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Elliptic Curves

An elliptic curve E is the set of solutions to (x , y) to an equation
of the form

E : y2 = x3 + ax + b,

with a,b ∈ Z.
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Rank of Elliptic Curves

Mordell-Weil Theorem
The set of rational points on an elliptic curve E (Q) forms a
finitely generated abelian group and hence can be written as

E (Q) ∼= E (Q)tors × Zr .

We say r is the rank of the elliptic curve E (Q).

Noam Elkies found an elliptic curve with rank ≥ 28
Conjecture: Rank is unbounded
Conjecture: There are only finitely many curves with rank
≥ 21
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Counting points over Fp

Define aE(p) as

aE(p) = p −#{(x , y) : y2 = x3 + ax + b mod p}

= p −
p−1∑
x=0

1 +

(
x3 + ax + b

p

)
= −

∑
x(p)

(
x3 + ax + b

p

)
,

where the Legendre symbol
(
·
p

)
is defined by

(
x
p

)
=


1 if x ≡ a2 mod p
0 if x ≡ 0 mod p
−1 otherwise
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Families of Elliptic Curves

A one-parameter family of elliptic curves is given by

E : y2 = x3 + A(T )x + B(T ).

Specializing T → t yields an elliptic curve over Q.

Silverman’s Specialization Theorem
For most t , rank Et ≥ rank E .
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Nagao’s Conjecture

Consider a family E : y2 = f (x ,T ).

Define its m-th moment

Am,E(p) =
∑
t(p)

aE(p)m.

Nagao’s Conjecture

lim
X→∞

1
X

∑
p≤X

log p
p

(−A1,E(p)) = rank (E(Q(T))) .

If A1,E = −rp, then it follows from the prime number
theorem that rank E (Q(T)) = r.
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Hyperelliptic Curves

A hyperelliptic curve with genus g ≥ 2 is a curve of
the form

χ : y2 = f (x),

where f (x) is a degree 2g + 1 polynomial.

The set of rational points of a hyperelliptic curve is
finite, due to Falting’s theorem, so there is no rank.
Instead we consider the rank of the Jacobian variety
Jχ, which is a Mordell-Weil group.
A one-parameter family of hyperelliptic curves is given
by

y2 = x2g+1+A2g(T )x2g+· · ·+A1(T )x+A0(T ) = f (x ,T ).

15



Hyperelliptic Curves

A hyperelliptic curve with genus g ≥ 2 is a curve of
the form

χ : y2 = f (x),

where f (x) is a degree 2g + 1 polynomial.
The set of rational points of a hyperelliptic curve is
finite, due to Falting’s theorem, so there is no rank.

Instead we consider the rank of the Jacobian variety
Jχ, which is a Mordell-Weil group.
A one-parameter family of hyperelliptic curves is given
by

y2 = x2g+1+A2g(T )x2g+· · ·+A1(T )x+A0(T ) = f (x ,T ).

16



Hyperelliptic Curves

A hyperelliptic curve with genus g ≥ 2 is a curve of
the form

χ : y2 = f (x),

where f (x) is a degree 2g + 1 polynomial.
The set of rational points of a hyperelliptic curve is
finite, due to Falting’s theorem, so there is no rank.
Instead we consider the rank of the Jacobian variety
Jχ, which is a Mordell-Weil group.

A one-parameter family of hyperelliptic curves is given
by

y2 = x2g+1+A2g(T )x2g+· · ·+A1(T )x+A0(T ) = f (x ,T ).

17



Hyperelliptic Curves

A hyperelliptic curve with genus g ≥ 2 is a curve of
the form

χ : y2 = f (x),

where f (x) is a degree 2g + 1 polynomial.
The set of rational points of a hyperelliptic curve is
finite, due to Falting’s theorem, so there is no rank.
Instead we consider the rank of the Jacobian variety
Jχ, which is a Mordell-Weil group.
A one-parameter family of hyperelliptic curves is given
by

y2 = x2g+1+A2g(T )x2g+· · ·+A1(T )x+A0(T ) = f (x ,T ).

