large density sets of ideals containing no 3-term progressions, with a similar formula for the density.

SMALL '14: Generalization to Number Fields

Studied sets of ideals of number fields' integer rings $\mathcal{O}_{\mathcal{K}}$ that avoid 3-term progressions. Replicated the greedy construction to get large density sets of ideals containing no 3-term progressions, with a similar formula for the density.

SMALL '15: Finite Fields and Free Groups

The idea of sets without progressions was extended to finite fields, Hurwitz quaternions, and free groups.

Functon Field

We view $\mathbb{F}_q[x]$, with $q = p^n$, as the ring of all polynomials with coefficients in the finite field \mathbb{F}_a .

Function Field

We view $\mathbb{F}_q[x]$, with $q = p^n$, as the ring of all polynomials with coefficients in the finite field \mathbb{F}_q .

Goal

Construct a Greedy Set of polynomials in $\mathbb{F}_q[x]$ free of geometric progressions.

The Greedy Set

Background

- Rewrite any f(x) as $f(x) = uP_1^{\alpha_1} \cdots P_k^{\alpha_k}$ where u is a unit, and each P_i is a monic irreducible polynomial.
- Exclude f(x) with $\alpha_i \notin A_3^*(\mathbb{Z}) = \{0, 1, 3, 4, 9, 10, 12, 13, \dots\}.$

The Greedy Set

Background

- Rewrite any f(x) as $f(x) = uP_1^{\alpha_1} \cdots P_k^{\alpha_k}$ where u is a unit, and each P_i is a monic irreducible polynomial.
- Exclude f(x) with $\alpha_i \notin A_3^*(\mathbb{Z}) = \{0, 1, 3, 4, 9, 10, 12, 13, \dots\}.$

Greedy Set in $\mathbb{F}_q[x]$

The Greedy Set is exactly the set of all $f(x) \in \mathbb{F}_a[x]$ only with prime exponents in $A_3^*(\mathbb{Z})$

Asymptotic Density

Background

The asymptotic density of the greedy set $G_{3,q}^* \subseteq \mathbb{F}_q[x]$ can be expressed as

$$d(G_3^*) = \left(1 - \frac{1}{q}\right) \prod_{i=1}^{\infty} \prod_{n=1}^{\infty} \left(1 + q^{-n3^i}\right)^{m(n,q)},$$

where $m(n,q) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d$ gives the number of monic irreducibles over $\mathbb{F}_q[x]$.

Asymptotic Density

Background

The asymptotic density of the greedy set $G_{3,a}^* \subseteq \mathbb{F}_q[x]$ can be expressed as

$$d(G_3^*) = \left(1 - \frac{1}{q}\right) \prod_{i=1}^{\infty} \prod_{n=1}^{\infty} \left(1 + q^{-n3^i}\right)^{m(n,q)},$$

where $m(n,q) = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d$ gives the number of monic irreducibles over $\mathbb{F}_a[x]$.

Becomes a lower bound when truncated.

Lower Bound

Table : Lower Bound for Density of $G_3^*(\mathbb{F}_q[x])$.

q	$d(G_3^*)$ for $\mathbb{F}_q[x]$		
2	.648361		
3	.747027		
4	.799231		
5	.833069		
7	.874948		
8	.888862		

q	$d(G_3^*)$ for $\mathbb{F}_q[x]$	
9	.899985	
25	.961538	
27	.964286	
49	.980000	
125	.992063	
343	.997093	

Bounds on Upper Densities

We can then use similar combinatorial methods to McNew, Riddell, and Nathanson and O'Byrant to give lower and upper bounds for the upper density of a progression free set for specific values of q.

Table : New upper bounds (q-smooth) compared to the old upper bounds, as well as the lower bounds for the supremum of upper densities.

q	New Bound	Old Bound	Lower Bound
	(<i>q</i> -smooth)		
2	.846435547	.857142857	.845397956
3	.921933009	.923076923	.921857532
4	.967684196	.96774193	.967680495
5	.967684196	.967741935	.967680495
7	.982448450	.982456140	.982447814

Previous work has always been done in a commutative setting. How does non-commutivity affect the problem in, say, free groups or the Hurwitz quaternions \mathcal{H} ? How does the lack of unique factorization affect the problem in \mathcal{H} ?

Quaternions

Previous work has always been done in a commutative setting. How does non-commutivity affect the problem in, say, free groups or the Hurwitz quaternions \mathcal{H} ? How does the lack of unique factorization affect the problem in \mathcal{H} ?

