Oleg Lazarev, Princeton University Advisor: Steven Miller, Williams College SMALL Research Program 2011, Williams College

2011 Young Mathematicians Conference The Ohio State University, August 21, 2011

Background

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

00000

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a,b] = \{x \in \mathbb{N} : a \le x \le b\}$

00000

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a,b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

00000

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset: $A + A = \{x + y : x, y \in A\}$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Why study sumsets?

00000

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Why study sumsets?

• Goldbach's conjecture: $\{4, 6, 8, \dots\} \subseteq P + P$.

Background

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \dots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the *n*th powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.

Consecutive Missing Sums

Background

Let $A \subseteq \mathbb{N} \cup \{0\}$.

Definition

Sumset:
$$A + A = \{x + y : x, y \in A\}$$

Interval: $[a, b] = \{x \in \mathbb{N} : a \le x \le b\}$

Example: if $A = \{1, 2, 5\}$, then

Bounds on Distribution

$$A + A = \{2, 3, 4, 6, 7, 10\}$$

Why study sumsets?

- Goldbach's conjecture: $\{4, 6, 8, \dots\} \subseteq P + P$.
- Fermat's last theorem: let A_n be the *n*th powers and then ask if $(A_n + A_n) \cap A_n = \emptyset$ for all n > 2.

Key Question: What is the structure of A + A?

00000

• Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? what the distribution of |A + A| for such A?

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? what the distribution of |A + A| for such A?

Theorem: Martin, O'Bryant

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2})$$

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? what the distribution of |A + A| for such A?

Theorem: Martin, O'Bryant

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2})$$

Theorem: Zhao

For each fixed k, $P(A \subseteq [0, n-1] : |A+A| = 2n-1-k)$ has a limit as $n \to \infty$

- Consider finite $A \subseteq [0, n-1]$ chosen randomly with uniform distribution from all subsets of [0, n-1].
- Question: What is the structure of A + A for such A? what the distribution of |A + A| for such A?

Theorem: Martin, O'Bryant

$$E|A + A| = 2n - 1 - 10 + O((3/4)^{n/2})$$

Theorem: Zhao

For each fixed k, $P(A \subseteq [0, n-1] : |A+A| = 2n-1-k)$ has a limit as $n \to \infty$

Note: Both theorem can be more naturally stated in terms of missing sums (independent of n).

• Why is the expectation so high? $E|A+A| \sim 2n-11$.

Introduction

00000

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2n-11$.
- Main characteristic of typical A + A: middle is full.

Introduction

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2n-11$.
- Main characteristic of typical A + A: middle is full.
- Many ways to write middle elements as sums

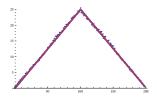


Figure: Comparison of predicted and observed number of representations of possible elements of the sumset, Miller

Structure of Random Sets, Continued

- Why is the expectation so high? $E|A+A| \sim 2n-11$.
- Main characteristic of typical A + A: middle is full.
- Many ways to write middle elements as sums

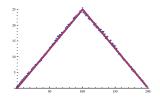


Figure: Comparison of predicted and observed number of representations of possible elements of the sumset, Miller

• Key fact: if k < n, then $P(k \notin A + A) \sim \left(\frac{3}{4}\right)^{k/2}$

New Results

New Results

Introduction

Theorem: Bounds on the distribution (Lazarev, 2011)

 $0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.80^k$

Theorem: Bounds on the distribution (Lazarev, 2011)

 $0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.80^k$

From numerical data, conjecture that

 $P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$

Future Research

Introduction

$$0.70^k \ll P(A + A \text{ has } k \text{ missing sums}) \ll 0.80^k$$

From numerical data, conjecture that

$$P(A + A \text{ has } k \text{ missing sums}) \sim 0.78^k$$

and Log(P(A + A has k missing sums)) is eventually linear:

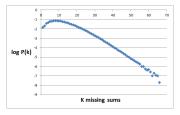


Figure: Log P(k missing sums) for $5 \cdot 10^8$ trial A of size 120

Introduction

Theorem: Variance (Lazarev, 2011)

Exact series for the variance (too long to fit on page...); also $Var \sim 35.98$.

Theorem: Variance (Lazarev, 2011)

Exact series for the variance (too long to fit on page...); also $Var \sim 35.98$.

