
Introduction Ruth-Aaron Numbers Density Sum of Reciprocals Questions and References

Playing Ball with the Largest Prime Factor
An Introduction to Ruth-Aaron Numbers

Madeleine Farris

Wellesley College

July 30, 2018



Introduction Ruth-Aaron Numbers Density Sum of Reciprocals Questions and References

The Players

Figure: Babe Ruth

Home Run Record: 714

Figure: Hank Aaron

On April 8th, 1974 hit his 715th
homerun
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714 and 715

Carl Pomerance observed some interesting facts about the
numbers 714 and 715:

their product is the product of the first 7 primes

714 ∗ 715 = 510510 = 2 ∗ 3 ∗ 5 ∗ 7 ∗ 11 ∗ 13 ∗ 17
it is now conjectured that this is the largest pair of consecutive
numbers whose product is the product of the first k primes for
some k

the sum of the prime factors of 714 and 715 are equal
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Rules of the Game

Definition (S(n))

Suppose n = pa11 · · · p
ak
k for all pi prime. Then define

S(n) =
k∑

i=1
aipi .

Definition (Ruth-Aaron Number)

Suppose n ∈ N such that S(n) = S(n + 1), then we call n a
Ruth-Aaron Number.

Example

S(714)=2+3+7+17=29=5+11+13=S(715)
S(77)=11+7=18=2+3+13=S(78)
Thus 77 and 714 are both Ruth-Aaron Numbers
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The Game’s Afoot

In 1974 Pomerance, Carol Nelson, and David E Penney published a
paper in Recreational Mathematics proving the following

Theorem

If we assume Schnizel’s Hypothesis H then there are infinitely
many Ruth-Aaron Numbers.

They also wrote that ”The numerical data suggest that Aaron
numbers are rare. We suspect they have density 0, but we cannot
prove this.”
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Erdős Joins the Team

Erdős and Pomerance published a paper in 1978 in which they
proved the first significant results regarding Ruth-Aaron Numbers.

Theorem

The Ruth-Aaron numbers have density 0.

Theorem

For all ε > 0, the number of n 6 x for which S(n) = S(n + 1) is

O
(

x
(log x)1−ε

)
.
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Erdős and Pomerance published a paper in 1978 in which they
proved the first significant results regarding Ruth-Aaron Numbers.

Theorem

The Ruth-Aaron numbers have density 0.

Theorem

For all ε > 0, the number of n 6 x for which S(n) = S(n + 1) is

O
(

x
(log x)1−ε

)
.



Introduction Ruth-Aaron Numbers Density Sum of Reciprocals Questions and References

Pomerance Hits a Homerun

Shortly after Erdős’s death, Pomerance proved an even stronger
result:

Theorem

The number of integers n 6 x with S(n) = S(n + 1) is

O
(
x(log log x)4

(log x)2

)
. In particular, the sum of the reciprocals of the

Ruth-Aaron numbers is bounded.
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Changing the Game

To extend these results, we consider Ruth-Aaron numbers when
their prime powers have been manipulated by some nice arithmetic
function and then summed.

Definition (K-th Power Ruth-Aaron Numbers)

Suppose n = pa11 · · · p
ad
d and we define Sk(n) =

d∑
i=1

aip
k
i . Then any

n ∈ N such that Sk(n) = Sk(n + 1) then n is a k-th Power
Ruth-Aaron Number.

Definition (Euler-Totient Ruth-Aaron Numbers)

Suppose n = pa11 · · · p
ad
d and we define f (n) =

d∑
i=1

aiϕ(pi ). Then

any n ∈ N such that f (n) = f (n + 1) is an Euler-Totient
Ruth-Aaron Number.
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Main Results

Theorem (Density of k-th Power Ruth-Aaron Numbers)

The K-th Power Ruth-Aaron Numbers have density 0 for all k ∈ N.

