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Introduction
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Statement

A finite set of integers, |A| its size.

The sumset: A + A = {ai + aj |ai ,aj ∈ A}.

The difference set: A− A = {ai − aj |ai ,aj ∈ A}.

Definition
A finite set of integers. A is called sum-dominated or
MSTD (more-sum-than-difference) if |A + A| > |A− A|,
balanced if |A + A| = |A− A| and difference-dominated
if |A + A| < |A− A|.
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False conjecture

Natural to think that |A + A| ≤ |A− A|.

Each pair (x , y), x 6= y gives two differences:
x − y 6= y − x , but only one sum x + y .

However, sets A with |A + A| > |A− A| do exist!
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Examples

Conway: A1 = {0,2,3,4,7,11,12,14}

Marica: A2 = {0,1,2,4,7,8,12,14,15}

Pigarev and Freiman: A3 = {0,1,2,4,5,9,12,13,
14,16,17,21,24,25,26,28,29}

Hegarty: A4 = {0,1,2,4,5,9,12,13,17,20,21,
22,24,25,29,32,33,37,40,41,42,44,45}

Hegarty proved that the smallest cardinality of MSTD
sets is 8.
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Martin and Obryant ’06

Theorem
Consider In = {0,1, ...,n − 1}. The proportion of MSTD
subsets of In is bounded below by a positive constant
c ≈ 2 · 10−7.

Later, Zhao improved the bound to 4.28 · 10−4 and
proved that the limiting proportion exists.

Probabilistic method.
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Results
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Overview

Behavior of the distribution of the number of missing
sums.

The distribution has some strange behavior:

Not unimodal

Against missing certain number of sums.
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Sets of Missing Sums

Let In = {0,1,2, ...,n − 1}.

Form S ⊆ In randomly with probability p of picking
an element in In. (q = 1− p: the probability of not
chosing an element.)

Bn = (In + In)\(S + S) is the set of missing sums, |Bn|:
the number of missing sums.
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Distribution of Missing Sums

Fix p ∈ (0,1), study P(|B| = k) = limn→∞ P(|Bn| = k).
(Zhao proved that the limit exists.)

P(|B| = k): the limiting distribution of missing sums.

Divot
For some k ≥ 1, if
P(|B| = k − 1) > P(|B| = k) < P(|B| = k + 1), then the
distribution of sums has a divot at k .
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Example of Divot

Figure: Frequency of the number of missing sums for subsets of
{0,1,2, ...,400} by simulating 1,000,000 subsets with p = 0.6.
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Why Divot?

Closely related to the behavior of missing sums in the
sumset.

Many famous problems can be stated in the language
of sumsets: Goldbach’s Conjecture and Fermat’s Last
Theorem.
For example, let Pn be the set {1n,2n,3n, ...}. Then
Fermat’s Last Theorem is equivalent to
(Pn + Pn) ∩ Pn = ∅ for all n ≥ 3.

Interesting itself: two-bump distribution.
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Numerical Analysis for p = 1/2

Figure: Frequency of the number of missing sums for all subsets of
{0,1,2, ...,25}.
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Lazarev-Miller-O’Bryant ’11

Divot at 7
For p = 1/2, there is a divot at 7, i.e.
P(|B| = 6) > P(|B| = 7) < P(|B| = 8).
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Question

Existence of Divots
For a fixed different value of p, are there other divots?

Answer: Yes!
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Numerical analysis for different p ∈ (0,1) : p = 0.6

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.6.
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Numerical analysis for different p ∈ (0,1) : p = 0.7

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.7.

36



Introduction Results Sketch of Proof Future Research

Numerical analysis for different p ∈ (0,1) : p = 0.8

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.8.
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Numerical analysis for different p ∈ (0,1) : p = 0.9

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2, . . . ,400} with p = 0.9.
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Main Result

Chu-Luntzlara-Miller-Shao-Xu
For p ≥ 0.68, there is a divot at 1, i.e.
P(|B| = 0) > P(|B| = 1) < P(|B| = 2).

Empirical evidence predicts the value of p such that
the divot at 1 starts to exist is between 0.6 and 0.7.
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Sketch of Proof
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Key Ideas

Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).

Establish an upper bound T 1 for P(|B| = 1).

Establish lower bounds T0 and T2 for P(|B| = 0) and
P(|B| = 2), respectively.

Find values of p such that T2 > T 1 < T0.

42



Introduction Results Sketch of Proof Future Research

Key Ideas

Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).

Establish an upper bound T 1 for P(|B| = 1).

Establish lower bounds T0 and T2 for P(|B| = 0) and
P(|B| = 2), respectively.

Find values of p such that T2 > T 1 < T0.

43



Introduction Results Sketch of Proof Future Research

Key Ideas

Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).

Establish an upper bound T 1 for P(|B| = 1).

Establish lower bounds T0 and T2 for P(|B| = 0) and
P(|B| = 2), respectively.

Find values of p such that T2 > T 1 < T0.

44



Introduction Results Sketch of Proof Future Research

Key Ideas

Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).

Establish an upper bound T 1 for P(|B| = 1).

Establish lower bounds T0 and T2 for P(|B| = 0) and
P(|B| = 2), respectively.

Find values of p such that T2 > T 1 < T0.

45



Introduction Results Sketch of Proof Future Research

Fringe Analysis

Most of the missing sums come from the fringe: many
more ways to form middle elements than fringe
elements.

Example: let S ⊆ {0,1, ...,10}. Then S + S ⊆ [0,20].
Consider 0 = 0 + 0 and 20 = 10 + 10 while
10 = 0 + 10 = 1 + 9 = 2 + 8 = 3 + 7 = 4 + 6 = 5 + 5.

Fringe analysis is enough to find good lower bounds
and upper bounds for P(|B| = k).
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Setup

Consider S ⊆ {0,1,2, ...,n − 1} with probability p of
each element being picked.

Analyze fringe of size 30.

Write S = L ∪M ∪ R, where
L ⊆ [0,29], M ⊆ [30,n − 31] and R ⊆ [n − 30,n − 1].
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Notation

Write S = L ∪M ∪ R, where
L ⊆ [0,29], M ⊆ [30,n − 31] and R ⊆ [n − 30,n − 1].

Lk : the event that L + L misses k sums in [0,29].

La
k : the event that L + L misses k sums in [0,29] and

contains [30,48].

Similar notations applied for R.
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Upper Bound

Given 0 ≤ k ≤ 30,

P(|B| = k) ≤
k∑

i=0

P(Li)P(Lk−i) +
2(2q − q2)15(3q − q2)

(1− q)2 .

(1)
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Lower Bound

Given 0 ≤ k ≤ 30,

P(|B| = k) ≥
k∑

i=0

[
1− (a− 2)(qτ(La

i ) + qτ(La
k−i ))

− 1 + q
(1− q)2 (q

min La
i + qmin La

k−i )

]
P(La

i )P(La
k−i).

(2)
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Our Bounds Are Sharp (p ≥ 0.7)

Figure:
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Our Bounds Are Bad (p ≤ 0.6)

Figure:
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Divot at 1

Figure:
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Future Research
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Question

Figure: Shift of Divots
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Question

Conjecture
There are no divots at even numbers.
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Question

Is there a value of p such that there are no divots?
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