Quaternions

Building on methods of McNew, SMALL '14, and Rankin, we construct large subsets of \mathcal{H} that avoid 3-term geometric progressions.

Types of Quaternions

Definition

Quaternions constitute the algebra over the reals generated by units i, j, and k such that

$$i^2 = j^2 = k^2 = ijk = -1.$$

Quaternions can be written as a + bi + cj + dk for $a, b, c, d \in \mathbb{R}$.

Types of Quaternions

Definition

Background

Quaternions constitute the algebra over the reals generated by units i, j, and k such that

$$i^2 = j^2 = k^2 = ijk = -1.$$

Quaternions can be written as a + bi + cj + dk for $a, b, c, d \in \mathbb{R}$.

Definition

We say that a + bi + cj + dk is in the Hurwitz Order, \mathcal{H} , if a, b, c, d are all integers or halves of odd integers.

Definition

Background

Quaternions constitute the algebra over the reals generated by units i, j, and k such that

Quaternions

$$i^2 = j^2 = k^2 = ijk = -1.$$

Quaternions can be written as a + bi + cj + dk for $a, b, c, d \in \mathbb{R}$.

Definition

We say that a + bi + cj + dk is in the Hurwitz Order, \mathcal{H} , if a, b, c, d are all integers or halves of odd integers.

Definition

The Norm of a quaternion Q = a + bi + cj + dk is given by Norm[Q] = $a^2 + b^2 + c^2 + d^2$.

Counting Quaternions

The number of Hurwitz Quaternions below a given norm is given by the corresponding number of lattice points in a 4-dimensional hypersphere.

Counting Quaternions

The number of Hurwitz Quaternions below a given norm is given by the corresponding number of lattice points in a 4-dimensional hypersphere.

Fact

Background

The number of Hurwitz quaternions of norm N is:

$$S(\{N\})=24\sum_{2\nmid d\mid N}d,$$

the sum of the odd divisors of N multiplied by 24.

Units and Factorization

Fact

The Hurwitz Order contains 24 units, namely

$$\pm 1, \pm i, \pm j, \pm k$$
 and $\pm \frac{1}{2} \pm \frac{1}{2}i \pm \frac{1}{2}j \pm \frac{1}{2}k$.

Units and Factorization

Fact

Background

The Hurwitz Order contains 24 units, namely

$$\pm 1, \pm i, \pm j, \pm k$$
 and $\pm \frac{1}{2} \pm \frac{1}{2}i \pm \frac{1}{2}j \pm \frac{1}{2}k$.

Fact

Let Q be a Hurwitz quaternion of norm q. For any factorization of q into a product $p_0 p_1 \cdots p_k$ of integer primes, there is a factorization

$$Q = P_0 P_1 \cdots P_k$$

where P_i is a Hurwitz prime of norm p_i .

Goal

Construct and bound Greedy and maximally sized sets of quaternions of the Hurwitz Order free of three-term geometric progressions. For definiteness, we exclude progressions of the form

$$Q$$
, QR , QR^2

where $Q, R \in \mathcal{H}$ and $\textit{Norm}[R] \neq 1$.

Quaternions

progression-free.

Background

Quaternions

Want: formula for the proportion of quaternions whose norm is divisible by p^n and not p^{n+1} . We study the proportion of (Hurwitz) quaternions up to norm N whose norm is exactly divisible by p^n .

Quats with norm div by p^n - Quats with norm div by p^{n+1} Quats with norm < N(Quats with norm p^n)(Quats with norm $\leq N/p^n$) $24 \cdot (Quats with norm < N)$ (Quats with norm p^{n+1})(Quats with norm $\leq N/p^{n+1}$) $24 \cdot (Quats with norm \leq N)$ $=\frac{\left(\sum_{2\nmid d\mid p^n}d\right)V_4(\sqrt{N/p^n})-\left(\sum_{2\nmid d\mid p^{n+1}}d\right)V_4(\sqrt{N/p^{n+1}})}{V_4(\sqrt{N})}$

Quaternions

where $V_4(M)$ denotes the volume of a 4-dimensional sphere of radius M. For p odd

$$\sum_{2 \nmid d \mid p^n} d = 1 + \dots + p^n = (p^{n+1} - 1)/(p - 1).$$

For p=2, the quantity is 1.

