Phase Transitions in the Distribution of Missing Sums

Hung V. Chu (Washington and Lee University)

Email: chuh19@mail.wlu.edu Lily Shao (Williams College) Email: Is12@williams.edu

In joint work with Noah Luntlaza, Steven J. Miller, Victor Xu.

Young Mathematicians Conference Ohio State University

Introduction

• A finite set of integers, |A| its size.

- A finite set of integers, |A| its size.
- The sumset: $A + A = \{a_i + a_i | a_i, a_i \in A\}$.

Statement

- A finite set of integers, |A| its size.
- The sumset: $A + A = \{a_i + a_i | a_i, a_i \in A\}$.
- The difference set: $A A = \{a_i a_i | a_i, a_i \in A\}$.

Statement

Introduction

- A finite set of integers, |A| its size.
- The sumset: $A + A = \{a_i + a_i | a_i, a_i \in A\}$.
- The difference set: $A A = \{a_i a_i | a_i, a_i \in A\}$.

Definition

A finite set of integers. A is called **sum-dominated** or MSTD (more-sum-than-difference) if |A + A| > |A - A|, balanced if |A + A| = |A - A| and difference-dominated if |A + A| < |A - A|.

Sketch of Proof

False conjecture

• Natural to think that $|A + A| \leq |A - A|$.

False conjecture

- Natural to think that |A + A| < |A A|.
- Each pair (x, y), $x \neq y$ gives two differences: $x - y \neq y - x$, but only one sum x + y.

- Natural to think that |A + A| < |A A|.
- Each pair (x, y), $x \neq y$ gives two differences: $x - y \neq y - x$, but only one sum x + y.
- However, sets A with |A + A| > |A A| do exist!

Examples

- Conway: $A_1 = \{0, 2, 3, 4, 7, 11, 12, 14\}$
- Marica: $A_2 = \{0, 1, 2, 4, 7, 8, 12, 14, 15\}$
- 14, 16, 17, 21, 24, 25, 26, 28, 29}
- 22, 24, 25, 29, 32, 33, 37, 40, 41, 42, 44, 45}

- Conway: $A_1 = \{0, 2, 3, 4, 7, 11, 12, 14\}$
- Marica: $A_2 = \{0, 1, 2, 4, 7, 8, 12, 14, 15\}$
- 14. 16. 17. 21. 24. 25. 26. 28. 29}
- 22. 24. 25. 29. 32. 33. 37. 40. 41. 42. 44. 45}
- Hegarty proved that the smallest cardinality of MSTD sets is 8.

Martin and Obryant '06

Theorem

Consider $I_n = \{0, 1, ..., n-1\}$. The proportion of MSTD subsets of I_n is bounded below by a positive constant $c \approx 2 \cdot 10^{-7}$

Martin and Obryant '06

Theorem

Consider $I_n = \{0, 1, ..., n-1\}$. The proportion of MSTD subsets of I_n is bounded below by a positive constant $c \approx 2 \cdot 10^{-7}$

 Later, Zhao improved the bound to 4.28 · 10⁻⁴ and proved that the limiting proportion exists.

Martin and Obryant '06

Theorem

Consider $I_n = \{0, 1, ..., n-1\}$. The proportion of MSTD subsets of I_n is bounded below by a positive constant $c \approx 2 \cdot 10^{-7}$.

- Later, Zhao improved the bound to 4.28 · 10⁻⁴ and proved that the limiting proportion exists.
- Probabilistic method.

Results

 Behavior of the distribution of the number of missing sums.

Overview

 Behavior of the distribution of the number of missing sums.

Sketch of Proof

The distribution has some strange behavior:

Overview

 Behavior of the distribution of the number of missing sums.

- The distribution has some strange behavior:
 - Not unimodal

Overview

 Behavior of the distribution of the number of missing sums.

- The distribution has some strange behavior:
 - Not unimodal
 - Against missing certain number of sums.

Sets of Missing Sums

• Let $I_n = \{0, 1, 2, ..., n-1\}$.

Sets of Missing Sums

- Let $I_n = \{0, 1, 2, ..., n-1\}.$
- Form $S \subseteq I_n$ randomly with probability p of picking an element in I_p . (q = 1 - p): the probability of not chosing an element.)

