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Background

We will be dealing with number fields Q(α)/Q.

A number field has a ring of integers, which is the ring of
all integral elements of K.
Example: Q(i) has ring of integers

Z[i] = {a + bi : a, b ∈ Z}.

An ideal p = 〈a + bi〉 of Z[i] is defined by

〈a + bi〉 = {r(a + bi) : r ∈ Z[i]}.

We say an ideal p of a ring R is prime if it is not equal to R
and ab ∈ p =⇒ a ∈ p or b ∈ p.
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Background

To an ideal p = 〈a + bi〉 ⊂ Z[i] we can associate an angle
θp by

eiθp =
a + bi
|a + bi|

.

θp determined up to rotation by π/2.
One can then study the smooth count of angles of prime
ideals lying in a certain window:

ψK,X(θ) =
∑
a⊂Z[i]

Φ

(
N(a)

X

)
Λ(a)FK(θa − θ).

� Φ a smooth compactly supported function
� Λ a generalization of Von-Mangoldt
� FK detects angles of size 2π/K.
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History

Hecke (1918): For K fixed, we have

ψK,X(θ) ∼ 4X
K

∫ ∞
0

Φ(x)dx.

Rudnick, Waxman (2017): Calculated the mean value
〈ψK,X〉 of ψK,X(θ).
SMALL 2017 REU: Calculated

Var(ψK,X) =
1

2π

∫ 2π

0
|ψK,X(θ)− 〈ψK,X〉|2 dθ.
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Our Setting

Instead of considering the ring of integers of Q(i), we
adjoin to Q the square root of a negative integer −d.

d is chosen so that all ideals of the ring of integers are
principal (generated by a single element) and Q(

√
−d) is

said to have class number one.
Let U be the number of units in Q(

√
−d)

To each ideal p = 〈a + bαd〉 we may associate the angle θp
defined by

eiθp =
a + bαd

|a + bαd|
.

Thus, an analogous ψK,X(θ) can be defined and the same
questions can be asked in this scenario: we are interested in
studying Var(ψK,X) in Z[αd].
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L-functions
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L-functions

An L-function is defined by a series of the form

L(s, f ) =
∞∑

n=0

f (n)

ns

for s ∈ C, where f is some complex-valued multiplicative
function

L(s, f ) has an Euler product
Usually convergent on a half-plane
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L-functions

A Completed L-function Λ(s, f ) is the analytic continuation of

an L-function L(s, f ) to a meromorphic function on the complex

plane (i.e., complex differentiable everywhere except finitely

many poles)

Λ(s, f ) satisfies a functional equation of the form

Λ(s, f ) = εf Λ(1− s, f ) with εf = ±1
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Example 1: Riemann zeta function

ζ(s) =

∞∑
n=0

1
ns converges for Re(s) > 1

Euler product: ζ(s) =
∏

p prime

(
1− 1

ps

)−1

Completed zeta function: ξ(s) = π−s/2Γ(s/2)ζ(s)

Functional equation: ξ(s) = ξ(1− s)
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Hecke characters and L-functions

A Hecke character χ is a homomorphism

χ : I → C∗

where
I is a multiplicative group of fractional ideals of a field

C∗ is the multiplicative group of complex numbers

χ satisfies certain properties
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Hecke characters and L-functions

If χ : I → C∗ is a Hecke character, then a Hecke L-function is
defined by a series of the form

L(s, χ) =
∑
a∈I

χ(a)

N(a)s

where N(a) is the ideal norm of a

Euler product is

L(s, χ) =
∏

p prime

(
1− χ(p)

N(p)s

)−1
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Set up for our Hecke character

Q(
√
−d) imaginary quadratic field, class number 1

Z[αd] = ring of integers,

αd =

{
1+
√
−d

2 −d ≡ 1 mod 4√
−d −d ≡ 2, 3 mod 4

U = number of units in Z[αd]

Define Hecke character χUk on ideals a = 〈a + bαd〉 of Z[αd] by

χUk(a) =

(
a + bαd

|a + bαd|

)Uk

= eiUkθa
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Hecke L-function

Our main L-function of interest:

Lk(s) =
∑

a⊂Z[αd]

χUk(a)

N(a)s =
∑

a⊂Z[αd]

eiUkθa

N(a)s

Main goal is to compute Var(ψK,X), and we use Fourier and
Mellin transforms to write

Var(ψK,X) =
1

4π2K2

∑
k 6=0

∣∣∣∣̂f ( k
K

)∣∣∣∣2 ∫
(2)

∫
(2)

L′k
Lk

(s)
L′k
Lk

(s′)Φ̃(s)Φ̃(s′)XsXs′dsds′
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The Ratios Conjecture
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Background

We are interested in computing the average

RK(α, β, γ, δ) =
1

2K

∑
|k|<K
k 6=0

Lk(
1
2 + α)Lk(

1
2 + β)

Lk(
1
2 + γ)Lk(

1
2 + δ)

.

Random Matrix Theory: Often used to model ratios of
products of L-Functions, however don’t capture lower
order arithmetic terms.
The Ratios conjecture is a procedure for computing
averages of ratios of L-functions that predicts these lower
order terms, providing a better model.
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Inputs to the Ratios Conjecture

Approximate Functional Equation: Lk(s) can be written
as

Lk(s) =
∑
n<x

an

ns + εk(s)
∑
m<y

am

m1−s + remainder

where εk(s) is a ratio of gamma factors that appear in the
functional equation for Lk(s).