We sum up probabilities of having norm divisible by p^n to find the proportion of quaternions whose norm is exactly divisible by p^n for p fixed, $n \in A_3^*(\mathbb{Z})$:

Quaternions 00000000000

$$\sum_{n\in A_3^*(\mathbb{Z})}\frac{p^{n+3}-p^{n+2}-p^2+1}{p^2(p-1)p^{2n}}.$$

Quaternions

$$\sum_{n\in A_3^*(\mathbb{Z})}\frac{p^{n+3}-p^{n+2}-p^2+1}{p^2(p-1)p^{2n}}.$$

To find the density of $\{q \in \mathcal{H} : \text{Norm}[q] \in G_3^*(\mathbb{Z})\}$, we multiply these terms to get all norms with prime powers in $A_3^*(\mathbb{Z})$, i.e., norms in $G_3^*(\mathbb{Z})$.

We sum up probabilities of having norm divisible by p^n to find the proportion of quaternions whose norm is exactly divisible by p^n for p fixed, $n \in A_3^*(\mathbb{Z})$:

$$\sum_{n \in A_s^*(\mathbb{Z})} \frac{p^{n+3} - p^{n+2} - p^2 + 1}{p^2(p-1)p^{2n}}.$$

To find the density of $\{q \in \mathcal{H} : \mathsf{Norm}[q] \in G_3^*(\mathbb{Z})\}$, we multiply these terms to get all norms with prime powers in $A_3^*(\mathbb{Z})$, i.e., norms in $G_3^*(\mathbb{Z})$.

$$d(\{q \in \mathcal{H} : \mathsf{N}[q] \in G_3^*(\mathbb{Z})\}) = \left[\sum_{n \in A_3^*(\mathbb{Z})} \frac{2^2 - 1}{2^2 2^{2n}}\right] \times \prod_{\substack{p \text{ odd} \\ n \in A_3^*(\mathbb{Z})}} \left[\sum_{n \in A_3^*(\mathbb{Z})} \frac{p^{n+3} - p^{n+2} - p^2 + 1}{p^2 (p-1)p^{2n}}\right] \approx .77132.$$

Instead of studying large density sets avoiding 3-term progressions, we can also try to maximize the upper density.

Definition (Upper Density)

The upper density of a set $A \subset \mathcal{H}$ is

$$\limsup_{N \to \infty} \frac{|A \cap \{q \in \mathcal{H} : \mathsf{Norm}[q] \le N\}|}{|\{q \in \mathcal{H} : \mathsf{Norm}[q] \le N\}|}$$

Instead of studying large density sets avoiding 3-term progressions, we can also try to maximize the upper density.

Definition (Upper Density)

The upper density of a set $A \subset \mathcal{H}$ is

$$\limsup_{N\to\infty} \frac{|A\cap\{q\in\mathcal{H}: \text{Norm}[q]\leq N\}|}{|\{q\in\mathcal{H}: \text{Norm}[q]\leq N\}|}$$

We wish to study lower bounds for the supremum of upper densities of 3-term progression-free sets.

For a lower bound, we construct a set with large upper density. Consider

$$S_N = \left(\frac{N}{4}, N\right]$$

Then the quaternions with norm in S_N have no 3-term progressions in their norms, and thus no 3-term progressions in the elements themselves.

By spacing out copies of $\{q \in \mathcal{H} : \mathsf{Norm}[q] \in S_N\}$, we construct a set with upper density

$$\lim_{N\to\infty} \frac{\{q\in\mathcal{H}: \mathsf{Norm}[q]\in\mathcal{S}_N\}}{\{q\in\mathcal{H}: \mathsf{Norm}[q]\leq N\}} \approx .946589.$$

Lower Bound for the Supremum

For a lower bound, we construct a set with large upper density. Consider

$$S_N = \left(\frac{N}{9}, \frac{N}{8}\right] \cup \left(\frac{N}{4}, N\right]$$

Then the quaternions with norm in S_N have no 3-term progressions in their norms, and thus no 3-term progressions in the elements themselves.

By spacing out copies of $\{q \in \mathcal{H} : \mathsf{Norm}[q] \in S_N\}$, we construct a set with upper density

$$\lim_{N\to\infty} \frac{\{q\in\mathcal{H}: \mathsf{Norm}[q]\in\mathcal{S}_N\}}{\{q\in\mathcal{H}: \mathsf{Norm}[q]\leq N\}} \approx .946589.$$

Lower Bound for the Supremum

For a lower bound, we construct a set with large upper density. Consider

$$S_N = \left(\frac{N}{24}, \frac{N}{12}\right] \cup \left(\frac{N}{9}, \frac{N}{8}\right] \cup \left(\frac{N}{4}, N\right]$$

Then the quaternions with norm in S_N have no 3-term progressions in their norms, and thus no 3-term progressions in the elements themselves.