Sets of Missing Sums

- Let $I_n = \{0, 1, 2, ..., n-1\}.$
- Form $S \subset I_n$ randomly with probability p of picking an element in I_p . (q = 1 - p): the probability of not chosing an element.)

Sketch of Proof

• $B_n = (I_n + I_n) \setminus (S + S)$ is the set of missing sums, $|B_n|$: the number of missing sums.

Distribution of Missing Sums

• Fix $p \in (0, 1)$, study $\mathbb{P}(|B| = k) = \lim_{n \to \infty} \mathbb{P}(|B_n| = k)$. (Zhao proved that the limit exists.)

Distribution of Missing Sums

- Fix $p \in (0,1)$, study $\mathbb{P}(|B|=k) = \lim_{n\to\infty} \mathbb{P}(|B_n|=k)$. (Zhao proved that the limit exists.)
- $\mathbb{P}(|B| = k)$: the limiting distribution of missing sums.

Distribution of Missing Sums

- Fix $p \in (0, 1)$, study $\mathbb{P}(|B| = k) = \lim_{n \to \infty} \mathbb{P}(|B_n| = k)$. (Zhao proved that the limit exists.)
- $\mathbb{P}(|B| = k)$: the limiting distribution of missing sums.

Divot

For some k > 1, if

 $\mathbb{P}(|B| = k - 1) > \mathbb{P}(|B| = k) < \mathbb{P}(|B| = k + 1)$, then the distribution of sums has a divot at k.

Future Research

Example of Divot

Introduction

Figure: Frequency of the number of missing sums for subsets of $\{0, 1, 2, ..., 400\}$ by simulating 1,000,000 subsets with p = 0.6.

 Closely related to the behavior of missing sums in the sumset.

Why Divot?

 Closely related to the behavior of missing sums in the sumset.

Sketch of Proof

Many famous problems can be stated in the language of sumsets: Goldbach's Conjecture and Fermat's Last Theorem.

Why Divot?

- Closely related to the behavior of missing sums in the sumset.
 - Many famous problems can be stated in the language of sumsets: Goldbach's Conjecture and Fermat's Last Theorem.
 - For example, let P_n be the set $\{1^n, 2^n, 3^n, ...\}$. Then Fermat's Last Theorem is equivalent to $(P_n + P_n) \cap P_n = \emptyset$ for all n > 3.

Why Divot?

Introduction

 Closely related to the behavior of missing sums in the sumset.

Many famous problems can be stated in the language of sumsets: Goldbach's Conjecture and Fermat's Last Theorem.

For example, let P_n be the set $\{1^n, 2^n, 3^n, ...\}$. Then Fermat's Last Theorem is equivalent to $(P_n + P_n) \cap P_n = \emptyset$ for all n > 3.

Interesting itself: two-bump distribution.

Numerical Analysis for p = 1/2

Introduction

Figure: Frequency of the number of missing sums for all subsets of $\{0, 1, 2, ..., 25\}$.

Sketch of Proof

Lazarev-Miller-O'Bryant '11

Divot at 7

For p = 1/2, there is a divot at 7, i.e.

$$\mathbb{P}(|B| = 6) > \mathbb{P}(|B| = 7) < \mathbb{P}(|B| = 8).$$

Existence of Divots

For a fixed different value of p, are there other divots?

Question

Existence of Divots

For a fixed different value of p, are there other divots?

Sketch of Proof

Answer: Yes!

Sketch of Proof

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of $\{0, 1, 2, \dots, 400\}$ with p = 0.6.

Sketch of Proof

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of $\{0, 1, 2, \dots, 400\}$ with p = 0.7.

Numerical analysis for different $p \in (0, 1)$: p = 0.8

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of $\{0, 1, 2, \dots, 400\}$ with p = 0.8.

Numerical analysis for different $p \in (0, 1)$: p = 0.9

Sketch of Proof

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of $\{0, 1, 2, \dots, 400\}$ with p = 0.9.

