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Background and Motivation

Zeckendorf Representation and Summand Minimality:
A celebrated theorem of Zeckendorf states that every number can be
uniquely represented as a sum of non-consecutive Fibonacci numbers.
Further, of all the decompositions of an integer as a sum of Fibonacci
numbers, the Zeckendorf decomposition is minimal in that no other
decomposition has fewer summands.
Generalized Zeckendorf Representations for Non-
Negative Linear Recurrences: The Zeckendorf theorem has an
alternate statement paralleling the notion of a base d representation.
Just as each number has a unique representation base d composed of
digits from the set {[0], [1], . . . , [d − 1]}, each number has a unique
representation using the Fibonacci numbers (with initial condition
F1 = 0, F2 = 1), composed of “digits” from the set {[0], [1, 0]}.
Miller et al. [3], and independently Hamlin [2], proved that given a
non-negative linear recurrence with positive leading coefficient, each
number has a unique representation with respect to the recurrence
sequence composed of “digits” from a finite list of allowable “digits.”
Generalizing Summand Minimality: There are several arti-
cles proving the Zeckendorf decomposition is minimal among binary
decompositions, or a related far-difference decomposition, for both
the original Fibonacci sequence as well as some generalizations (see
[1], for example). It is hence natural for us to ask:

Motivating Questions

1 Are generalized Zeckendorf representations for non-negative
linear recurrence relations always summand minimal?

2 If not, what are the necessary and sufficient conditions for a
non-negative linear recurrence relation to guarantee summand
minimal generalized Zeckendorf representations of all integers?
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Methods

Our treatment is built on the terminology developed by Hamlin.
Definition 1. Suppose a recurrence is given by Hn = c1Hn−1 +
. . . + ctHn−t. Then (c1, c2, . . . , ct) is called the signature of the
recurrence. Furthermore, we call 0, 0, . . . , 0︸ ︷︷ ︸

t−1

, 1 ideal initial condition.

Definition 2. Consider the signature (c1, . . . , ct). A valid block
is a string of the form [c1, . . . , ck, x] where k < t and x < ck+1.
Definition 3. Consider a recurrence sequence with signature and
initial condition as in Definition 1. Let [a1, . . . , an,∞, · · · ,∞︸ ︷︷ ︸

t−1

] (ask

us what those ∞’s are for) represent the integer
n∑

i=1
aiHn−i.

Then [a1, . . . , an,∞, · · · ,∞︸ ︷︷ ︸
t−1

] is a valid generalized Zeckendorf

representation (GZR) if it is made up of valid blocks.
Example. Given the signature (1, 1) and ideal initial condition, we
get the sequence

0, 1, 1, 2, 3, 5, 8, . . . ,

i.e., the Fibonacci sequence. The only valid blocks are [0] and [1, 0].
The valid generalized Zeckendorf representation of 45 is

[1, 0, 0, 1, 0, 1, 0, 0, 0,∞].
Example. Given the signature (1, 2, 3) and ideal initial condition,
we get the sequence

0, 0, 1, 1, 3, 8, 17, 42, . . . .

The valid blocks are: [0], [1, 0], [1, 1], [1, 2, 0], [1, 2, 1], [1, 2, 2].

Results

Theorem

Consider a non-negative recurrence sequence with signature
(c1, . . . , ct). Then, the recurrence is summand minimal if and
only if its signature is weakly decreasing, i.e. c1 ≥ c2 ≥ · · · ≥ ct.
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Main Ideas

We develop an algorithm to find the GZR of a non-negative in-
teger starting from any other representation written in the form
[d1, . . . , dr,∞] where we have abbreviated∞ to stand for the block
[∞, . . . ,∞︸ ︷︷ ︸

t−1

] (see Definition 3).

1 Reading from left to right, find the first block that is invalid. This
means either the last digit of that block is negative or too large.

2 If the digit in question is negative, “borrow” from earlier positive
digits to make it non-negative. Otherwise, we can either “carry”
right away to make the block valid or “borrow” until we can carry.
(Ask us more about this :) )

3 Repeat.
Example. We consider the signature (4, 3, 2).

4 5 0 5 4 2 5 0 ∞ ∞
B -1 4 3 2
C 1 -4 -3 -2

1 0 1 2 8 6 2 5 0 ∞ ∞
C 1 -4 -3 -2

1 0 1 3 4 3 0 5 0 ∞ ∞
B -1 4 3 2
C 1 -4 -3 -2

1 0 1 3 4 3 1 0 1 ∞ ∞

Idea of Proof for Sufficiency We start with any non-negative
representation and perform the algorithm. Note that every time we
borrow, we increase the number of summands and every time we
carry, we decrease the number of summands. Because we start with
a non-negative representation, if any block is invalid, the last digit
must be too large, and hence we can “borrow” until we are able to
carry. With weakly decreasing signature, we only need to borrow
once before we can carry. So overall, the number of summands can
only decrease.

Idea for Proof of Necessity To prove sufficiency, for c1 > 1, we
give examples of a non-GZR representation that has fewer summands
than the GZR by performing the same above-mentioned algorithm
(most of the examples are of the form [c1 + 1, 0, . . . , 0,∞]). When
c1 = 1, we non-constructively prove the existence of a counterexam-
ple by utilizing the irreducibility of a certain family of polynomials
together with growth rate arguments.


