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Introduction Bounds on Distribution Variance Consecutive Missing Sums Future Research

Background

Let A ⊆ N ∪ {0}.

Definition
Sumset: A + A = {x + y : x , y ∈ A}
Interval: [a,b] = {x ∈ N : a ≤ x ≤ b}

Example: if A = {1,2,5}, then

A + A = {2,3,4,6,7,10}

Why study sumsets?
Goldbach’s conjecture: {4,6,8, · · · } ⊆ P + P.
Fermat’s last theorem: let An be the nth powers and then
ask if (An + An) ∩ An = ∅ for all n > 2.

Key Question: What is the structure of A + A?
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Introduction Bounds on Distribution Variance Consecutive Missing Sums Future Research

Structure of Random Sets

Consider finite A ⊆ [0,n− 1] chosen randomly with uniform
distribution from all subsets of [0,n − 1].

Question: What is the structure of A + A for such A? what
the distribution of |A + A| for such A?

Theorem: Martin, O’Bryant

E|A + A| = 2n − 1− 10 + O((3/4)n/2)

Theorem: Zhao
For each fixed k , P(A ⊆ [0,n − 1] : |A + A| = 2n − 1− k) has a
limit as n→∞

Note: Both theorem can be more naturally stated in terms of
missing sums (independent of n).
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Structure of Random Sets, Continued

Why is the expectation so high? E |A + A| ∼ 2n − 11.

Main characteristic of typical A + A: middle is full.
Many ways to write middle elements as sums

50 100 150 200

5

10

15

20

25

Figure: Comparison of predicted and observed number of
representations of possible elements of the sumset, Miller

Key fact: if k < n, then P(k 6∈ A + A) ∼
(3

4

)k/2
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New Results

Theorem: Bounds on the distribution (Lazarev, 2011)

0.70k � P(A + A has k missing sums)� 0.80k

From numerical data, conjecture that

P(A + A has k missing sums) ∼ 0.78k

and Log(P(A + A has k missing sums)) is eventually linear:

Figure: Log P(k missing sums) for 5 · 108 trial A of size 120
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More Results

Theorem: Variance (Lazarev, 2011)
Exact series for the variance (too long to fit on page...);
also Var ∼ 35.98.

Theorem: Asymptotic formula for distribution of
consecutive missing sums (Lazarev, 2011)

(
1
2

)(k+i)/2

� P(A+A is missing [k , k+i])�
(

1
2

)(k+i)/2

(1+εi)k

Key Obstacle: Dependent random variables
Key Approach: Graph theory! (and Fibonacci Numbers?)
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Bounds on the Distribution
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Bound on Distribution: Upper Bound

Weaker Upper bound: P(A + A has k missing sums) < 0.93k

Proof sketch:

Recall P(k 6∈ A + A) =
(3

4

)k/2

If k elements are missing, then missing one at least k/2
from the edges

P(A + A has k missing sums) < P(k/2 6∈ A + A) <(3
4

)k/4 ∼ 0.93k

Note: Since the expectation is around 10 and expansion decay,
all the higher moments are bounded as n→∞.
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Bound on Distribution: Lower Bound

Lower bound: P(A + A has k missing sums) > 0.01 · 0.70k

Proof sketch: Construction.

Let the first k/2 be missing from A
For the rest of elements, pick any set that fills in
Martin/O’Bryant: P( fills in) > 0.01 independent of n

P(A + A has k missing sums) > 0.01
(1

2

)k/2 ∼ 0.01 · 0.70k
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Variance
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Variance

Can study Var|A + A| instead.
Recall that

Var|A + A| = E(|A + A|2)− (E|A + A|)2

Therefore just need E(|A + A|2):

E(|A + A|2) =
1
2n

∑
A⊆[0,n−1]

|A + A|2

=
1
2n

∑
A⊆[0,n−1]

∑
i,j∈A+A

1

=
1
2n

∑
0≤i,j≤2n−2

∑
A:i,j∈A+A

1

=
∑

0≤i,j≤2n−2

P(A : i and j ∈ A + A)
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Problem: Dependent Random Variables

It is sufficient to study P(A : i and j 6∈ A + A):

P(A : i and j ∈ A + A) = 1− P(A : i 6∈ A + A)− P(A : j 6∈ A + A)
+P(A : i and j 6∈ A + A).

Example: P(A : 3 and 7 6∈ A + A)
Conditions:

i = 3 : 0 or 3 6∈ A j = 7 : 0 or 7 6∈ A
and 1 or 2 6∈ A and 1 or 6 6∈ A

and 2 or 5 6∈ A
and 3 or 4 6∈ A.

Since there are common integers in both lists, the events
3 6∈ A + A and 7 6∈ A + A are dependent.
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Solution: Use Graphs!

Transform the conditions into a graph!

