Distribution of Gaps between Summands in Zeckendorf Decompositions

Olivia Beckwith and Steven J. Miller http://www.williams.edu/Mathematics/sjmiller/public_html

Young Mathematicians Conference August 19, 2011

Introduction

• How can we write a number as a sum of powers of 2?

Example:
$$2011 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 2^0$$

• How can we write a number as a sum of powers of 2?

Example:
$$2011 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 2^0$$

• What can we say about the distribution of the summands?

• How can we write a number as a sum of powers of 2?

Example:
$$2011 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 2^0$$

- What can we say about the distribution of the summands?
- What about powers of 3? 5? 10?

• How can we write a number as a sum of powers of 2?

Example:
$$2011 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^1 + 2^0$$

- What can we say about the distribution of the summands?
- What about powers of 3? 5? 10?
- What other sequences can we use besides powers?

Intro

Fibonacci Numbers: $F_{n+1} = F_n + F_{n-1}$ (1);

7

The Fibonacci Numbers

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
 (1); $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5, ...$

Ω

The Fibonacci Numbers

Fibonacci Numbers:
$$F_{n+1} = F_n + F_{n-1}$$
 (1); $F_1 = 1, F_2 = 2, F_3 = 3, F_4 = 5,$

• Generating function: $g(x) = \sum_{n>0} F_n x^n$.

(1)
$$\Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$

 $\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$
 $\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$
 $\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$
 $\Rightarrow g(x) = x/(1 - x - x^2).$

O

The Fibonacci Numbers, Continued

Partial Fraction Expansion:

$$g(x) = \frac{x}{1 - x - x^2} = \frac{1}{\sqrt{5}} \left(\frac{1}{1 - x(\frac{1 + \sqrt{5}}{2})} - \frac{1}{1 - x(\frac{1 - \sqrt{5}}{2})} \right).$$

• Binet's formula follows from geometric series expansion $\frac{1}{1-r} = \sum_{k=0}^{\infty} r^k$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2011 = 1597 + 377 + 34 + 3 = F_{16} + F_{13} + F_8 + F_3$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2011 = 1597 + 377 + 34 + 3 = F_{16} + F_{13} + F_8 + F_3$.

Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n,F_{n+1})$ tends to $\frac{n}{\varphi^2+1}\approx .276n$, where $\varphi=\frac{1+\sqrt{5}}{2}$ is the golden mean.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: $2011 = 1597 + 377 + 34 + 3 = F_{16} + F_{13} + F_8 + F_3$.

Lekkerker's Theorem (1952)

The average number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1})$ tends to $\frac{n}{\varphi^2+1} \approx .276n$, where $\varphi = \frac{1+\sqrt{5}}{2}$ is the golden mean.

Central Limit Type Theorem (KKMW 2010)

As $n \to \infty$, the distribution of the number of summands in the Zeckendorf decomposition for integers in $[F_n, F_{n+1}]$ is Gaussian.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies:

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{P-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{p-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{P-1}$ ways to do.

Divides the cookies into P sets.

Example: 10 cookies and 5 people (C = 10, P = 5):

The Cookie Problem

The number of ways of dividing C identical cookies among P distinct people is $\binom{C+P-1}{p-1}$.

Proof: Consider C + P - 1 cookies in a line.

Cookie Monster eats P-1 cookies: $\binom{C+P-1}{p-1}$ ways to do.

Divides the cookies into P sets.

Example: 10 cookies and 5 people: choose 3, 4, 7 and 13:

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

For $N \in [F_n, F_{n+1})$, the largest summand is F_n .

$$\begin{split} N &= F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n, \\ 1 &\leq i_1 < i_2 < \dots < i_{k-1} < i_k = n, \ i_j - i_{j-1} \geq 2. \end{split}$$

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{N \in [F_n, F_{n+1}): \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

For
$$N \in [F_n, F_{n+1})$$
, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Reinterpreting the Cookie Problem

The number of solutions to $x_1 + \cdots + x_P = C$ with $x_i \ge 0$ is $\binom{C+P-1}{P-1}$.

Let $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) : \text{ the Zeckendorf decomposition of } N \text{ has exactly } k \text{ summands} \}.$

For
$$N \in [F_n, F_{n+1})$$
, the largest summand is F_n .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$

$$d_1 := i_1 - 1, d_i := i_i - i_{i-1} - 2 (i > 1).$$

$$d_1 + d_2 + \cdots + d_k = n - 2k + 1, d_i \ge 0.$$

Cookie counting $\Rightarrow p_{n,k} = \binom{n-2k+1-k-1}{k-1} = \binom{n-k}{k-1}$.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Consider $[F_n, F_{n+1}]$, which contains $F_{n+1} - F_n = F_{n-1}$ integers.

