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Introduction General Theory Linear Appendix (Multi) Open Questions

Motivating Question: For a nice data set, such as the
Fibonacci numbers, stock prices, street addresses of
college employees and students, ..., what percent of the
leading digits are 1?

Answer: Benford’s law!
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Introduction General Theory Linear Appendix (Multi) Open Questions

Examples with First Digit Bias

Fibonacci numbers

Most common iPhone passcodes

Twitter users by # followers

Distance of stars from Earth
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Applications

Analyzing round-off errors.

Determining the optimal way to store
numbers.

Detecting tax and image fraud, and data
integrity.
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Introduction General Theory Linear Appendix (Multi) Open Questions

An Interesting Question

From previous works: sequences generated by linear
recurrence relations with constant coefficients obey
Benford’s Law.

Example: The Fibonacci Sequence 1, 2, 3, 5, 8, 13,
21, 34, . . . .

Question: Non-constant coefficients?
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Outline

Benford’s Law.

Linear Recurrence relations (degree 2 and higher
degree).

Multiplicative Recurrence relations.

Open problems and references.
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Equidistribution
and

Benford’s Law
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Benford’s Law

Benford’s Law
A set of numbers is Benford (base b) if the probability of

observing a first digit of d is logb

(
1 + 1

d

)
.

Strong Benford
A set of numbers is Strong Benford (base b) if the
probability of observing a significand in [1, s) is logb(s).
Then the probability of observing a significand in [s, s + 1)

is logb

(
1 + 1

s

)
.
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Equidistribution and Benford’s Law

Equidistribution
{yn}∞n=1 is equidistributed modulo 1 if probability
yn mod 1 ∈ [a,b] tends to b − a:

#{n ≤ N : yn mod 1 ∈ [a,b]}
N

→ b − a.

Theorem
β 6∈ Q, nβ is equidistributed mod 1.
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Logarithms and Benford’s Law

Fundamental Equivalence
Data set {xi} is Benford base B if {yi} is equidistributed
mod 1, where yi = logB xi .

x = S10(x) · 10k then

log10 x = log10 S10(x) + k = log10 S10x mod 1.
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Logarithms and Benford’s Law

Prob(leading digit d)
= log10(d + 1)− log10(d)
= log10

(
d+1

d

)
= log10

(
1 + 1

d

)
.

Have Benford’s law↔
mantissa (fractional part) of
logarithms of data are
uniformly distributed
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Examples

Remember: β 6∈ Q, nβ is equidistributed mod 1.

2n is Benford base 10 as log10 2 6∈ Q.

Fibonacci numbers are Benford base 10.
Binet: an = 1√

5

(
1+
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n
.
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Useful Theorem

It suffices to analyze the main term of the sequence:

Theorem
If a sequence {an} is Benford and lim

n→∞
bn = an then {bn}

is Benford as well.
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Linear Recurrence Relations
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Introduction General Theory Linear Appendix (Multi) Open Questions

Linear Recurrence Relations of Degree 2

an+1 = f (n)an + g(n)an−1 with non-constant
coefficients f (n) and g(n).

Explore conditions on f and g such that the sequence
generated obeys Benford’s Law for all initial values.

First solve the closed form of the sequence (an), then
analyze its main term.
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Linear Recurrence Relations of Degree 2

To solve for the closed form of the sequence:

Main idea: reduce the degree of recurrence.

Define an auxiliary sequence {bn}∞n=1 by
bn = an+1 − λ(n)an for n ≥ 1.
((an) recurrent of degree 2, so (bn) of degree 1).

Set an+1 − λ(n)an = µ(n)(an − λ(n − 1)an−1) for
n ≥ 2.
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an+1 = (λ(n) + µ(n))an − µ(n)λ(n − 1)an−1, and
compare the coefficients:

f (n) = λ(n) + µ(n)
g(n) = −λ(n − 1)µ(n).

We show that for any given pair of f and g, such λ
and µ always exist.
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Linear Recurrence Relations of Degree 2

Recurrence relations of degree 1:

an+1 = λ(n)an + bn

bn = µ(n)bn−1.

an+1 = r(n)
(

1 +
n∑

k=3

n∏
i=k

λ(i)
µ(i) +

a2

b1

n∏
i=2

λ(i)
µ(i)

)
, where

r(n) := b1

n∏
i=2

µ(i).
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Linear Recurrence Relations of Degree 2

Asymptotic analysis: show the main term dominates
for suitable choices of µ and λ.