By spacing out copies of $\{q \in \mathcal{H} : \text{Norm}[q] \in S_N\}$, we construct a set with upper density

$$\lim_{N\to\infty} \frac{\{q\in\mathcal{H}: \mathsf{Norm}[q]\in\mathcal{S}_N\}}{\{q\in\mathcal{H}: \mathsf{Norm}[q]\leq N\}} \approx .946589.$$

Lower Bound for the Supremum

For a lower bound, we construct a set with large upper density. Consider

$$S_N = \left(\frac{N}{32}, \frac{N}{27}\right] \cup \left(\frac{N}{24}, \frac{N}{12}\right] \cup \left(\frac{N}{9}, \frac{N}{8}\right] \cup \left(\frac{N}{4}, N\right]$$

Then the quaternions with norm in S_N have no 3-term progressions in their norms, and thus no 3-term progressions in the elements themselves.

By spacing out copies of $\{q \in \mathcal{H} : \mathsf{Norm}[q] \in S_N\}$, we construct a set with upper density

$$\lim_{N\to\infty} \frac{\{q\in\mathcal{H}: \mathsf{Norm}[q]\in\mathcal{S}_N\}}{\{q\in\mathcal{H}: \mathsf{Norm}[q]\leq N\}} \approx .946589.$$

Lower Bound for the Supremum

For a lower bound, we construct a set with large upper density. Consider

$$S_{N} = \begin{pmatrix} \frac{N}{40}, \frac{N}{36} \end{bmatrix} \cup \begin{pmatrix} \frac{N}{32}, \frac{N}{27} \end{bmatrix} \cup \begin{pmatrix} \frac{N}{24}, \frac{N}{12} \end{bmatrix} \cup \begin{pmatrix} \frac{N}{9}, \frac{N}{8} \end{bmatrix} \cup \begin{pmatrix} \frac{N}{4}, N \end{bmatrix}$$

Then the quaternions with norm in S_N have no 3-term progressions in their norms, and thus no 3-term progressions in the elements themselves.

By spacing out copies of $\{q \in \mathcal{H} : \text{Norm}[q] \in S_N\}$, we construct a set with upper density

$$\lim_{N\to\infty} \frac{\{q\in\mathcal{H}: \mathsf{Norm}[q]\in\mathcal{S}_N\}}{\{q\in\mathcal{H}: \mathsf{Norm}[q]\leq N\}} \approx .946589.$$

For a lower bound, we construct a set with large upper density. Consider

Quaternions

$$S_{N} = \left(\frac{N}{48}, \frac{N}{45}\right] \cup \left(\frac{N}{40}, \frac{N}{36}\right] \cup \left(\frac{N}{32}, \frac{N}{27}\right] \cup \left(\frac{N}{24}, \frac{N}{12}\right] \cup \left(\frac{N}{9}, \frac{N}{8}\right] \cup \left(\frac{N}{4}, N\right]$$

Then the quaternions with norm in S_N have no 3-term progressions in their norms, and thus no 3-term progressions in the elements themselves.

By spacing out copies of $\{q \in \mathcal{H} : \text{Norm}[q] \in S_N\}$, we construct a set with upper density

$$\lim_{N\to\infty}\frac{\{q\in\mathcal{H}:\mathsf{Norm}[q]\in\mathcal{S}_N\}}{\{q\in\mathcal{H}:\mathsf{Norm}[q]\leq N\}}\approx.946589.$$

Recall Rankin's greedy set, G_3^* : 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21... Recall Rankin's greedy set, G_3^* : 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...

Norms of elements in our greedy set: 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21... Recall Rankin's greedy set, G_3^* : 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 51...

Norms of elements in our greedy set: 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21... Recall Rankin's greedy set, G_3^* : 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 51...

Quaternions

0000000000

Norms of elements in our greedy set: 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 49, 51... Recall Rankin's greedy set, G_3^* : 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 51...

Quaternions

0000000000

Norms of elements in our greedy set: 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 49, 51...

Reasons for discrepancies:

Recall Rankin's greedy set, G_3^* : 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 51...

Norms of elements in our greedy set: 1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 21...48, 49, 51...