Sketch of Proof

Main Result

Chu-Luntzlara-Miller-Shao-Xu

For $p \ge 0.68$, there is a divot at 1, i.e.

$$\mathbb{P}(|B| = 0) > \mathbb{P}(|B| = 1) < \mathbb{P}(|B| = 2).$$

Main Result

Introduction

Chu-Luntzlara-Miller-Shao-Xu

For $p \ge 0.68$, there is a divot at 1, i.e.

$$\mathbb{P}(|B| = 0) > \mathbb{P}(|B| = 1) < \mathbb{P}(|B| = 2).$$

 Empirical evidence predicts the value of p such that the divot at 1 starts to exist is between 0.6 and 0.7.

• Want $\mathbb{P}(|B| = 0) > \mathbb{P}(|B| = 1) < \mathbb{P}(|B| = 2)$.

Sketch of Proof

•00000000

Introduction

• Want $\mathbb{P}(|B| = 0) > \mathbb{P}(|B| = 1) < \mathbb{P}(|B| = 2)$.

Sketch of Proof

•00000000

• Establish an upper bound T^1 for $\mathbb{P}(|B|=1)$.

Key Ideas

- Want $\mathbb{P}(|B| = 0) > \mathbb{P}(|B| = 1) < \mathbb{P}(|B| = 2)$.
- Establish an upper bound T^1 for $\mathbb{P}(|B|=1)$.
- Establish lower bounds T_0 and T_2 for $\mathbb{P}(|B|=0)$ and $\mathbb{P}(|B|=2)$, respectively.

Sketch of Proof

•00000000

Key Ideas

- Want $\mathbb{P}(|B| = 0) > \mathbb{P}(|B| = 1) < \mathbb{P}(|B| = 2)$.
- Establish an upper bound T^1 for $\mathbb{P}(|B|=1)$.
- Establish lower bounds T_0 and T_2 for $\mathbb{P}(|B| = 0)$ and $\mathbb{P}(|B|=2)$, respectively.

Sketch of Proof

•00000000

• Find values of p such that $T_2 > T^1 < T_0$.

Fringe Analysis

 Most of the missing sums come from the fringe: many more ways to form middle elements than fringe elements.

Sketch of Proof

00000000

Fringe Analysis

 Most of the missing sums come from the fringe: many more ways to form middle elements than fringe elements.

Sketch of Proof

• Example: let $S \subseteq \{0, 1, ..., 10\}$. Then $S + S \subseteq [0, 20]$. Consider 0 = 0 + 0 and 20 = 10 + 10 while 10 = 0 + 10 = 1 + 9 = 2 + 8 = 3 + 7 = 4 + 6 = 5 + 5.

Fringe Analysis

 Most of the missing sums come from the fringe: many more ways to form middle elements than fringe elements.

- Example: let $S \subseteq \{0, 1, ..., 10\}$. Then $S + S \subseteq [0, 20]$. Consider 0 = 0 + 0 and 20 = 10 + 10 while 10 = 0 + 10 = 1 + 9 = 2 + 8 = 3 + 7 = 4 + 6 = 5 + 5.
- Fringe analysis is enough to find good lower bounds and upper bounds for $\mathbb{P}(|B| = k)$.

Introduction

• Consider $S \subseteq \{0, 1, 2, ..., n-1\}$ with probability p of each element being picked.

Sketch of Proof

00000000

Setup

Introduction

- Consider $S \subseteq \{0, 1, 2, ..., n-1\}$ with probability p of each element being picked.
- Analyze fringe of size 30.

Setup

• Consider $S \subseteq \{0, 1, 2, ..., n-1\}$ with probability p of each element being picked.

Sketch of Proof

00000000

- Analyze fringe of size 30.
- Write $S = L \cup M \cup R$, where $L \subset [0, 29], M \subset [30, n-31] \text{ and } R \subset [n-30, n-1].$

Introduction

• Write $S = L \cup M \cup R$, where $L \subseteq [0, 29], M \subseteq [30, n-31] \text{ and } R \subseteq [n-30, n-1].$

Sketch of Proof

000000000

Introduction

• Write $S = L \cup M \cup R$, where $L \subseteq [0, 29], M \subseteq [30, n-31] \text{ and } R \subseteq [n-30, n-1].$

Sketch of Proof

000000000

• L_k : the event that L + L misses k sums in [0, 29].