Theorem: Asymptotic formula for distribution of consecutive missing sums (Lazarev, 2011)

$$\left(\frac{1}{2}\right)^{(k+i)/2} \ll P(A+A \text{ is missing } [k,k+i]) \ll \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

Theorem: Variance (Lazarev, 2011)

Exact series for the variance (too long to fit on page...); also Var \sim 35.98.

Theorem: Asymptotic formula for distribution of consecutive missing sums (Lazarev, 2011)

$$\left(\frac{1}{2}\right)^{(k+i)/2} \ll P(A+A \text{ is missing } [k,k+i]) \ll \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

Key Obstacle: Dependent random variables

Theorem: Variance (Lazarev, 2011)

Exact series for the variance (too long to fit on page...); also $Var \sim 35.98$.

Theorem: Asymptotic formula for distribution of consecutive missing sums (Lazarev, 2011)

$$\left(\frac{1}{2}\right)^{(k+i)/2} \ll P(A+A \text{ is missing } [k,k+i]) \ll \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

Key Obstacle: Dependent random variables

Key Approach: Graph theory!

Theorem: Variance (Lazarev, 2011)

Exact series for the variance (too long to fit on page...); also Var \sim 35.98.

Theorem: Asymptotic formula for distribution of consecutive missing sums (Lazarev, 2011)

$$\left(\frac{1}{2}\right)^{(k+i)/2} \ll P(A+A \text{ is missing } [k,k+i]) \ll \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

Key Obstacle: Dependent random variables

Key Approach: Graph theory! (and Fibonacci Numbers?)

Bounds on the Distribution

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$ Proof sketch:

Introduction

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$ Proof sketch:

• Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$

Introduction

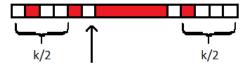
Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$ Proof sketch:

- Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$
- If k elements are missing, then missing one at least k/2 from the edges

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$ Proof sketch:

- Recall $P(k \notin A + A) = \left(\frac{3}{4}\right)^{k/2}$
- If k elements are missing, then missing one at least k/2 from the edges



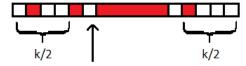
missing sum more than k/2 from ends

Introduction

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$ Proof sketch:

- Recall $P(k \notin A + A) = \left(\frac{3}{A}\right)^{k/2}$
- If k elements are missing, then missing one at least k/2from the edges



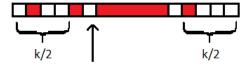
missing sum more than k/2 from ends

• $P(A + A \text{ has } k \text{ missing sums}) < P(k/2 \notin A + A) <$ $(\frac{3}{4})^{k/4} \sim 0.93^k$

Bound on Distribution: Upper Bound

Weaker Upper bound: $P(A + A \text{ has } k \text{ missing sums}) < 0.93^k$ Proof sketch:

- Recall $P(k \notin A + A) = \left(\frac{3}{A}\right)^{k/2}$
- If k elements are missing, then missing one at least k/2from the edges



missing sum more than k/2 from ends

- $P(A + A \text{ has } k \text{ missing sums}) < P(k/2 \notin A + A) <$ $(\frac{3}{4})^{k/4} \sim 0.93^k$
- Note: Since the expectation is around 10 and expansion decay, all the higher moments are bounded as $n \to \infty$.

Introduction

Bound on Distribution: Lower Bound

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ Proof sketch: Construction.

Introduction

Bound on Distribution: Lower Bound

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ Proof sketch: Construction.

• Let the first k/2 be missing from A

Bound on Distribution: Lower Bound

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ *Proof sketch:* Construction.

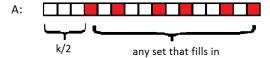
- Let the first k/2 be missing from A
- For the rest of elements, pick any set that fills in

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ Proof sketch: Construction.

- Let the first k/2 be missing from A
- For the rest of elements, pick any set that fills in
- Martin/O'Bryant: P(fills in) > 0.01 independent of n

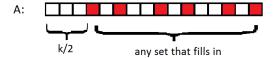
Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ Proof sketch: Construction.

- Let the first k/2 be missing from A
- For the rest of elements, pick any set that fills in
- Martin/O'Bryant: P(fills in) > 0.01 independent of n



Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ Proof sketch: Construction.

- Let the first k/2 be missing from A
- For the rest of elements, pick any set that fills in
- Martin/O'Bryant: P(fills in) > 0.01 independent of n



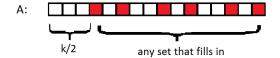
Future Research

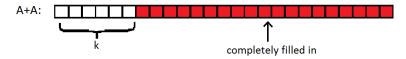
Bound on Distribution: Lower Bound

Introduction

Lower bound: $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \cdot 0.70^k$ Proof sketch: Construction.

