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Statement

e Afinite set of integers, |A| its size.
e The sumset: A+ A= {a; + gjla;, g € A}.

e The difference set: A— A= {a, — gj|a;, g € A}.

Definition

A finite set of integers. A is called sum-dominated or
MSTD (more-sum-than-difference) if |A+ A| > |A— A|,
balanced if |A + A| = |A — A| and difference-dominated
if[A+ A <|A—A.
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False conjecture

e Natural to think that A+ A| < |[A—A|.

e Each pair (x, y), x # y gives two differences:
X —y # y — X, butonly one sum x + y.

@ However, sets A with |A+ A| > |A — A| do exist!
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Examples

o Conway: A; = {0,2,3,4,7,11,12,14}
o Marica: A, = {0,1,2,4,7,8,12,14,15}

@ Pigarev and Freiman: A; = {0,1,2,4,5,9,12,13,
14,16,17,21,24,25,26,28,29}

@ Hegarty: A, ={0,1,2,4,5,9,12,13,17,20, 21,
22,2425, 29,32,33,37,40,41,42, 44 45}
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Examples

o Conway: A; = {0,2,3,4,7,11,12,14}
o Marica: A, = {0,1,2,4,7,8,12,14,15}

@ Pigarev and Freiman: A; = {0,1,2,4,5,9,12,13,
14,16,17,21,24,25,26,28,29}

@ Hegarty: A, ={0,1,2,4,5,9,12,13,17,20, 21,
22,2425, 29,32,33,37,40,41,42, 44 45}

@ Hegarty proved that the smallest cardinality of MSTD
sets is 8.
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Martin and Obryant '06

Consider I, ={0,1,...,n— 1}. The proportion of MSTD
subsets of /, is bounded below by a positive constant
c~2-1077.

e Later, Zhao improved the bound to 4.28 - 10~* and
proved that the limiting proportion exists.

@ Probabilistic method.
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Overview

@ Behavior of the distribution of the number of missing
sums.

@ The distribution has some

@ Not unimodal

@ Against missing certain number of sums.
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Sets of Missing Sums

o Let/,={0,1,2,...,n—1}.

e Form S C I, randomly with probability p of picking
an element in /,. (g =1 — p: the probability of not
chosing an element.)

@ B, = (I,+ I,)\(S+ S) is the set of missing sums, |B,|:
the number of missing sums.




Results
[ Jele}

Distribution of Missing Sums

@ Fix p €(0,1), study P(|B| = k) = limp_,o. P(|Bn| = k).
(Zhao proved that the limit exists.)




Results
[ Jele}

Distribution of Missing Sums

@ Fix p €(0,1), study P(|B| = k) = limp_,o. P(|Bn| = k).
(Zhao proved that the limit exists.)

e P(|B| = k): the limiting distribution of missing sums.




Results
[ Jele}

Distribution of Missing Sums

@ Fix p €(0,1), study P(|B| = k) = limp_,o. P(|Bn| = k).
(Zhao proved that the limit exists.)

e P(|B| = k): the limiting distribution of missing sums.

For some k > 1, if
P(|B|=k —1) >P(|B| = k) < P(|B| = k + 1), then the
distribution of sums has a divot at k.




Example of Divot

0.10 1

0.08

0.06

0.04 4

0.02 4

0.00 4

012345678 9101112131415161718192021222324

Figure: Frequency of the number of missing sums for subsets of
{0,1,2,...,400} by simulating 1,000,000 subsets with p = 0.6.
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Why Divot?

e Closely related to the behavior of missing sums in the
sumset.
Many famous problems can be stated in the language
of sumsets: Goldbach’s Conjecture and Fermat’s Last
Theorem.
For example, let P, be the set {17,27,3",...}. Then
Fermat’s Last Theorem is equivalent to
(Po+ Py)NP,=0foralln>3.

@ Interesting itself: two-bump distribution.