We also prove a slightly stronger result:

Theorem

For all ε > 0, the number of n 6 x for which Sk(n) = Sk(n + 1) is
O( x

log x1−ε
).
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Theorem 1

If n > 2 is an integer, let P(n) denote the largest prime factor of n.
Then we have the following theorem from Erdős and Pomerance:

Theorem (Theorem 1)

For all ε > 0 there is a δ > 0 such that for sufficiently large x, the
number of n 6 x with

1

xδ
<

P(n)

P(n + 1)
< xδ

is less than εx
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Theorem 2

From Erdős and Pomerance we get the following Theorem for
Ruth-Aaron Numbers:

Theorem (Theorem 2)

For all ε > 0, there is a δ > 0 such that for sufficiently large x
there are at least (1− ε)x choices for n 6 x such that

P(n) < f (n) < (1 + x−δ)P(n)

Then we have the following analogous result for Sk(n)

Theorem (Theorem 2 Extended)

For all ε > 0 there exists a δ > 0 such that for sufficiently large x
there are at least (1− ε)x choices for n > x such that

P(n)k < Sk(n) < (1 + x−δ)P(n)k
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Before we prove Theorem 2 we need this helpful result due to
Dickman:

Theorem (Theorem A)

For every x > 0 and every t, 0 6 t 6 1, let A(x , t) denote the
number of n 6 x with P(n) > x t . Then the function

a(t) = lim
x→∞

x−1A(x , t)

is defined and continuous on [0, 1]
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Proof of Theorem 2 (Extended)

Since any integer n 6 x is divisible by at most log x
log 2 primes, we

have for large x and composite n 6 x

Sk(n) = P(n)k + Sk

(
n

P(n)

)k

= P(n)k + P

(
n

P(n)

)k log x

log 2

< P(n)k + P

(
n

P(n)

)k

xδ

If Theorem 2 fails, then other than o(x) choices of n 6 x we have

Sk(n) > (1 + x−δ)P(n)k
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Proof of Theorem 2 (Extended)

Thus it follows that

P

(
n

P(n)

)k

>
P(n)k

xkδ

Now let ε > 0. From Theorem A there is δ0 = δ0(ε) > 0 such that
for large x , the number of n 6 x with P(n) < xδ0 is at most εx

3 .
For each pair of primes p, q the number of n 6 x with P(n)k = pk

and P
(

n
P(n)

)k
= qk is at most

[
x
pq

]
.



Introduction Ruth-Aaron Numbers Density Sum of Reciprocals Questions and References

Proof of Theorem 2 (Extended)

Thus it follows that

P

(
n

P(n)

)k

>
P(n)k

xkδ

Now let ε > 0. From Theorem A there is δ0 = δ0(ε) > 0 such that
for large x , the number of n 6 x with P(n) < xδ0 is at most εx

3 .
For each pair of primes p, q the number of n 6 x with P(n)k = pk

and P
(

n
P(n)

)k
= qk is at most

[
x
pq

]
.



Introduction Ruth-Aaron Numbers Density Sum of Reciprocals Questions and References

Proof of Theorem 2 (Extended)

Hence for large x the number of n 6 x for which Theorem 2 fails is
at most

o(x) +
εx

3
+

∑
xδ06p

x−2δp<q6p

[
x

pq

]
<
εx

2
+ x

∑ 1

p

1

q

<
εx

2
+

4δx

δ0
,

if we take δ = δ0ε
8 , this completes the proof.
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Density

Theorem (Theorem 1)

For all ε > 0 there is a δ > 0 such that for sufficiently large x, the
number of n 6 x with

1

xδ
<

P(n)

P(n + 1)
< xδ

is less than εx

Theorem (Theorem 2)

For all ε > 0 there exists a δ > 0 such that for sufficiently large x
there are at least (1− ε)x choices for n > x such that
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Sum of Reciprocals of Euler-Totient Ruth-Aaron Numbers

Theorem

Define f (n) =
d∑

i=1
aiϕ(pi ) for n = a1p1 · · · adpd where ϕ(n) is the

Euler-Totient function. The number of integers n 6 x with

f (n) = f (n + 1) is O
(
x(log log x)4

(log x)2

)
. In particular, the sum of the

reciprocals of the Euler-Totient Ruth-Aaron numbers is bounded.
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Proof of Theorem