- Let the first k/2 be missing from A
- For the rest of elements, pick any set that fills in
- Martin/O'Bryant: P(fills in) > 0.01 independent of n





 $P(A + A \text{ has } k \text{ missing sums}) > 0.01 \left(\frac{1}{2}\right)^{k/2} \sim 0.01 \cdot 0.70^{k}$

Variance

Variance

Can study Var|A + A| instead. Recall that

$$Var|A + A| = E(|A + A|^2) - (E|A + A|)^2$$

Can study Var|A + A| instead. Recall that

$$Var|A + A| = E(|A + A|^2) - (E|A + A|)^2$$

Therefore just need $E(|A + A|^2)$:

$$E(|A + A|^{2}) = \frac{1}{2^{n}} \sum_{A \subseteq [0, n-1]} |A + A|^{2}$$

$$= \frac{1}{2^{n}} \sum_{A \subseteq [0, n-1]} \sum_{i, j \in A + A} 1$$

$$= \frac{1}{2^{n}} \sum_{0 \le i, j \le 2n-2} \sum_{A: i, j \in A + A} 1$$

$$= \sum_{0 \le i, j \le 2n-2} P(A : i \text{ and } j \in A + A)$$

Problem: Dependent Random Variables

It is sufficient to study $P(A : i \text{ and } j \notin A + A)$:

$$P(A: i \text{ and } j \in A + A) = 1 - P(A: i \notin A + A) - P(A: j \notin A + A) + P(A: i \text{ and } j \notin A + A).$$

It is sufficient to study $P(A : i \text{ and } j \notin A + A)$:

$$P(A: i \text{ and } j \in A + A) = 1 - P(A: i \notin A + A) - P(A: j \notin A + A) + P(A: i \text{ and } j \notin A + A).$$

Example: $P(A : 3 \text{ and } 7 \notin A + A)$

Problem: Dependent Random Variables

It is sufficient to study $P(A : i \text{ and } j \notin A + A)$:

$$P(A: i \text{ and } j \in A + A) = 1 - P(A: i \notin A + A) - P(A: j \notin A + A) + P(A: i \text{ and } j \notin A + A).$$

Example: $P(A: 3 \text{ and } 7 \notin A + A)$

Conditions:

$$i=3: 0 \text{ or } 3 \not\in A$$
 $j=7: 0 \text{ or } 7 \not\in A$ and 1 or 2 $\not\in A$ and 2 or 5 $\not\in A$ and 3 or 4 $\not\in A$.

17

Problem: Dependent Random Variables

It is sufficient to study $P(A : i \text{ and } j \notin A + A)$:

$$P(A: i \text{ and } j \in A + A) = 1 - P(A: i \notin A + A) - P(A: j \notin A + A) + P(A: i \text{ and } j \notin A + A).$$

Example: $P(A: 3 \text{ and } 7 \notin A + A)$

Conditions:

$$i=3: 0 \text{ or } 3 \not\in A$$
 $j=7: 0 \text{ or } 7 \not\in A$ and 1 or 2 $\not\in A$ and 2 or 5 $\not\in A$ and 3 or 4 $\not\in A$.

• Since there are common integers in both lists, the events $3 \notin A + A$ and $7 \notin A + A$ are dependent.

Introduction

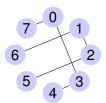
Transform the conditions into a graph!

- Transform the conditions into a graph!
- For each integers in [0,7], add a vertex with that integer.

- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

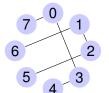
- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:



- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

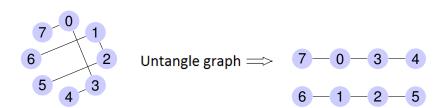
Example i = 3, j = 7:



Untangle graph ⇒

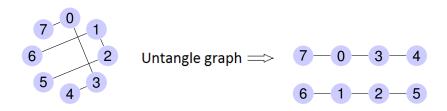
- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:



- Transform the conditions into a graph!
- For each integers in [0, 7], add a vertex with that integer.
- Then connect two vertices if add up to 3 or 7.

Example i = 3, j = 7:



 One-to-one correspondence between conditions/edges (and integers/vertices).