Numerical Analysis for p = 1/2
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Figure: Frequency of the number of missing sums for all subsets of
{0,1,2,...,25}.
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For p=1/2, thereis adivot at 7, i.e.
P(|B| = 6) > P(|B| = 7) < P(|B| = 8).
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Question

Existence of Divots
For a fixed different value of p, are there other divots?

Answer: Yes!




Numerical analysis for different p € (0,1) : p=0.6

‘.
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Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p = 0.6.
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Numerical analysis for different p € (0,1) : p=0.7
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Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p =0.7.
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Numerical analysis for different p € (0,1) : p=0.8

0.35 4

0.30

0.25 4

0.20 4

0.15 4

0.10 4

0.05 4

0.00 4

012345678 9101112131415161718192021222324

Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p=0.8.
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Numerical analysis for different p € (0,1) : p=0.9
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Figure: Distribution of |B| = k by simulating 1,000,000 subsets of
{0,1,2,...,400} with p = 0.9.
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Chu-Luntzlara-Miller-Shao-Xu

For p > 0.68, there is a divot at 1, i.e.
P(|B] =0) > P(|B| =1) < P(|B|] = 2).

e Empirical evidence predicts the value of p such that
the divot at 1 starts to exist is between 0.6 and 0.7.
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o Want P(|B| = 0) > P(|B| = 1) < P(|B| = 2).
e Establish an upper bound T' for P(|B| = 1).

e Establish lower bounds Ty and T, for P(|B| = 0) and
P(|B| = 2), respectively.

e Find values of psuchthat T, > T' < To.
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Fringe Analysis

@ Most of the missing sums come from the fringe: many
more ways to form middle elements than fringe
elements.

e Example: let S C {0,1,...,10}. Then S+ S C [0, 20].

Consider 0 =0+ 0and 20 = 10 + 10 while
10=0+10=1+9=2+8=3+7=4+6=5+5.
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Fringe Analysis

@ Most of the missing sums come from the fringe: many
more ways to form middle elements than fringe
elements.

e Example: let S C {0,1,...,10}. Then S+ S C [0, 20].
Consider 0 =0+ 0 and 20 = 10 + 10 while
10=04+10=14+9=24+8=3+7=4+6=5+5.

e Fringe analysis is enough to find good lower bounds
and upper bounds for P(|B| = k).




Sketch of Proof
[ ]

@ Consider S C {0,1,2, ..., n— 1} with probability p of
each element being picked.
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@ Consider S C {0,1,2, ..., n— 1} with probability p of
each element being picked.

@ Analyze fringe of size 30.

BO)




Sketch of Proof
[ ]

@ Consider S C {0,1,2, ..., n— 1} with probability p of
each element being picked.

@ Analyze fringe of size 30.

e Write S = LUMU R, where
L C[0,29], M C [30,n—31]and R C [n—30,n—1].
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Notation

e Write S=LUMU R, where
L C[0,29], M C [30,n—31]and R C [n—30,n—1].

@ Ly : the event that L + L misses k sums in [0, 29].

@ [2: the event that L + L misses k sums in [0, 29] and
contains [30, 48|.

e Similar notations applied for R.

L
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Upper Bound

Given 0 < k < 30,

k _ A2\15 2
BB =k) < 3 B(L)P(L) + 229 (‘1”_;)32‘7 T)
i=0

(1)

R




Sketch of Proof
o] ]

L

Lower Bound

Given 0 < k < 30,

k
P(IBl=k) > ) {1 — (a—2)(qg"™) + g -y

i=0

(@)

_(1 — q)z(qmin Lz + qmin Liii) P(Lf)P(L;a(,,)
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Our Bounds Are Sharp (p > 0.7)
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Our Bounds Are Bad (p < 0.6)
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Divot at 1
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Figure: Shift of Divots
RO




Future Research
oeo

Question

There are no divots at even numbers.
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Question

Is there a value of p such that there are no divots?
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