Similarly let P(n) denote the largest prime factor of n. Say n 6 x
and f (n) = f (n + 1). Write n = pk,n + 1 = qm where p = P(n),
q = P(n + 1).
We first note that we may assume that

p > x1/ log log x , q > x1/ log log x (1)

since the number of integers n 6 x for which (1) does not hold is

O

(
x

(log x)2

)
.
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Proof of Theorem (Cont’d)

Using the fact that t
log t is increasing for t > e and 2

log 2 <
5

log 5 we
get that for P(n) > 5

P(n) 6 f (N) 6
P(N) logN

logP(N)
. (2)

In light of (1), we may assume P(n),P(n + 1) > 5, so that (2)
holds for n and n + 1.
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Proof of Theorem (Cont’d)

We obtain the following two equations:

pk + 1 = qm , p + f (k) = q + f (m)

and note that the numbers k ,m determine the primes p, q. Indeed,

p =
(f (k)− f (m))m − 1

k −m
, q =

(f (k)− f (m))k − 1

k −m
(3)

Thus, the number of choices for n corresponding to choices of k ,m

with k ,m < x1/2

log x is at most x
(log x)2

. We hence may assume that

p 6 x1/2 log x or q 6 x1/2 log x (4)
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Proof of Theorem (Cont’d)

Suppose p > x1/2 log x . Then (2) and (4) give us that

p 6 2x1/2 log x

A similar inequality holds if q > x1/2 log x . Thus we have

p < 2x1/2 log x and q < 2x1/2 log x (5)
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Proof of Theorem (Cont’d)

Suppose (for now) that

f (k) <
p

(log x)2
, f (m) <

q

(log x)2
(6)

Then we can show that

|p − q| < p + q

(log x)2
(7)

Now we want to count how many numbers satisfy these
constraints.
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Proof of Theorem (Cont’d)

For p satisfying (1), the number of primes q such that (7) holds is

O
(
p log log x
(log x)3

)
and the sum of 1

q for such primes q is O
(
log log x
(log x)3

)
Now, for a given choice of p, q the number of n 6 x with p|n and
q|n + 1 is at most 1 + x

pq . Thus if (6) holds, the number of n that
we are counting is at most∑
p,qsubject to (1),(5),(7)

1 +
x

pq
�

∑
p<2x1/2 log x

p log log x

log3 x
+

x log log x

p(log3 x)

� x log log x

log2 x

Thus we assume that (6) does not hold.
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Proof of Theorem (Cont’d)

The arguments for the cases f (k) > p
(log x)2

and f (m) > q
(log x)2

are

parallel, so we’ll only give the details for the first case. That is, we
shall assume that

f (k) >
p

(log x)2
. (8)

First we need to establish some preliminary ideas. We write k = rl
where r = P(k). Then (2) and (1) give us

p
log p

2 log x
6 q 6 p

log x

log p
(9)

Additionally, (8) gives us

p log p

2(log x)3
6 r 6 p (10)
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Proof of Theorem (Cont’d)

Suppose p 6 x1/3. Then the number of n in this case is at most∑
p,q,r subject to (2.1),(2.8),(2.9),

p6x1/3

1 +
x

prq

� x

log3 x
+

∑
p>x1/ log log x

x

p

log log x

log p

log log x

log p

� x(log log x)4

(log x)2
.

Thus we will assume that p > x1/3.
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Proof of Theorem (Cont’d)

Using (3) we get the following relationship:

(pl −m)(rl −m) = (f (l)− f (m)− 1)ml − l + m2. (11)

Thus, given l ,m the number of choices of r , and hence for n, is at
most

τ((f (l)− f (m)− 1)ml − l + m2) 6 xo(1),

where τ denotes the divisor function.
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Proof of Theorem (Cont’d)

If we suppose that

P(l) < x1/6 , P(m) < x1/6 (12)

then using some analysis we get that but for O(x29/30(log x)2)
choices for n 6 x we have that (12) does not hold.