Interpretation of Graphs

Introduction

Transformed into:

$$6 - 1 - 2 - 5$$

Need to pick integers so that each condition is satisfied.

Interpretation of Graphs

$$7 - 0 - 3 - 4$$

$$6 - 1 - 2 - 5$$

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.

Interpretation of Graphs

$$6 - 1 - 2 - 5$$

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.
- So need to pick a vertex cover!

$$7 - 0 - 3 - 4$$

$$6 - 1 - 2 - 5$$

- Need to pick integers so that each condition is satisfied.
- Therefore, need to pick vertices so that each edge has a vertex chosen.
- So need to pick a vertex cover!
- Each integer is equally likely so can ignore vertex labels!

Vertex Covers

Have:

Have:

$$6 - 1 - 2 - 5$$

Example:

7, 0, 4 and 6, 2 form a vertex cover

Have:

$$6 - 1 - 2 - 5$$

Example:

7, 0, 4 and 6, 2 form a vertex cover

$$\iff$$

If $7, 0, 4, 6, 2 \notin A$, then $3, 7 \notin A + A$

Have:

$$6 - 1 - 2 - 5$$

Example:

7, 0, 4 and 6, 2 form a vertex cover

 \iff

If 7, 0, 4, 6, 2 \notin A, then 3, 7 \notin A + A

Lemma(Lazarev, 2011)

 $P(i, j \notin A + A) = P(\text{pick a vertex cover for graph})$

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

Number of Vertex Covers

Introduction

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

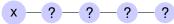
• Case 1: If the first vertex is chosen:

Number of Vertex Covers

Introduction

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:



Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: g(n-1).

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: g(n-1).

Case 2: If the first vertex is not chosen:

Number of Vertex Covers

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

$$0 - x - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-2).

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

$$0 - x - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-2).

Fibonacci recursive relationship!

$$g(n) = g(n-1) + g(n-2)$$

Condition graphs are always 'segment' graphs. So we just need g(n), the number of vertex covers for a 'segment' graph with n vertices.

• Case 1: If the first vertex is chosen:

Need an vertex cover for the rest of the graph: g(n-1).

• Case 2: If the first vertex is not chosen:

$$0 - x - ? - ? - ?$$

Need an vertex cover for the rest of the graph: g(n-2).

Fibonacci recursive relationship!

$$g(n) = g(n-1) + g(n-2)$$

$$\implies g(n) = F_{n+2}$$

General i, j

Introduction

In particular

P(3 and
$$7 \notin A + A$$
) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

In particular

P(3 and
$$7 \notin A + A$$
) = $\frac{1}{2^8} F_{4+2} F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

 In general, graphs will have many components with different lengths.

General i, j

In particular

P(3 and
$$7 \notin A + A$$
) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

- In general, graphs will have many components with different lengths.
- For odd i < j < n:

$$P(A: i \text{ and } j \notin A + A)$$

$$= \frac{1}{2^{j+1}} F_{2 \lceil \frac{j+1}{j-i} \rceil + 2}^{\frac{1}{2} ((j-i) \lceil \frac{j+1}{j-i} \rceil - (i+1))} \times F_{2 \lceil \frac{j+1}{j-i} \rceil + 4}^{\frac{1}{2} (j+1-(j-i) \lceil \frac{j+1}{j-i} \rceil)}$$

In particular

P(3 and
$$7 \notin A + A$$
) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

- In general, graphs will have many components with different lengths.
- For odd i < j < n:

$$P(A: i \text{ and } j \notin A + A)$$

$$= \frac{1}{2^{j+1}} F_{2 {j+1 \brack j-i} + 2}^{\frac{1}{2} ((j-i) {j+1 \brack j-i} - (i+1))} \times F_{2 {j+1 \brack j-i} + 4}^{\frac{1}{2} (j+1-(j-i) {j+1 \brack j-i})}$$

Need to find the formulas for when i, j are even....

In particular

P(3 and
$$7 \notin A + A$$
) = $\frac{1}{2^8}F_{4+2}F_{4+2} = \frac{1}{4}$

since there were two graphs each of length 4.

- In general, graphs will have many components with different lengths.
- For odd i < j < n:

$$P(A: i \text{ and } j \notin A + A)$$

$$= \frac{1}{2^{j+1}} F_{2 {j+1 \brack j-i} + 2}^{\frac{1}{2} ((j-i) {j+1 \brack j-i} - (i+1))} \times F_{2 {j+1 \brack j-i} + 4}^{\frac{1}{2} (j+1-(j-i) {j+1 \brack j-i})}$$

- Need to find the formulas for when i, j are even....
- And to get variance, need to sum up over all i < j < 2n....

