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Background

Let AC NU {0}.

Definition

Sumset: A+A={x+y:x,ycA}
Interval: [a,b] ={x e N:a<x < b}

Example: if A= {1,2,5}, then
A+A={23,4,6,7,10}

Why study sumsets?
@ Goldbach’s conjecture: {4,6,8,---} C P+ P.

@ Fermat’s last theorem: let A, be the nth powers and then
ask if (Ap+ Ap) NA, =0 foralln> 2.

Key Question: What is the structure of A+ A?
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Structure of Random Sets

@ Consider finite A C [0, n — 1] chosen randomly with uniform
distribution from all subsets of [0, n — 1].

@ Question: What is the structure of A + A for such A? what
the distribution of |A + A| for such A?

Theorem: Martin, O’Bryant

EJA+ A =2n—1—10+ O((3/4)"?)

Theorem: Zhao

For each fixed k, P(AC [0,n—1] : [A+ A =2n—1— k) has a
limit as n — oo

| A

v

Note: Both theorem can be more naturally stated in terms of
missing sums (independent of n).
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New Results

Theorem: Bounds on the distribution (Lazarev, 2011)

0.70% < P(A+ A has k missing sums) < 0.80

From numerical data, conjecture that
P(A + A has k missing sums) ~ 0.78*
and Log(P(A + A has k missing sums)) is eventually linear:
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Figure: Log P(k missing sums) for 5 - 108 trial A of size 120
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More Results

Theorem: Variance (Lazarev, 2011)

Exact series for the variance (too long to fit on page...);
also Var ~ 35.98.

Theorem: Asymptotic formula for distribution of

consecutive missing sums (Lazarev, 2011)

1\ (k+0)/2 1\ (k+/2
() < P(A+Ais missing [k, k+i]) < (2> (14€)*

Key Obstacle: Dependent random variables
Key Approach: Graph theory! (and Fibonacci Numbers?)
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93%
Proof sketch:

@ Recall P(k ¢ A+ A) = (3)

@ If k elements are missing, then missing one at least k/2
from the edges
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93%
Proof sketch:

o Recall P(k ¢ A+ A) = (2)"?

@ If k elements are missing, then missing one at least k/2
from the edges

I:-:E-:_:-:EEI
o1 *
k/2 k/2

missing sum more than k/2 from ends
@ P(A+ Ahas k missing sums) < P(k/2 ¢ A+ A) <
(2)"* ~ 0.93
Note: Since the expectation is around 10 and expansion decay,
all the higher moments are bounded as n — .




Bounds on Distribution
L]

Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

eSS




Bounds on Distribution
L]

Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

@ Let the first k/2 be missing from A




Bounds on Distribution
L]

Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

@ Let the first k/2 be missing from A
@ For the rest of elements, pick any set that fills in

YT




Bounds on Distribution
L]

Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

@ Let the first k/2 be missing from A

@ For the rest of elements, pick any set that fills in

@ Martin/O’Bryant: P( fills in) > 0.01 independent of n




Bounds on Distribution
L]

Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

@ Let the first k/2 be missing from A
@ For the rest of elements, pick any set that fills in
@ Martin/O’Bryant: P( fills in) > 0.01 independent of n

A CTT T T T T T T I T
LT_JL - _J

k/2 any set that fills in




Bounds on Distribution
L]

Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

@ Let the first k/2 be missing from A
@ For the rest of elements, pick any set that fills in
@ Martin/O’Bryant: P( fills in) > 0.01 independent of n

A CTT T T T T T T I T
LT_JL - _J

k/2 any set that fills in

aa: (T T T D
— T

k completely filled in




Bounds on Distribution
L]

Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 - 0.70%
Proof sketch: Construction.

@ Let the first k/2 be missing from A
@ For the rest of elements, pick any set that fills in
@ Martin/O’Bryant: P( fills in) > 0.01 independent of n

A CTT T T T T T T I T
LT_JL - _J

k/2 any set that fills in

aa: (T T T D
— T

k completely filled in

P(A+ A has k missing sums) > 0.01 (—é)k/2 ~ 0.01-0.70%
|
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Variance

Can study Var|A + A| instead.
Recall that

Var|A+ Al = E(JA+ AP%) — (E|A+ A))?
Therefore just need E(|A + A[?):

n
Ag[()’n_ﬂ

-1 3D

AC[0,n—1] i jeA+A
1
= 5 2. > 1
0<i,j<2n-2 A jeA+A
= )  P(A:iandjcA+A)

0<ij<2n—2

’
E(A+AR) = 5= Y |A+AP
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Problem: Dependent Random Variables
It is sufficient to study P(A:iandj ¢ A+ A):

P(A:iandje A+A) = 1-PA:i¢dA+A) -PA:j¢A+A)
+P(A:iandj ¢ A+ A).