We first consider the case that P(l) > x1/6. Write l = sj where
s = P(l). We rewrite (11) as

(psj −m)(rsj −m) = ((f (j)− f (m)− 2)mj − j)s + m2 + mjs2

(13)

We shall fix a choice for j ,m and sum over choices for s.
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Proof of Theorem (Cont’d)

If we suppose that

P(l) < x1/6 , P(m) < x1/6 (12)

then using some analysis we get that but for O(x29/30(log x)2)
choices for n 6 x we have that (12) does not hold.
We first consider the case that P(l) > x1/6. Write l = sj where
s = P(l). We rewrite (11) as

(psj −m)(rsj −m) = ((f (j)− f (m)− 2)mj − j)s + m2 + mjs2

(13)

We shall fix a choice for j ,m and sum over choices for s.
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Helpful Lemma

Lemma

Suppose A,B,C are integers with gcd(A,B,C ) = 1,
D := B2 − 4AC 6= 0, A 6= 0. Suppose the maximum value of
|At2 + Bt + C | on the interval [1, x ] is M0. Let
M = max{M0, |D|, x}, let µ = d logMlog x e and assume that

µ 6 1
7 log log x. Then∑

n6x

τ(|An2 + Bn + C |) 6 x(log x)2
3u+1+4

holds uniformly x > x0. (We interpret τ(0) as 0 should it occur in
the sum. The number x0 is an absolute constant independent of
the choice of A,B,C.)



Introduction Ruth-Aaron Numbers Density Sum of Reciprocals Questions and References

Proof of Theorem (Cont’d)

We apply the lemma with A = mj , B = (f (j)− f (m)− 2)mj − j
and C = m2. With a little bit of work we can show that
gcd(A,B,C ) = 1, D := B2 − 4AC 6= 0, and A 6= 0. Then

assuming that j < 6x1/6(log x)2,m� x2/3, and s 6 6x1/3(log x)2

j ,

we have that the maximum of |As2 + Bs + C | for the range of s is
� x4/3(log x)2. It follows from the lemma that∑

s6 6x1/3(log x)2

j

τ(|As2 + Bs + C |) 6
(

1

j

)
x1/3(log x)c (14)

for some positive constant c .
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Proof of Theorem (Cont’d)

We apply the lemma with A = mj , B = (f (j)− f (m)− 2)mj − j
and C = m2. With a little bit of work we can show that
gcd(A,B,C ) = 1, D := B2 − 4AC 6= 0, and A 6= 0. Then

assuming that j < 6x1/6(log x)2,m� x2/3, and s 6 6x1/3(log x)2

j ,

we have that the maximum of |As2 + Bs + C | for the range of s is
� x4/3(log x)2. It follows from the lemma that∑

s6 6x1/3(log x)2

j

τ(|As2 + Bs + C |) 6
(

1

j

)
x1/3(log x)c (14)

for some positive constant c .
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Proof of Theorem (Cont’d)

Then if x1/3 < p 6 x1/3(log x)c+5, the number of n in this case is
at most∑

p�q

(
1 +

x

pq

)
� x2/3(log x)2c+10 +

x

log x

∑ 1

p
� x log log x

(log x)2
.

Thus, we may assume that p > x1/3(log x)c+5. Then

m� x2/3

(log x)c+5 , so that summing (14) over all choices for m, j we

get a quantity that is � x
(log x)2

.
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Proof of Theorem (Cont’d)

Finally, we consider the remaining case when P(m) > x1/6. Let
m = tu where t = P(m). Then we obtain

(pl − tu)(rl − tu) = t2(u2 − ul) + t(ulf (l)− ulf (u))− l (15)

We apply the lemma again, summing the number of divisors of the
right side and get an estimate that is � x

(log x)2c+2 , which is

negligible. This completes the proof.
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Open Questions

Is the sum of the K-th Power Ruth-Aaron Numbers bounded?

What other arithmetic functions share these properties?

Can this be generalized to some set of ”nice” arithmetic
functions?

Can we achieve an even tighter bound on the sum?

What can be said about triples, i.e when
S(n) = S(n + 1) = S(n + 2), or more generally
S(n) = S(n + 1) = · · · = S(n + k) for some k.
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and his Mathematics, I (2002), 567-579.


	Introduction
	Ruth-Aaron Numbers
	Density
	Sum of Reciprocals
	Questions and References