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Consider $[F_n, F_{n+1})$, which contains $F_{n+1} - F_n = F_{n-1}$ integers.

If a decomposition has largest summand F_n , the sum will lie in this interval.

Can have at most $\lfloor \frac{n}{2} \rfloor$ summands besides F_n .

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Consider $[F_n, F_{n+1})$, which contains $F_{n+1} - F_n = F_{n-1}$ integers.

If a decomposition has largest summand F_n , the sum will lie in this interval.

Can have at most $\lfloor \frac{n}{2} \rfloor$ summands besides F_n .

By cookie problem, the number of decompositions with largest summand F_n is $\sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n-1-k}{k} = F_{n-1}$.

For $F_{i_1}+F_{i_2}+\cdots+F_{i_n}$, the gaps are the differences $i_n-i_{n-1},i_{n-1}-i_{n-2},\ldots,i_2-i_1$.

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

For $F_{i_1} + F_{i_2} + \cdots + F_{i_n}$, the gaps are the differences $i_n - i_{n-1}, i_{n-1} - i_{n-2}, \dots, i_2 - i_1$.

Example: For $F_1 + F_8 + F_{18}$, the gaps are 7 and 10.

Let $P_n(k)$ be the probability that a gap for a decomposition in $[F_n, F_{n+1})$ is of length k.

What is $P(k) = \lim_{n \to \infty} P_n(k)$?

Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, $P(0) = \frac{(B-1)(B-2)}{B^2}$, and for $k \ge 1$, $P(k) = c_B B^{-k}$, with $c_B = \frac{(B-1)(3B-2)}{B^2}$.

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, $P(k) = \frac{\phi(\phi-1)}{\phi^k}$ for $k \ge 2$, with $\phi = \frac{1+\sqrt{5}}{2}$ the golden mean.

36

Proof of Fibonacci Result

Lekkerkerker $\Rightarrow \text{ total number of gaps} \sim F_{n-1} \frac{n}{\phi^2+1}$.

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{\phi^2+1}$.

Let $\mathbf{x}_{i,j} = |\{m \in [F_n, F_{n+1}) \colon \text{decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}|.$

Proof of Fibonacci Result

Lekkerkerker \Rightarrow total number of gaps $\sim F_{n-1} \frac{n}{d^2+1}$.

Let $\mathbf{x}_{i,j} = |\{m \in [F_n, F_{n+1}) \text{: decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}|.$

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} x_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

How many decompositions contain a gap from F_i to F_{i+k} ?

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 \le i \le n - k - 2$$
:

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 < i < n - k - 2$$
:

For the indices less than i: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-2-i}$ choices.

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 < i < n - k - 2$$
:

For the indices less than i: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-2-i}$ choices.

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.

How many decompositions contain a gap from F_i to F_{i+k} ?

$$1 < i < n - k - 2$$
:

For the indices less than i: F_{i-1} choices.

For the indices greater than i + k: $F_{n-k-2-i}$ choices.

So total choices number of choices is $F_{n-k-2-i}F_{i-1}$.

$$i = n - k - 1$$
: 0.

$$i = n - k$$
: F_{n-k-1} .

$$\sum_{i=1,n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$$

 $\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$ is the x^{n-k-3} coefficient of $(g(x))^2$!

$$\sum_{i=1,n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$$

$$\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3} \text{ is the } x^{n-k-3} \text{ coefficient of } (g(x))^2!$$
$$g(x)^2 = (\frac{1}{\sqrt{5}} (\frac{1}{(1-(\phi x))} - \frac{1}{(1-(1-\phi)x)}))^2$$

$$\sum_{i=1,n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$$

$$\sum_{i=0}^{n-k-3} F_i F_{n-k-i-3} \text{ is the } x^{n-k-3} \text{ coefficient of } (g(x))^2!$$

$$g(x)^2 = \left(\frac{1}{\sqrt{5}} \left(\frac{1}{(1-(\phi x))} - \frac{1}{(1-(1-\phi)x)}\right)\right)^2$$

$$(g(x))^2 = \frac{A}{(1-\phi x)^2} + \frac{B}{(1-x(1-\phi))^2} + \frac{C}{1-\phi x} + \frac{D}{1-(1-\phi)x}$$

