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Example: 2011 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 21 + 20
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Intro Previous Works Results

A few questions

How can we write a number as a sum of powers of 2?

Example: 2011 = 210 + 29 + 28 + 27 + 26 + 24 + 23 + 21 + 20

What can we say about the distribution of the summands?

What about powers of 3? 5? 10?

What other sequences can we use besides powers?
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The Fibonacci Numbers

Fibonacci Numbers: Fn+1 = Fn + Fn−1 (1);
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .
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Intro Previous Works Results

The Fibonacci Numbers

Fibonacci Numbers: Fn+1 = Fn + Fn−1 (1);
F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . . .

Generating function: g(x) =
∑

n>0 F nxn.

(1) ⇒
∑

n≥2

F n+1xn+1 =
∑

n≥2

F nxn+1 +
∑

n≥2

F n−1xn+1

⇒
∑

n≥3

F nxn =
∑

n≥2

F nxn+1 +
∑

n≥1

F nxn+2

⇒
∑

n≥3

F nxn = x
∑

n≥2

F nxn + x2
∑

n≥1

F nxn

⇒ g(x)− F 1x − F 2x2 = x(g(x)− F 1x) + x2g(x)

⇒ g(x) = x/(1 − x − x2).
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The Fibonacci Numbers, Continued

Partial Fraction Expansion:

g(x) =
x

1 − x − x2 =
1√
5

(

1

1 − x(1+
√

5
2 )

− 1

1 − x(1−
√

5
2 )

)

.

Binet’s formula follows from geometric series expansion
1

1−r =
∑∞

k=0 rk .
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2011 = 1597 + 377 + 34 + 3 = F16 + F13 + F8 + F3.
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2011 = 1597 + 377 + 34 + 3 = F16 + F13 + F8 + F3.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Intro Previous Works Results

Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 2011 = 1597 + 377 + 34 + 3 = F16 + F13 + F8 + F3.

Lekkerkerker’s Theorem (1952)

The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.

Central Limit Type Theorem (KKMW 2010)

As n → ∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is
Gaussian.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.
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Proof : Consider C + P − 1 cookies in a line.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example:10 cookies and 5 people (C = 10, P = 5):
⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙ ⊙
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P
distinct people is

(C+P−1
P−1

)

.

Proof : Consider C + P − 1 cookies in a line.
Cookie Monster eats P − 1 cookies:

(C+P−1
P−1

)

ways to do.
Divides the cookies into P sets.
Example: 10 cookies and 5 people: choose 3, 4, 7 and 13:
⊙ ⊙ ⊗ ⊗ ⊙ ⊙ ⊗ ⊙ ⊙ ⊙ ⊙ ⊙ ⊗ ⊙
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Preliminaries: The Cookie Problem

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.
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Preliminaries: The Cookie Problem

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.
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Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.
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Preliminaries: The Cookie Problem

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.
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Preliminaries: The Cookie Problem

Reinterpreting the Cookie Problem

The number of solutions to x1 + · · · + xP = C with xi ≥ 0 is
(C+P−1

P−1

)

.

Let pn,k = # {N ∈ [Fn,Fn+1): the Zeckendorf decomposition of
N has exactly k summands}.

For N ∈ [Fn,Fn+1), the largest summand is Fn.

N = Fi1 + Fi2 + · · · + Fik−1
+ Fn,

1 ≤ i1 < i2 < · · · < ik−1 < ik = n, ij − ij−1 ≥ 2.

d1 := i1 − 1, dj := ij − ij−1 − 2 (j > 1).

d1 + d2 + · · ·+ dk = n − 2k + 1, dj ≥ 0.

Cookie counting ⇒ pn,k =
(n−2k+1−k−1

k−1

)

=
(n−k

k−1

)

.
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Proof of Zeckendorf’s Theorem

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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28



Intro Previous Works Results

Proof of Zeckendorf’s Theorem

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Consider [Fn,Fn+1), which contains Fn+1 − Fn = Fn−1 integers.

If a decomposition has largest summand Fn, the sum will lie in
this interval.

Can have at most ⌊n
2⌋ summands besides Fn.
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Proof of Zeckendorf’s Theorem

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Consider [Fn,Fn+1), which contains Fn+1 − Fn = Fn−1 integers.

If a decomposition has largest summand Fn, the sum will lie in
this interval.

Can have at most ⌊n
2⌋ summands besides Fn.