Notation

• Write $S = L \cup M \cup R$, where $L \subset [0, 29], M \subset [30, n-31] \text{ and } R \subset [n-30, n-1].$

- L_k : the event that L + L misses k sums in [0, 29].
- L_k^a : the event that L+L misses k sums in [0, 29] and contains [30, 48].

Notation

• Write $S = L \cup M \cup R$, where $L \subset [0, 29], M \subset [30, n-31] \text{ and } R \subset [n-30, n-1].$

- L_k : the event that L + L misses k sums in [0, 29].
- L_k^a : the event that L+L misses k sums in [0, 29] and contains [30, 48].
- Similar notations applied for R.

Upper Bound

Given 0 < k < 30.

$$\mathbb{P}(|B|=k) \leq \sum_{i=0}^{k} \mathbb{P}(L_i) P(L_{k-i}) + \frac{2(2q-q^2)^{15}(3q-q^2)}{(1-q)^2}.$$
(1)

Sketch of Proof

000000000

Lower Bound

Given 0 < k < 30.

$$\mathbb{P}(|B| = k) \geq \sum_{i=0}^{k} \left[1 - (a-2)(q^{\tau(L_{i}^{a})} + q^{\tau(L_{k-i}^{a})}) - \frac{1+q}{(1-q)^{2}} (q^{\min L_{i}^{a}} + q^{\min L_{k-i}^{a}}) \right] \mathbb{P}(L_{i}^{a}) \mathbb{P}(L_{k-i}^{a}).$$
(2)

Sketch of Proof

000000000

Our Bounds Are Sharp ($p \ge 0.7$)

Our Bounds Are Bad ($p \le 0.6$)

Question

Figure: Shift of Divots

Introduction

Conjecture

There are no divots at even numbers.

Question

Is there a value of *p* such that there are no divots?

O. Lazarev, S. J. Miller, K. O'Bryant, *Distribution of* Missing Sums in Sumsets (2013), Experimental Mathematics 22, no. 2, 132–156.

- P. V. Hegarty, Some explicit constructions of sets with more sums than differences (2007), Acta Arithmetica **130** (2007), no. 1, 61–77.
- P. V. Hegarty and S. J. Miller, When almost all sets are difference dominated, Random Structures and Algorithms **35** (2009), no. 1, 118–136.
- G. Iyer, O. Lazarev, S. J. Miller and L. Zhang, Generalized more sums than differences sets, Journal of Number Theory **132** (2012), no. 5, 1054–1073.

J. Marica, On a conjecture of Conway, Canad. Math. Bull. 12 (1969), 233-234.

- G. Martin and K. O'Bryant, *Many sets have more* sums than differences, in Additive Combinatorics. CRM Proc. Lecture Notes, vol. 43, Amer. Math. Soc... Providence, RI, 2007, pp. 287–305.
- M. Asada, S. Manski, S. J. Miller, and H. Suh, Fringe pairs in generalized MSTD sets, International Journal of Number Theory 13 (2017), no. 10, 2653 a2675.
- S. J. Miller, B. Orosz and D. Scheinerman, Explicit constructions of infinite families of MSTD sets, Journal of Number Theory 130 (2010), 1221-1233.

S. J. Miller and D. Scheinerman, Explicit constructions of infinite families of mstd sets. Additive Number Theory, Springer, 2010, pp. 229-248.

- S. J. Miller, S. Pegado and L. Robinson, *Explicit* Constructions of Large Families of Generalized More Sums Than Differences Sets. Integers 12 (2012). #A30.
- M. B. Nathanson, Problems in additive number theory, 1. Additive combinatorics, 263–270, CRM Proc. Lecture Notes 43, Amer. Math. Soc., Providence, RI, 2007.

Future Research

Bibliography

Introduction

- M. B. Nathanson. Sets with more sums than differences, Integers: Electronic Journal of Combinatorial Number Theory 7 (2007), Paper A5 (24pp).
- Y. Zhao, Constructing MSTD sets using bidirectional ballot sequences, Journal of Number Theory 130 (2010), no. 5, 1212-1220.
- Y. Zhao, Sets characterized by missing sums and differences, Journal of Number Theory 131 (2011). no. 11. 2107-2134.