Let λ(n)
µ(n) be a non-increasing function and

lim
n→∞

λ(n)
µ(n) = 0, then lim

n→∞
(an+1 − r(n)) = 0.

lim
n→∞

λ(n)
µ(n) = 0 implies lim

n→∞
g(n)
f (n)2 = 0.
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Benford-ness of the Main Term

Main term of an+1 is r(n) = b1

n∏
i=2

µ(i).

Since (strong) Benford-ness is preserved under

translation and dilation we let r(n) =
n∏

i=1
µ(i) for

simplicity.
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Examples when f and g are functions

If µ(k) = k , then r(n) = n!.

If µ(k) = kα where α ∈ R, then r(n) = (n!)α.

If µ(k) = exp(αh(k)) where α is irrational and h(k) is a

monic polynomial, then log r(n) = α
n∑

k=1
h(k).

Lemma
The sequence {αp(n)} is equidistributed mod 1 if α /∈ Q
and p(n) a monic polynomial.
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Examples when f and g are random variables

Take µ(n) ∼ h(n)Un where the Un’s are independent
uniform distributions on [0,1], and h(n) is a

deterministic function in n such that
n∏

i=1
h(i) is Benford.

Then r(n) =
n∏

i=1
h(i)

n∏
i=1

Ui is Benford.

Take µ(n) ∼ exp(Un) where the Un’s are i.i.d. random
variables. Then take logarithm and sum up log(µ(n)).
Apply Central Limit Theorem and get a Gaussian
distribution with increasing variance.
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Linear Recurrences of Higher Degree

Use recurrence relation of degree 3 as an example.
Similar main idea: reduce the degree.

Define the sequence {an}∞n=1 by
an+1 = f1(n)an + f2(n)an−1 + f3(n)an−2.

Define an auxiliary sequence (bn)
∞
n=1 by

bn = an+1 − λ(n)an. Then (bn) is degree 2.
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Appendix
Multiplicative Recurrence Relations
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Generalization to Multiplicative Recurrence Relations

Define sequence (An)
∞
n=1 by the recurrence relation

An+1 = Af (n)
n Ag(n)

n−1 with initial values A1, A2.

Then the closed form of An is An = Axn
2 Ayn

1 , where the
exponents (xn) and (yn) satisfy the linear recurrence
relations

xn+1 = f (n)xn + g(n)xn−1

yn+1 = f (n)yn + g(n)yn−1

with initial values

x1 = 0, x2 = 1,
y1 = 1, y2 = 0.
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Generalization to Multiplicative Recurrence Relations

Again, solve for (xn) and (yn) with auxiliary functions
λ(n) and µ(n).

Let λ(n) and µ(n) satisfy lim
n→∞

λ(n)
µ(n)

= 0.
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Generalization to Multiplicative Recurrence Relations

Take the main terms:
xn+1 → (x2 − λ(1)x1)

n∏
i=2

µ(i) =
n∏

i=2
µ(i),

yn+1 → (y2 − λ(1)y1)
n∏

i=2
µ(i) = −λ(1)

n∏
i=2

µ(i).

By the closed form An = Axn
2 Ayn

1 ,

log(An+1) = xn log(A2) + yn log(A1)

→ (
n∏

i=2

µ(i))(log(A2)− λ(1) log(A1))

as n→∞.
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Benford-ness of the main term

(An) is a Benford sequence if the main term of log(An)
is equidistributed mod 1.

We choose µ and the initial values such that

(log(A2)− λ(1) log(A1))
n∏

i=2
µ(i) is equidistributed mod

1.
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Examples

Remeber: The sequence {αp(n)} is equidistributed mod
1 if α /∈ Q and p(n) a monic polynomial.

Our construction:
log(A2)−λ(1) log(A1)

µ(1) =: α /∈ Q,

µ(i) = p(i)
p(i−1) where p(n) is a non-vanishing monic

polynomial.
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Open Questions
and

References
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Open Questions

1 We mainly consider the case when λ(n)
µ(n) → 0 as

n→∞. What about when λ(n)
µ(n) →∞? In this case,

there is no simple dominating term.

2 Applications of recurrence relations when f (n) and
g(n) are random variables?
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