
Some Bounds on Integer Complexity
Katherine Cordwell*, Alyssa Epstein**, Anand Hemmady**, Aaditya Sharma**, Yen Nhi Truong Vu***

*University of Maryland, College Park; **Williams College, ***Amherst College
ktcordwell@gmail.com, ale2@williams.edu, ash6@williams.edu, as17@williams.edu, ytruongvu17@amherst.edu

WHAT IS IT?
The complexity of n ∈ N, which we denote by f(n), is
defined as the least number of 1’s needed to represent n
using only the operations of addition and multiplication in
conjunction with an arbitrary number of parentheses. For
example, since we can write 6 = (1 + 1)(1 + 1 + 1), we get
that f(6) ≤ 5.

Richard Guy gives the following recursive definition
of f(n):

min
d | n

2≤d≤
√
n

1≤a≤n/2

{
f(d) + f

(n
d

)
, f(a) + f(n− a)

}
.

The growth rate of f(n) is quite slow compared to that of n.
For example, f(100) = 14 and f(3133160) = 45.

GUY’S METHOD
Given a base b representation of n, say (d0 · · · dk)b, Guy’s
method (also called Horner’s scheme) writes

n = dk + b(dk−1 + b(dk−2 + · · ·+ bd0)) · · ·)).

Given base b, define a digit-balanced number n as a num-
ber with roughly equal proportions of all of the b possible
digits. Digit-unbalanced numbers are numbers which de-
viate from this, i.e. digit-unbalanced numbers have some
digits appearing significantly more often than other ones.
Then, letting D(b, r) be defined as before, using Guy’s
method, we see that the complexity of n for digit-balanced
numbers is then bounded by

S =
1

b ln(b)

b−1∑
r=0

D(b, r).

J. Arias de Reyna and J. van de Lune computed this quantity
in bases of the form 2n3m ≤ 2938 and found that S ≤ 3.6343
is minimized in base b = 29 · 38. In doing so, they show that
a set of numbers of density 1 satisfy f(n) ≤ 3.6343 log3(n).
Our computations show that a more optimal base is 21139,
where f(n) ≤ 3.61989 log3(n) for almost all n.

OUR IMPROVEMENTS
We propose the following modification of J. Arias de Reyna
and J. van de Lune’s algorithm:

We need to show that using Guy’s method allows us to re-
duce the number of summands that we must compute. As-
sume that f(n) ≤ c log3(n) = log3(n

c) for some c ≤ 3.64 and
that f(n) = f(a) + f(n − a). First, using Selfridge’s lower
bound,

log3(n
c) ≥ 3(log3(n− a) + log3(a)).

Say that a = kn, where necessarily k ≤ 1
2 . Then we have

log3(n
c/3) ≥ log3((1− k)n · a).

Simplifying gives
nc/3−1

1− k
≥ a.

Using 1− k ≥ 1
2 gives

2nc/3−1 ≥ nc/3−1

1− k
≥ a.

Then since c ≤ 3.64, we get a ≤ 2n0.214. So, what we have
is that for almost all numbers, we only need to check sum-
mands up to 2n0.214.

BINARY ANALYSIS
As a special case, let us consider the binary base. First,
we wish to better characterize how many numbers are not
covered by Guy’s method. In base 2, J. Arias de Reyna and
J. van de Lune’s algorithm runs in O(n1.345).

Binary digit-unbalanced numbers are simply those that
have a larger proportion of 1’s than 0’s. For numbers where
p% of the digits are 0’s and (1− p)% are 1’s, the constant we
obtain from Guy’s method is:

1

ln(2)

(
p

100
D(2, 0) +

p− 1

100
D(2, 1)

)
ln(3).

When p = 1−p = 50%, this gives 3.9625. Some other values
are:

Percent 0’s Percent 1’s Constant
45 55 4.041655
46 54 4.02581
49 51 3.97826

In particular, the constant 3.97826 would improve the
runtime of numbers where at most 49% of the digits are
1’s to O(n1.326), and the constant 4.02581 is enough to
improve the runtime of numbers where at most 54% are 1’s
to O(n1.342).

So, we focus on bounding the number of n where at
most 46% are 0’s. This comes down to bounding

B(n, 0) + · · ·+B(n, n− d),

where n− d = 46N
100 . We use the following bound,

B(n, 0) + · · ·+B(n, n− d) ≤ e−nD(
n−d
n ,|| 12)

where D
(
n−d
n || 12

)
is

n− d

n
log

(
2

(
n− d

n

))
+

(
1−

n− d

n

)
log

(
2

(
1−

n− d

n

))
.