Example: P(A:3and 7 ¢ A+ A)
@ Conditions:

i=3: 0or3¢A j=7: 0or7¢A
and1or2¢A and1or6 ¢ A
and2or5¢ A
and3or4 £ A

@ Since there are common integers in both lists, the events
3ZdA+Aand7 ¢ A+ A are dependent.

AR
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Solution: Use Graphs!

@ Transform the conditions into a graph!
@ For each integers in [0, 7], add a vertex with that integer.
@ Then connect two vertices if add up to 3 or 7.

Example i =3,/ =7:

_0

7 1
\
6 é( 2 Untangle graph —>

5 _3
4
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Solution: Use Graphs!

@ Transform the conditions into a graph!
@ For each integers in [0, 7], add a vertex with that integer.
@ Then connect two vertices if add up to 3 or 7.

Example i =3,/ =7:

_0

7 1
\
6ﬂ2 Untanglegraph—> 7 —0—3 —4

5 _3
4 6 —1—2—5
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Solution: Use Graphs!

@ Transform the conditions into a graph!
@ For each integers in [0, 7], add a vertex with that integer.
@ Then connect two vertices if add up to 3 or 7.

Example i =3,/ =7:

_0
7 1
\
6ﬂ2 Untanglegraph—> 7 —0—3 —4
5 3
4 6 —1—2—5

@ One-to-one correspondence between conditions/edges
(and integers/vertices).

L
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Interpretation of Graphs

Transformed into:

D O O ¢ 6—1—2—5

@ Need to pick integers so that each condition is satisfied.

@ Therefore, need to pick vertices so that each edge has a
vertex chosen.

@ So need to pick a vertex cover!
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Interpretation of Graphs

Transformed into:

D O O ¢ 6—1—2—5

@ Need to pick integers so that each condition is satisfied.

@ Therefore, need to pick vertices so that each edge has a
vertex chosen.

@ So need to pick a vertex cover!
@ Each integer is equally likely so can ignore vertex labels!
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Vertex Covers

Have:
7—0—3—4 6 —1—2—5
Example:
7,0,4 and 6, 2 form a vertex cover
—

§7,0,4,6,2¢ A then3,7 ¢ A+ A

Lemma(Lazarev, 2011)

P(i,j ¢ A+ A) = P(pick a vertex cover for graph)




Variance
[ ]

Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.




Variance
[ ]

Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

@ Case 1: If the first vertex is chosen:




Variance
[ ]

Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.
@ Case 1: If the first vertex is chosen:
X —?2—2—2?2—7




Variance
[ ]

Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.
@ Case 1: If the first vertex is chosen:
X —?2—2—2?2—7

Need an vertex cover for the rest of the graph: g(n —1).




Variance
[ ]

Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

@ Case 1: If the first vertex is chosen:
X —2—2—2—?

Need an vertex cover for the rest of the graph: g(n —1).
@ Case 2: If the first vertex is not chosen:




Variance
[ ]

Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

@ Case 1: If the first vertex is chosen:
X —2—2—2—?

Need an vertex cover for the rest of the graph: g(n —1).
@ Case 2: If the first vertex is not chosen:
0O — X —?2—7?2—272

Need an vertex cover for the rest of the graph: g(n — 2).
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

@ Case 1: If the first vertex is chosen:
X —2—2—2—?

Need an vertex cover for the rest of the graph: g(n —1).
@ Case 2: If the first vertex is not chosen:
0O — X —?2—7?2—272

Need an vertex cover for the rest of the graph: g(n — 2).
@ Fibonacci recursive relationship!

g(n)=9g(n-1)+g(n-2)
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

@ Case 1: If the first vertex is chosen:
X —2—2—2—?
Need an vertex cover for the rest of the graph: g(n —1).
@ Case 2: If the first vertex is not chosen:
0O — X —?2—°?2—7?