Variance Formula

$$\begin{aligned} & \operatorname{Var}|A+A| = -40 + 4 \sum_{i < j < n} P(i,j \not\in A+A) \\ & = -40 + O(c^n) \\ & + 4 \sum_{i,j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\frac{1}{2}\binom{(i-i)}{j-1}} | - (i+1))}{2^{\left\lceil \frac{i+1}{j-1} \right\rceil + 4}} F_2^{\frac{1}{2}\binom{(i-i)}{j-1}} | + 4 \\ & + 4 \sum_{i \text{ even, } j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\left\lceil \frac{i/2+1}{j-1} \right\rceil + 2} F_2^{\frac{1}{2}\binom{(i-i-1)}{j-1}} | - (i+1) + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil - 1 \right) F_2^{\frac{1}{2}\binom{(i+1-(j-i-1))}{j-1}} | - 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil + 2 \\ & + 4 \sum_{i \text{ odd, } j \text{ even}} \frac{1}{2^{j+1}} F_2^{\left\lceil \frac{i/2+1}{j-1} \right\rceil + 1} F_2^{\frac{1}{2}\binom{(i-i-1)}{j-1}} | - (i+1) + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil - 2 \right) F_2^{\frac{1}{2}\binom{(i+2-(j-i-1))}{j-1}} | + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil + 2 \\ & + 4 \sum_{i,j \text{ even}} \frac{1}{2^{j+1}} F_2^{\left\lceil \frac{i/2+1}{j-1} \right\rceil + 1} F_2^{\left\lceil \frac{i+2}{j-1} \right\rceil} | + 2 \left\lceil \frac{i+1}{j-1} \right\rceil - 2 \right\rceil + 2 \left\lceil \frac{i+1}{j-1} \right\rceil + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil - 3 \right\rceil + 2 \left\lceil \frac{i}{j-1} \right\rceil + 4 \\ & + 4 \sum_{i,j \text{ even}} \frac{1}{2^{j+1}} F_2^{\left\lceil \frac{i/2+1}{j-1} \right\rceil} | + 1 \left\lceil \frac{i/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil - 3 \right\rceil + 2 \left\lceil \frac{i}{j-1} \right\rceil + 2 \left\lceil \frac{i+1}{j-1} \right\rceil + 2 \left\lceil \frac{i/2+1}{j-1} \right\rceil + 2 \left\lceil \frac{$$

Variance Formula

Introduction

$$\begin{aligned} &Var|A+A| = -40 + 4\sum_{i < j < n} P(i,j \not\in A+A) \\ &= -40 + O(c^n) \\ &+ 4\sum_{i,j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\frac{1}{2}\left((j-i)\left\lceil\frac{j+1}{j-1}\right\rceil - (i+1)\right)} F_2^{\frac{1}{2}\left(j+1-(j-i)\left\lceil\frac{j+1}{j-1}\right\rceil\right)} \\ &+ 4\sum_{i \text{ even,} j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\left\lceil\frac{j+1}{j-1}\right\rceil + 2} F_2^{\left\lceil\frac{j+1}{j-1}\right\rceil + 4} \\ &+ 4\sum_{i \text{ even,} j \text{ odd}} \frac{1}{2^{j+1}} F_2^{\left\lceil\frac{j/2+1}{j-1}\right\rceil + 1} F_2^{\frac{1}{2}\left((j-i-1)\left\lceil\frac{j+1}{j-1}\right\rceil - (i+1) + 2\left\lceil\frac{j/2+1}{j-1}\right\rceil - 1\right)} F_2^{\frac{1}{2}\left(j+1-(j-i-1)\left\lceil\frac{j+1}{j-1}\right\rceil - 2\left\lceil\frac{j/2+1}{j-1}\right\rceil\right)} \\ &+ 4\sum_{i \text{ odd,} j \text{ even}} \frac{1}{2^{j+1}} F_2^{\left\lceil\frac{j/2+1}{j-1}\right\rceil} F_2^{\left\lceil\frac{j/2+1}{j-1}\right\rceil + 2} F_2^{\frac{1}{2}\left((j-i-1)\left\lceil\frac{j+1}{j-1}\right\rceil - (i+1) + 2\left\lceil\frac{j/2+1}{j-1}\right\rceil - 2\right)} F_2^{\frac{1}{2}\left(j+2-(j-i-1)\left\lceil\frac{j+1}{j-1}\right\rceil + 2\left\lceil\frac{j/2+1}{j-1}\right\rceil\right)} \\ &+ 4\sum_{i,j \text{ even}} \frac{1}{2^{j+1}} F_2^{\left\lceil\frac{j/2+1}{j-1}\right\rceil + 1} F_2^{\left\lceil\frac{j+2}{j-1}\right\rceil} F_2^{\left\lceil\frac{j+2}{j-1}\right\rceil} \\ &+ 4\sum_{i,j \text{ even}} \frac{1}{2^{j+1}} F_2^{\left\lceil\frac{j/2+1}{j-1}\right\rceil + 1} F_2^{\left\lceil\frac{j+2+1}{j-1}\right\rceil} + 2\left\lceil\frac{j/2+1}{j-1}\right\rceil - 3\right)} F_2^{\frac{1}{2}\left(j+2-(j-i-2)\left\lceil\frac{j+1}{j-1}\right\rceil + 2\left\lceil\frac{j/2+1}{j-1}\right\rceil + 2\left\lceil\frac{j/2+1}{j-1}\right\rceil\right]} \\ &+ 2\left\lceil\frac{j+1}{j-1}\right\rceil + 2\right\rceil F_2^{\left\lceil\frac{j+2+1}{j-1}\right\rceil} F_2^{\left\lceil$$