$$\sum_{i=1,n-k} x_{i,i+k} = F_{n-k-1} + \sum_{i=1}^{n-k-2} F_{i-1} F_{n-k-i-2}$$
$$= F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-3}$$

$$\begin{split} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \frac{F_{n-k-2} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{A(n-k-3)\phi^{n-k-4}}{A(n-k-2)\phi^{n-k-3}} = \frac{1}{\phi}. \end{split}$$

$$\begin{split} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \frac{F_{n-k-2} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{A(n-k-3)\phi^{n-k-4}}{A(n-k-2)\phi^{n-k-3}} = \frac{1}{\phi}. \end{split}$$

 $P(k) = \frac{E}{\phi^k}$, for some constant E.

$$\begin{split} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \frac{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}}{F_{n-k-1} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}} \\ &= \frac{A(n-k-3)\phi^{n-k-4}}{A(n-k-2)\phi^{n-k-3}} = \frac{1}{\phi}. \end{split}$$

$$P(k) = \frac{E}{\phi^k}$$
, for some constant E .

$$1 = E \Sigma_{2 \le k} \frac{1}{\phi^k} = \frac{E}{\phi^2} \Sigma_{\frac{1}{\phi^k}} = \frac{E}{\phi^2 (1 - \frac{1}{\phi})}$$

$$\begin{split} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \frac{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}}{F_{n-k-1} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}} \\ &= \frac{F_{n-k-2} + A(n-k-2)\phi^{n-k-4} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{A(n-k-3)\phi^{n-k-4}}{A(n-k-2)\phi^{n-k-3}} = \frac{1}{\phi}. \end{split}$$

$$P(k) = \frac{E}{\phi^k}$$
, for some constant E .

$$1=E\Sigma_{2\leq k}^{\frac{1}{\phi^k}}=rac{E}{\phi^2}\Sigma_{\frac{1}{\phi^k}}=rac{E}{\phi^2(1-rac{1}{\phi})}$$
 , $E=\phi(\phi-1)$

$$\begin{split} \frac{P(k+1)}{P(k)} &= \lim_{n \to \infty} \frac{P_n(k+1)}{P_n(k)} \\ &= \lim_{n \to \infty} \frac{F_{n-k-2} + \sum_{i=0}^{n-k-4} F_i F_{n-k-i-4}}{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}} \\ &= \frac{F_{n-k-1} + \sum_{i=0}^{n-k-3} F_i F_{n-k-i-4}}{F_{n-k-1} + A(n-k-3)\phi^{n-k-4} + B(n-k-3)(1-\phi)^{n-k-4} + C\phi^{n-k-4} + D(1-\phi)^{n-k-4}} \\ &= \frac{F_{n-k-2} + A(n-k-2)\phi^{n-k-4} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}}{F_{n-k-1} + A(n-k-2)\phi^{n-k-3} + B(n-k-2)(1-\phi)^{n-k-3} + C\phi^{n-k-3} + D(1-\phi)^{n-k-3}} \\ &= \frac{A(n-k-3)\phi^{n-k-4}}{A(n-k-2)\phi^{n-k-3}} = \frac{1}{\phi}. \end{split}$$

$$P(k) = \frac{E}{\phi^k}$$
, for some constant E .

$$1 = E \sum_{1 \le k} \frac{1}{\phi^k} = \frac{E}{\phi^2} \sum_{1 \ne k} \frac{1}{\phi^k} = \frac{E}{\phi^2 (1 - \frac{1}{\phi})}, E = \phi(\phi - 1)$$

$$P(k) = \frac{\phi(\phi-1)}{\phi^k}$$
.

• Length zero gaps are allowed, for example, $20 = 2 \times 10^1$ has one length zero gap.

- Length zero gaps are allowed, for example, $20 = 2 \times 10^1$ has one length zero gap.
- Delta spike for k = 0, geometric series otherwise.

- Length zero gaps are allowed, for example, $20 = 2 \times 10^1$ has one length zero gap.
- Delta spike for k = 0, geometric series otherwise.
- For general b, the percent of gaps of length 0 is $\frac{(b-1)(b-2)}{2}$, geometric series for longer gaps.

- Length zero gaps are allowed, for example, $20 = 2 \times 10^1$ has one length zero gap.
- Delta spike for k = 0, geometric series otherwise.
- For general b, the percent of gaps of length 0 is $\frac{(b-1)(b-2)}{2}$, geometric series for longer gaps.