For each integers in [0,7], add a vertex with that integer.
Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:

0
1

2

3
4

5

6

7

7 0 3 4

6 1 2 5

One-to-one correspondence between conditions/edges
(and integers/vertices).
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Interpretation of Graphs

Transformed into:

7 0 3 4 6 1 2 5

Need to pick integers so that each condition is satisfied.
Therefore, need to pick vertices so that each edge has a
vertex chosen.
So need to pick a vertex cover!
Each integer is equally likely so can ignore vertex labels!
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Vertex Covers

Have:

7 0 3 4 6 1 2 5

Example:
7,0,4 and 6,2 form a vertex cover
⇐⇒
If 7,0,4,6,2 6∈ A, then 3,7 6∈ A + A

Lemma(Lazarev, 2011)

P(i , j 6∈ A + A) = P(pick a vertex cover for graph)
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Number of Vertex Covers

Condition graphs are always ‘segment’ graphs. So we just need
g(n), the number of vertex covers for a ‘segment’ graph with n
vertices.

Case 1: If the first vertex is chosen:
x ? ? ? ?

Need an vertex cover for the rest of the graph: g(n − 1).
Case 2: If the first vertex is not chosen:

o x ? ? ?

Need an vertex cover for the rest of the graph: g(n − 2).
Fibonacci recursive relationship!

g(n) = g(n − 1) + g(n − 2)
=⇒ g(n) = Fn+2
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General i , j

In particular

P(3 and 7 6∈ A + A) =
1
28 F4+2F4+2 =

1
4

since there were two graphs each of length 4.

In general, graphs will have many components with
different lengths.
For odd i < j < n:

P(A : i and j 6∈ A + A)

=
1

2j+1 F
1
2

(
(j−i)

⌈
i+1
j−i

⌉
−(i+1)

)
2
⌈

i+1
j−i

⌉
+2

× F
1
2

(
j+1−(j−i)

⌈
i+1
j−i

⌉)
2
⌈

i+1
j−i

⌉
+4

Need to find the formulas for when i , j are even....
And to get variance, need to sum up over all i < j < 2n....
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Variance Formula
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So clearly
Var |A + A| ∼ 35.98
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Consecutive Missing Sums
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Improved Upper Bound

Use P(i , j 6∈ A + A) to improve the upper bound for
P(A + A has k missing sums )

From previous section:

P(i , j 6∈ A + A) ∼
(

φ2

2 · 51/4

)j (51/4

φ

)i

where φ is the golden ratio
If A + A is missing at k elements, then missing at least two
elements greater than k :

P(A+A has k missing sums ) <

(
φ2

2 · 51/4

)k (51/4

φ

)k

∼ 0.80k

General idea: The better we know P(a1, · · · ,aj 6∈ A + A),
the better we know the P(A + A has k missing sums )
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Consecutive Missing Sums in A+A

Will study the particular case of P(a1, · · · ,aj 6∈ A + A) of
consecutive missing sums: P(k , k + 1, · · · , k + i 6∈ A + A)

Example: P(16,17,18,19,20 6∈ A + A)

Start with original graph and remove some conditions (edges):

0 1 2 3 4 5 6 7 8

20 19 18 17 16 15 14 13 12 11 10 9

=⇒ Transforms to:

0 1 2 3 4 5 6 7 8

20 19 18 17 16 15 14 13 12 11 10 9
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Start with original graph and remove some conditions (edges):
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Consecutive Missing Sums in A+A

So get around 20/6 complete bipartite graphs like:

0 1 2

18 17 16

For a vertex cover, need one side to have all vertices
chosen; occurs with probability ≤ 1

8 + 1
8 = 1

4

By independence, P(16,17,18,19,20) ≤
(1

4

)20/6

In general
P(k , k + 1, k + 2, k + 3, k + 4) ≤

(1
4

)(k+4)/6 ∼ 0.79k+4

which is a slight improvement!
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Consecutive Missing Sums

But most general is:
P(k , k + 1, · · · , k + i 6∈ A + A) ≤

(1
2

)(k+i)/2
(1 + εi)

k

However the trivial lower bound is:(1
2

)(k+i)/2 ≤ P(k , k + 1, · · · , k + i 6∈ A + A)
Why interesting? Bounds almost match!
Essentially the only way to miss a block of i consecutive
sums is to miss all elements before the block as well.
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Summary

We found

Exponential bounds for distribution of number of missing
sums
Series for the variance in terms of Fibonacci numbers
Asymptotic formula for consecutive missing sums

by developing graph theoretic framework for studying
dependent random variables.
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Future Research

And currently investigating/other research ideas:

Is distribution of missing sums approximately exponential?
Is P(k + a1, · · · , k + am) ∼ λk for any fixed a1, · · · ,am?
Higher moments: third moment involves P(i , j , k) which
has more complicated graphs
Distribution of missing differences in
A− A = {x − y : x , y ∈ A}
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Thank you!
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