So clearly

Var|*A* + *A*|
$$\sim$$
 35.98

Consecutive Missing Sums

Improved Upper Bound

• Use $P(i, j \notin A + A)$ to improve the upper bound for P(A + A has k missing sums)

- Use $P(i, j \notin A + A)$ to improve the upper bound for P(A + A) has k missing sums)
- From previous section:

$$P(i,j \not\in A+A) \sim \left(\frac{\phi^2}{2 \cdot 5^{1/4}}\right)^j \left(\frac{5^{1/4}}{\phi}\right)^t$$

where ϕ is the golden ratio

- Use $P(i, j \notin A + A)$ to improve the upper bound for P(A + A has k missing sums)
- From previous section:

$$P(i,j \not\in A+A) \sim \left(\frac{\phi^2}{2 \cdot 5^{1/4}}\right)^j \left(\frac{5^{1/4}}{\phi}\right)^i$$

where ϕ is the golden ratio

• If A + A is missing at k elements, then missing at least two elements greater than k:

$$P(A+A \text{ has } k \text{ missing sums }) < \left(\frac{\phi^2}{2 \cdot 5^{1/4}}\right)^k \left(\frac{5^{1/4}}{\phi}\right)^k \sim 0.80^k$$

- Use $P(i, j \notin A + A)$ to improve the upper bound for P(A + A has k missing sums)
- From previous section:

$$P(i,j \not\in A+A) \sim \left(\frac{\phi^2}{2 \cdot 5^{1/4}}\right)^j \left(\frac{5^{1/4}}{\phi}\right)^i$$

where ϕ is the golden ratio

• If A + A is missing at k elements, then missing at least two elements greater than k:

$$P(A+A \text{ has } k \text{ missing sums }) < \left(\frac{\phi^2}{2 \cdot 5^{1/4}}\right)^k \left(\frac{5^{1/4}}{\phi}\right)^k \sim 0.80^k$$

• General idea: The better we know $P(a_1, \dots, a_i \notin A + A)$, the better we know the P(A + A has k missing sums)

• Will study the particular case of $P(a_1, \dots, a_j \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$

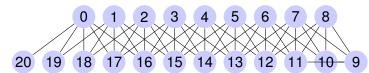
- Will study the particular case of $P(a_1, \dots, a_i \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A+A)$
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

- Will study the particular case of $P(a_1, \dots, a_i \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A+A)$
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

Start with original graph and remove some conditions (edges):

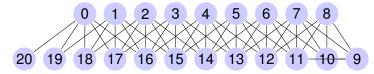
- Will study the particular case of $P(a_1, \dots, a_i \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A+A)$
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

Start with original graph and remove some conditions (edges):



- Will study the particular case of $P(a_1, \dots, a_i \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A+A)$
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