Need an vertex cover for the rest of the graph: g(n — 2).
@ Fibonacci recursive relationship!

g(n)=g(n-1)+g(n-2)
= g(n) = Fpi2
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In particular

1 1
P(3 and 7 € A+ A) F4+2F4+2 = Z

since there were two graphs each of length 4.

@ In general, graphs will have many components with
different lengths.
@ Foroddi<j<n:

P(A:iandj¢ A+ A)
1 F%((f' N[ ]-G+1)) y F1<j+17(j7")[%b

2j+1 2{/+1-‘+2 2[l+1—‘+4
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@ Foroddi<j<n:

P(A:iandj¢ A+ A)
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@ Need to find the formulas for when i, j are even....
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General /,j

In particular

1 1
P(3 and 7 € A+ A) F4+2F4+2 = Z

since there were two graphs each of length 4.

@ In general, graphs will have many components with
different lengths.
@ Foroddi<j<n:

P(A:iandj¢ A+ A)
1 F%((f' N[ ]-G+1)) y F1<j+17(j7")[%b

2j+1 2{/+1-‘+2 2[l+1—‘+4

@ Need to find the formulas for when i, j are even....
@ And to get variance, need to sum up over all i < j < 2n....
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Variance Formula

y

Var|A+ Al = —40+4 > P(i,j ¢ A+ A)

i<j<n
= —40 + 0O(c")
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Variance Formula

Var|A+ Al = —40+4 > P(i,j ¢ A+ A)

i<j<n
= —40 + 0O(c")
ey ot F%(U I E=6n) & (-0-0[ )
o 211 2 ]2 2“%1:]*4
o i . i/2+1 ) o i /241
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So clearly

Var|A+ A| ~ 35.98
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°

Improved Upper Bound

@ Use P(i,j ¢ A+ A) to improve the upper bound for
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@ Use P(i,j ¢ A+ A) to improve the upper bound for
P(A+ A has k missing sums )
@ From previous section:

2 \/ [51/4 !
MPONESIS

where ¢ is the golden ratio
@ If A+ Ais missing at k elements, then missing at least two
elements greater than k:

2 k 51/4 k
P(A+A has k missing sums ) < (2 : 51/4> 3 ~ 0.80%

@ General idea: The better we know P(ay,--- ,a; ¢ A+ A),
the better we know the P(A + A has k missing sums )
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@ Will study the particular case of P(ay,--- ,a; ¢ A+ A) of
consecutive missing sums: P(k,k +1,--- ,k+i ¢ A+ A)
@ Example: P(16,17,18,19,20 ¢ A+ A)

Start with original graph and remove some conditions (edges):

0 1. . 2 3 4 5 6 7 8

T ABAIHIATILILIEIIIN

20 19 18 17 16 15 14 13 12 11 —46— 9

= Transforms to:

0 1 2 3 4 5 6 7

8
XKL IR )RR
20 19 18 17 16 15 14 13 12 11 10 9

Q)
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Consecutive Missing Sums in A+A

@ So get around 20/6 complete bipartite graphs like:

0. 1 2
\ 8>¢<g \
18 17 16

@ For a vertex cover, need one side to have all vertices

chosen; occurs with probability < § + § = 1

@ By independence, P(16,17,18,19,20) < (}
@ In general

Pk, k+1,k+2 k+3 k+4) < (1)
which is a slight improvement!

20/6
)

KB .79k
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@ But most general is:

Plkk+1,- k+ig A+ A) < (5)U 21 4 )
@ However the trivial lower bound is:

(D2 <Pk k41, k+i¢ At A)
@ Why interesting? Bounds almost match!

@ Essentially the only way to miss a block of i consecutive
sums is to miss all elements before the block as well.
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Summary

We found

@ Exponential bounds for distribution of number of missing
sums

@ Series for the variance in terms of Fibonacci numbers
@ Asymptotic formula for consecutive missing sums

by developing graph theoretic framework for studying
dependent random variables.
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And currently investigating/other research ideas:
@ Is distribution of missing sums approximately exponential?
@ IsP(k+ay,--- ,k+am)~ \forany fixed ay, - - - , am?
@ Higher moments: third moment involves P(i, j, k) which
has more complicated graphs
@ Distribution of missing differences in
A-A={x—-y:x,ycA}




Thank you!
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