Generalized Möbius Functional Equation: One may also
write

1
Lk(s)

=
∞∑

h=1

µk(h)

hs

where µk is an appropriate generalization of the Möbius
function.
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The Procedure

Use the approximate functional equation for terms in the
numerator (ignoring the remainder term) and the Möbius
functional equation for terms in the denominator.

Compute the expected value of the εk(s) factors over k, and
replace them with their averages in the expanded product.
Compute coefficient averages, and replace each component
of the sum with its average.
Extend the remaining sums out to infinity, and call the total
G(α, β, γ, δ). The conjecture then gives a nice expression
for the average RK(α, β, γ, δ) in terms of G.
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Sketch of
the Variance Calculation
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Ratios Calculation

We use the ratios conjecture to analyze the expression

Var(ψK,X) =
−X

4π2K2

∫
R

∫
R

∑
k 6=0

∣∣∣∣̂f ( k
K

)∣∣∣∣2 L′
k

Lk

(
1
2

+ α

)
L′

k

Lk

(
1
2

+ β

)

× Φ̃

(
1
2

+ α

)
Φ̃

(
1
2

+ β

)
XαXβdadb

where

α = ε+ ia β = ε′ + ib

Note that

L′k
Lk

(
1
2

+ α

)
L′k
Lk

(
1
2

+ β

)
=

∂

∂α

∂

∂β

Lk(
1
2 + α)Lk(

1
2 + β)

Lk(
1
2 + γ)Lk(

1
2 + δ)

∣∣∣∣
γ=α,δ=β
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K

)∣∣∣∣2 L′
k

Lk

(
1
2
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)
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k
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(
1
2

+ β

)

× Φ̃

(
1
2

+ α

)
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(
1
2

+ β

)
XαXβdadb

where

α = ε+ ia β = ε′ + ib

Note that
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1
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)
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(
1
2
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)
=

∂

∂α
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∂β

Lk(
1
2 + α)Lk(

1
2 + β)

Lk(
1
2 + γ)Lk(

1
2 + δ)

∣∣∣∣
γ=α,δ=β
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Ratios Calculation

From ratios conjecture, we can write

∑
|k|≤K

∣∣∣∣̂f ( k
K

)∣∣∣∣2 L′k
Lk

(
1
2

+ α

)
L′k
Lk

(
1
2

+ β

)
≈

∑
|k|≤K

∣∣∣∣̂f ( k
K

)∣∣∣∣2 ∂

∂α

∂

∂β
RK(α, β, γ, δ)

∣∣∣∣
γ=α,δ=β

where

RK(α, β, γ, δ) =
1

2K

∑
|k|<K
k 6=0

Lk(
1
2 + α)Lk(

1
2 + β)

Lk(
1
2 + γ)Lk(

1
2 + δ)

50



Intro L-Functions The Ratios Conjecture Computing the Variance Conclusions Refs

Ratios Calculation

Following the steps of the ratios conjecture, we compute:

G(α, β, γ, δ) = coefficient average from functional
equation for Lk(s)

〈εk(s)〉K = gamma factor average from functional equation
for Lk(s)

Note: 〈·〉K denotes average over |k| ≤ K
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Ratios Calculation
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Ratios Calculation

Following the steps of the ratios conjecture, we compute:

G(α, β, γ, δ) = coefficient average from functional
equation for Lk(s)
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Ratios Calculation

Then we have

〈εk(s)〉K =
1

2− 2s

(
2π√
|D|U2 K

)2s−1

where D is the fundamental discriminant of the number field,

i.e. D = −4d or D = −d depending on d mod 4

and

G(α, β, γ, δ) =

ζ(1 + 2α)ζ(1 + 2β)ζ(1 + α+ β)ζ(1 + γ + δ)

ζ(1 + α+ γ)ζ(1 + α+ δ)ζ(1 + β + γ)ζ(1 + β + δ)
× holomorphic function
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Ratios Calculation

Then we have

〈εk(s)〉K =
1

2− 2s

(
2π√
|D|U2 K

)2s−1

where D is the fundamental discriminant of the number field,

i.e. D = −4d or D = −d depending on d mod 4
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G(α, β, γ, δ) =
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Computing the Variance

We use these averages to obtain expression for RK(α, β, γ, δ):

RK(α, β, γ, δ) ≈ G(α, β, γ, δ) + 〈εk(1/2 + α)〉KG(−α, β, γ, δ)
+ 〈εk(1/2 + β)〉KG(α,−β, γ, δ)
+ 〈εk(1/2 + α)εk(1/2 + β)〉KG(−α,−β, γ, δ)

and plug back into the formula for variance:

Var(ψK,X) =
−X

4π2K2

∫
R

∫
R

∑
k 6=0
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∂

∂β
RK(α, β, γ, δ)
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γ=α,δ=β

× Φ̃

(
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)
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(
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)
XαXβdadb
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The Variance

Using contour integration, we arrive at our final expression for
the variance:

Theorem
Assume the Ratios Conjecture. Then

Var(ψK,X) =


X
K (γ log K + 1) if γ < 1
X
K (γ log K − 3) if 1 < γ < 2,
X
K

(
2 log K − log

(
π2

4

))
if γ > 2

where X = Kγ .
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Conclusions
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Conclusions

Variance and G(α, β, γ, δ) term seemed to be independent
of specific number field, as coefficient averages remained
the same, and contour integration led to cancellation.
Dependence on the specific number field appeared in the
Gamma factor averages.
Further generalizations to higher class number seem
doable, but there are obstacles to this such as producing a
well-defined Hecke character on non-principal ideals that
still captures the notion of angle.
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Thank You!
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