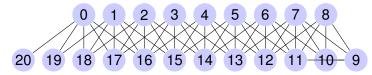
Start with original graph and remove some conditions (edges):



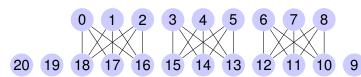
 \Longrightarrow Transforms to:

- Will study the particular case of $P(a_1, \dots, a_i \notin A + A)$ of consecutive missing sums: $P(k, k+1, \dots, k+i \notin A + A)$
- Example: $P(16, 17, 18, 19, 20 \notin A + A)$

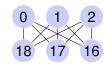
Start with original graph and remove some conditions (edges):



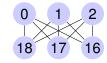
 \Longrightarrow Transforms to:



• So get around 20/6 complete bipartite graphs like:

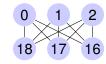


• So get around 20/6 complete bipartite graphs like:



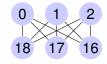
• For a vertex cover, need one side to have all vertices chosen; occurs with probability $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$

So get around 20/6 complete bipartite graphs like:



- For a vertex cover, need one side to have all vertices chosen; occurs with probability $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$
- By independence, $P(16, 17, 18, 19, 20) \le {1 \choose 4}^{20/6}$

• So get around 20/6 complete bipartite graphs like:



- For a vertex cover, need one side to have all vertices chosen; occurs with probability $\leq \frac{1}{8} + \frac{1}{8} = \frac{1}{4}$
- By independence, $P(16, 17, 18, 19, 20) \leq (\frac{1}{4})^{20/6}$
- In general $P(k,k+1,k+2,k+3,k+4) \leq \left(\frac{1}{4}\right)^{(k+4)/6} \sim 0.79^{k+4}$ which is a slight improvement!

• But most general is:

$$P(k, k+1, \cdots, k+i \notin A+A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

But most general is:

$$P(k, k+1, \cdots, k+i \notin A+A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

However the trivial lower bound is:

$$\left(\frac{1}{2}\right)^{(k+i)/2} \leq P(k,k+1,\cdots,k+i \notin A+A)$$

Consecutive Missing Sums

• But most general is:

$$P(k, k+1, \cdots, k+i \notin A+A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

However the trivial lower bound is:

$$\left(\frac{1}{2}\right)^{(k+i)/2} \leq P(k,k+1,\cdots,k+i \notin A+A)$$

• Why interesting? Bounds almost match!

Consecutive Missing Sums

Consecutive Missing Sums

But most general is:

$$P(k, k+1, \cdots, k+i \notin A+A) \leq \left(\frac{1}{2}\right)^{(k+i)/2} (1+\epsilon_i)^k$$

- However the trivial lower bound is: $\left(\frac{1}{2}\right)^{(k+i)/2} \leq P(k, k+1, \cdots, k+i \notin A+A)$
- Why interesting? Bounds almost match!
- Essentially the only way to miss a block of *i* consecutive sums is to miss all elements before the block as well.

We found

Introduction

We found

 Exponential bounds for distribution of number of missing sums

Introduction

We found

- Exponential bounds for distribution of number of missing sums
- Series for the variance in terms of Fibonacci numbers

We found

- Exponential bounds for distribution of number of missing sums
- Series for the variance in terms of Fibonacci numbers
- Asymptotic formula for consecutive missing sums

Introduction

We found

- Exponential bounds for distribution of number of missing sums
- Series for the variance in terms of Fibonacci numbers
- Asymptotic formula for consecutive missing sums

by developing graph theoretic framework for studying dependent random variables.

Future Research

Introduction

Future Research

Introduction

And currently investigating/other research ideas:

• Is distribution of missing sums approximately exponential?

Future Research

Introduction

- Is distribution of missing sums approximately exponential?
- Is $P(k + a_1, \dots, k + a_m) \sim \lambda^k$ for any fixed a_1, \dots, a_m ?

- Is distribution of missing sums approximately exponential?
- Is $P(k+a_1,\cdots,k+a_m) \sim \lambda^k$ for any fixed a_1,\cdots,a_m ?
- Higher moments: third moment involves P(i, j, k) which has more complicated graphs

- Is distribution of missing sums approximately exponential?
- Is $P(k+a_1,\cdots,k+a_m) \sim \lambda^k$ for any fixed a_1,\cdots,a_m ?
- Higher moments: third moment involves P(i, j, k) which has more complicated graphs
- Distribution of missing differences in $A - A = \{x - y : x, y \in A\}$

Thank you!