18



Generalized Nagao’s conjecture

In the hyperelliptic curve case we still may write

aχ(p) = −
∑
x(p)

(
f (x ,T )

p

)
,

and also its first moment

A1,χ(p) =
∑
t(p)

aχ(p).

Generalized Nagao’s Conjecture

lim
X→∞

∑
p≤X

−1
p

A1,χ(p) log(p) = rank Jχ (Q(T)) .

Goal: Construct families of hyperelliptic curves with high
rank.
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Hyperelliptic curves with moderate rank
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Calculations

For a family χ : y2 = f (x ,T ), we can write

aχ,t(p) = −
∑
x(p)

(
f (x ,T )

p

)
,

where
(
·
p

)
is the Legendre symbol modp with

(
x
p

)
=


1 if x ≡ a2 mod p for some a 6= 0
0 if x ≡ 0 mod p
−1 otherwise
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Lemmas for Legendre Sums

Linear and Quadratic Legendre Sums

∑
x mod p

(
ax + b

p

)
= 0 if p - a

∑
t mod p

(
at2 + bt + c

p

)
=

(p − 1)
(

a
p

)
if p | b2 − 4ac

−
(

a
p

)
if p - b2 − 4ac.
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Conjecture Theorem

Let χ : y2 = f (x ,T ) be a genus g curve satisfying

y2 = f (x ,T ) = x2g+1T 2 + 2g(x)T − h(x)

g(x) = x2g+1 +

2g∑
i=0

aix i

h(x) = (A− 1)x2g+1 +

2g∑
i=0

Aix i .

Now we can calculate the discriminant
DT (x) := g(x)2 + x2g+1h(x) of the quadratic polynomial
f (x ,T ) in T .
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Conjecture Theorem

Conjecture (HLKM, 2018)
Let χ be defined as in the previous slide. Then

rank Jχ (Q(T)) = 4g + 2.

Theorem (HLKM, 2018)
The above conjecture is true for g = 2 and g = 3.

This work generalizes a result of Arms, Lozano-Robledo,
and Miller who constructed a family of elliptic curves with
rank 6. Indeed, for the elliptic curve, g = 1 and surely
6 = 4 · 1 + 2.
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Construction

Key Idea
Make the roots of Dt(x) distinct nonzero perfect squares.

Choose roots ρ2
i of Dt(x) so that

Dt(x) = A
4g+2∏
i=1

(
x − ρ2

i

)

Equate coefficients in

Dt(x) = A
4g+2∏
i=1

(
x − ρ2

i

)
= g(x)2 + x2g+1h(x).

Solve the nonlinear system for ai ,Ai .
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Sketch of the proof

−A1,χ(p) =
∑
t(p)

aχt (p) =
∑

t mod p

∑
x mod p

(
f (x ,T )

p

)

=
∑

x mod p

∑
t mod p

(
x2g+1T 2 + 2g(x)T − h(x)

p

)

=
∑

x mod p
Dt (x)≡0

(p − 1)
(

x2g+1

p

)
−
∑

x mod p
Dt (x)6≡0

(
x2g+1

p

)

= p
∑

x mod p
Dt (x)≡0

(
x2g+1

p

)
−
∑

x mod p

(
x2g+1

p

)

= p (# of perfect-square roots of Dt(x)) = p (4g + 2) .
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Bias Conjectures
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Bias Conjecture

Michel’s Theorem
For one-parameter families of elliptic curves E , the second
moment A2,E(p) is

A2,E(p) = p2 + O
(
p3/2) .

Upon examining the lower order terms p3/2, p, p1/2 and 1
Miller et.al formed the following conjecture:

Bias Conjecture
The largest lower order term in the second moment
expansion that does not average to 0 is on average
negative.
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Evidence

In every family of hyperelliptic curves we have studied,
both Michel’s Theorem and the Bias conjecture appear to
hold. Namely, the following families:

χ : y2 = x5 + x + T , A2,χ(p) = pNp − p2

χ : y2 = x5 + xT , A2,χ(p) = 4p2 − 4p if p ≡ 1 mod 8
χ : y2 = x2g+1 + T k ,
A2,χ(p) = (gcd(p − 1,2g + 1)− 1) (p2 − p)
χ : y2 = x2g+1 + xkT
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