Reasons for discrepancies: Try 31². Recall

$$S(\{N\}) = 24 \sum_{2 \nmid d \mid N} d.$$

Then $S(\{31^2\})=24\sum_{2\nmid d\mid 31^2}d$. However, the number of ways to write a quaternion of norm 31^2 as the square of a quaternion of norm 31 multiplied by a unit is

$$S({31^2}) \ge 24 \sum_{2 \nmid 31d \mid 31^2} d = 24 * 31 \sum_{2 \nmid d \mid 31} d > 24S({31}).$$

Acknowledgments

Co-collaborators:

 Megumi Asada, Eva Fourakis, Eli Goldstein, Nathan McNew, Steven J Miller, and Gwyneth Moreland

Funding Sources

- NSF Grant DMS1347804
- NSF Grant DMS1265673
- Williams College
- Clare Boothe Luce Scholars Program

References

- N. McNew, On sets of integers which contain no three terms in geometric progression, Math. Comp., DOI: http://dx.doi.org/10.1090/mcom/2979 (2015).
- A. Best, K. Huan, N. McNew, S. J. Miller, J. Powell, K. Tor, M. Weinstein Geometric-Progression-Free Sets Over Quadratic Number Fields, arxiv.org/abs/1412.0999, (2014).
- M. B. Nathanson and K. O'Bryant, A problem of Rankin on sets without geometric progressions, preprint (2014), http://arxiv.org/pdf/1408.2880.pdf.
- R. A. Rankin, Sets of integers containing not more than a given number of terms in arithmetical progression, Proc. Roy. Soc. Edinburgh Sect. A **65** (1960/61), 332–344 (1960/61).
- J. Riddell, Sets of integers containing no n terms in geometric progression, Glasgow Math. J. 10 (1969), 137–146.

Future Work

Questions

Future Work

Questions

 How does the density of the set constructed by taking norms from Rankin's greedy set of integers compare to the density of the greedy subset of quaternions?

Future Work

Questions

- How does the density of the set constructed by taking norms from Rankin's greedy set of integers compare to the density of the greedy subset of quaternions?
- Can a trivial upper or lower bound be found for the greedy set?

Upper Bound for the Supremum

From a progression-free set, we must exclude one of $\{b, br, br^2\}$ from any such tuple. By looking at a large number of disjoint such tuples, we can force a proportion of exclusions. Picking r minimal will yield more exclusions.

Upper Bound for the Supremum

From a progression-free set, we must exclude one of $\{b, br, br^2\}$ from any such tuple. By looking at a large number of disjoint such tuples, we can force a proportion of exclusions. Picking r minimal will yield more exclusions.

Note that $\sum_{2\nmid d\mid 2} d=1$, so up to units there is one prime of norm 2. So it is easy to detect "coprime-ness" to this prime.

From a progression-free set, we must exclude one of $\{b, br, br^2\}$ from any such tuple. By looking at a large number of disjoint such tuples, we can force a proportion of exclusions. Picking r minimal will yield more exclusions.

Quaternions

Note that $\sum_{2\nmid d|2} d = 1$, so up to units there is one prime of norm 2. So it is easy to detect "coprime-ness" to this prime.

Fix r of norm 2, consider quaternions up to norm M. If Norm[b] $\leq M/4$ and N[b] has no factor of r, then b, br, br² forms a progression, and different b yield disjoint tuples.

As a result, we can exclude

$$\lim_{M\to\infty} 1 - \text{(Proportion coprime to } r\text{)} \frac{\text{Number of quats up to } M/4}{\text{Number of quats up to } M} \\ = 1 - (3/4)(1/2^4) \\ = 1 - 3/2^6 \approx .953125.$$

Quaternions

$$\lim_{M\to\infty} 1 - \text{(Proportion coprime to } r\text{)} \frac{\text{Number of quats up to } M/4}{\text{Number of quats up to } M} \\ = 1 - (3/4)(1/2^4) \\ = 1 - 3/2^6 \approx .953125.$$

Quaternions

Like the lower bound, we can repeat this in multiple annuli to get an upper bound of

$$\lim_{M\to\infty} 1 - \text{(Proportion coprime to } r \text{)} \frac{\text{Number of quats up to } M/4}{\text{Number of quats up to } M} \\ = 1 - (3/4)(1/2^4) \\ = 1 - 3/2^6 \approx .953125.$$

Quaternions

Like the lower bound, we can repeat this in multiple annuli to get an upper bound of

$$1 - \frac{3}{2^6} \cdot \sum_{i=0}^{\infty} \frac{1}{2^{6i}} \approx .952381.$$