In particular, D(46
100 ||

1
2) < 0.0032034, and so the number of

n ≤ N where at most 46% are 0’s is ≤ N1−0.0032034, and so
we can improve the algorithm on a set of N − N1−0.0032034

numbers, or in the limit as N →∞, almost all numbers.

AN UNCONDITIONAL UPPER BOUND?
Something that we would like to explore more in the future
is the idea of using division to improve the upper bound on
complexity. The current upper bound is

f(n) ≤ 3 log2(n),

which comes from applying Guy’s method in base 2, where
the worst numbers have a binary expansion that contains
only 1’s. Experimentally, if we start with a number n that
has a binary representation with a lot of 1’s, then usually
(n− (n mod 3))/3 has a binary representation with close to
50% 1’s, and so Guy’s method provides a much better upper
bound for this set of numbers. We would like to characterize
the set of numbers where division by 3 does not afford a nice
binary representation and to perform an alternate analysis
on this set–for example, dividing by 5.

A GENERALIZATION
Given n ∈ Z, define f{1,x}(n) as the minimum number of 1’s
and x’s needed to represent n with addition, multiplication,
and parentheses. For example, f{1,5}(6) = 2, since 6 = 5+1,
and f{1,3}(9) = 2, because 9 = 3 · 3.
A sharp lower bound on f{1,x}(n) follows from an inductive
argument in the style of Selfridge.

• Given n ∈ Z, if f(n) = k, then n ≤ xk.
• For any n ∈ Z, logx(n) ≤ f(n).

We can define a greedy algorithm, which we aptly name
“greedy”, to obtain a rough upper bound on f{1,x}(n). This
algorithm works on n ≡ t (mod x) in the following manner:

• If n < x, then greedy(n) = 1 + · · ·+ 1
t times

.

• If n ≥ x and t = 0, then greedy(n) = x · greedy(nx).
• If n ≥ x and t > 0, then greedy(n) = 1 + · · ·+ 1

t times
+ x ·

greedy(nx).

Here is a plot of the bounds compared to the complexity of
“greedy” for f1,2:

Here is a plot of the bounds compared to the complexity of
“greedy” for f1,5:

Of course, there is no reason to stop here. We can continue
to generalize f{1,x} to f{1,x1,...,xt} where x1 < x2 < · · · <
xt. Again we can obtain a sharp lower bound inductively:
f{1,x1,...,xt}(n) ≤ logxt

(n). Upper bounds, however, become
more difficult. We suspect that the upper bound depends
on the density of {x1, . . . , xt} ∈ Z.

WHAT’S BEEN DONE?
• 1953: Mahler and Popken propose the problem.
• 1986: Richard Guy popularizes the problem in his

“Some Suspiciously Simple Sequences”. He attributes
a sharp lower bound of f(n) ≥ 3 log3(n) to Selfridge.

• 2008: Fuller publishes a C program to compute f(n).
• 2008: Srinivas and Shankar give an algorithm that

runs in time O(n1.58).
• 2012: Iradis et al. prove further experimental and an-

alytical results.
• 2014: J. Arias de Reyna and J. van de Lune give an

algorithm that runs in time O(n1.230175).

BEST CURRENT ALGORITHM
J. Arias de Reyna and J. van de Lune’s algorithm uses Guy’s
recursive definition to calculate complexities. The rate-
limiting step lies in checking the summands a ≤ n such
that f(n) = f(n − a) + f(a). To optimize the algorithm, J.
Arias de Reyna and J. van de Lune bound the number of
summands that must be checked by

n

2

(
1−

√
1− 4

n2
3f(n−1)/3

)
.

By defining and analyzing the function D(b, r) as the max-
imum complexity of multiplying by b and adding r, they
bound f(n). Then, combining this information with the
bound on the number of summands, they obtain their opti-
mal runtime of O(n1.230175) in base 21037.

C HOW FAST
J. Arias de Reyna and J. van de Lune wrote code in Python
to perform their analysis, which they have generously sent
us. Using this, we have developed comparable code in C
that calculates the D(b, r). Since C runs much faster than
Python, we are able to calculate values and perform analysis
for higher bases. In particular, for base 21338, we obtain a
better runtime of O(n1.222911236).

ACKNOWLEDGMENTS
We would like to thank our mentors, Professors Steven
J. Miller (Williams College), Eyvindur Palsson (Virginia
Tech), and Stefan Steinerberger (Yale University). Thank
you to the SMALL REU program, Williams College, and
the Williams College Science Center. We would also like
to thank Professor Amanda Folsom for funding as well
as NSF Grants DMS1265673, DMS1561945, DMS1347804,
DMS1449679, the Williams College Finnerty Fund, and the
Clare Boothe Luce Program.