By cookie problem, the number of decompositions with largest

summand Fn is
∑⌊ n

2 ⌋
k=0

(n−1−k
k

)

= Fn−1.
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

31



Intro Previous Works Results

Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

32



Intro Previous Works Results

Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .
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Distribution of Gaps

For Fi1 + Fi2 + · · ·+ Fin , the gaps are the differences
in − in−1, in−1 − in−2, . . . , i2 − i1.

Example: For F1 + F8 + F18, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn,Fn+1) is of length k .

What is P(k) = limn→∞ Pn(k)?
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Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .
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Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = (B−1)(B−2)
B2 , and for k ≥ 1,

P(k) = cBB−k , with cB = (B−1)(3B−2)
B2 .

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P(k) = φ(φ−1)
φk for k ≥ 2, with

φ = 1+
√

5
2 the golden mean.
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let xi ,j = |{m ∈ [Fn,Fn+1): decomposition of m includes Fi , Fj , but not Fq for i < q < j }|.
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Proof of Fibonacci Result

Lekkerkerker ⇒ total number of gaps ∼ Fn−1
n

φ2+1 .

Let xi ,j = |{m ∈ [Fn,Fn+1): decomposition of m includes Fi , Fj , but not Fq for i < q < j }|.

P(k) = lim
n→∞

∑n−k
i=1 xi ,i+k

Fn−1
n

φ2+1

.
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−2−i choices.
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Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−2−i choices.

So total choices number of choices is Fn−k−2−iFi−1.
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Intro Previous Works Results

Calculating xi ,i+k

How many decompositions contain a gap from Fi to Fi+k?

1 ≤ i ≤ n − k − 2:

For the indices less than i : Fi−1 choices.

For the indices greater than i + k : Fn−k−2−i choices.

So total choices number of choices is Fn−k−2−iFi−1.

i = n − k − 1: 0.

i = n − k : Fn−k−1.
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∑

i=1,n−k

xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3
∑

i=0

FiFn−k−i−3

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2!
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∑

i=1,n−k

xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3
∑

i=0

FiFn−k−i−3

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2!

g(x)2 = ( 1√
5
( 1
(1−(φx)) − 1

(1−(1−φ)x) ))
2
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∑

i=1,n−k

xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3
∑

i=0

FiFn−k−i−3

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2!

g(x)2 = ( 1√
5
( 1
(1−(φx)) − 1

(1−(1−φ)x) ))
2

(g(x))2 = A
(1−φx)2 + B

(1−x(1−φ))2 + C
1−φx + D

1−(1−φ)x
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∑

i=1,n−k

xi ,i+k = Fn−k−1 +

n−k−2
∑

i=1

Fi−1Fn−k−i−2

= Fn−k−1 +

n−k−3
∑

i=0

FiFn−k−i−3

∑n−k−3
i=0 FiFn−k−i−3 is the xn−k−3 coefficient of (g(x))2!

g(x)2 = ( 1√
5
( 1
(1−(φx)) − 1

(1−(1−φ)x) ))
2

(g(x))2 = A
(1−φx)2 + B

(1−x(1−φ))2 + C
1−φx + D

1−(1−φ)x

Using geometric series, the xm coefficient is
A(m + 1)φm + B(m + 1)(1 − φ)m + Cφ+D(1 − φ)m.
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Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

=
Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
A(n − k − 3)φn−k−4

A(n − k − 2)φn−k−3
=

1

φ
.
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Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

=
Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
A(n − k − 3)φn−k−4

A(n − k − 2)φn−k−3
=

1

φ
.

P(k) = E
φk , for some constant E .
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Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

=
Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
A(n − k − 3)φn−k−4

A(n − k − 2)φn−k−3
=

1

φ
.

P(k) = E
φk , for some constant E .

1 = EΣ2≤k
1
φk = E

φ2Σ
1
φk = E

φ2(1− 1
φ
)

51



Intro Previous Works Results

Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

=
Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
A(n − k − 3)φn−k−4

A(n − k − 2)φn−k−3
=

1

φ
.

P(k) = E
φk , for some constant E .

1 = EΣ2≤k
1
φk = E

φ2Σ
1
φk = E

φ2(1− 1
φ
)

, E = φ(φ− 1)
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Consider the ratio:

P(k + 1)

P(k)
= lim

n→∞

Pn(k + 1)

Pn(k)

= lim
n→∞

Fn−k−2 +
∑n−k−4

i=0 Fi Fn−k−i−4

Fn−k−1 +
∑n−k−3

i=0 Fi Fn−k−i−4

=
Fn−k−2 + A(n − k − 3)φn−k−4 + B(n − k − 3)(1 − φ)n−k−4 + Cφn−k−4 + D(1 − φ)n−k−4

Fn−k−1 + A(n − k − 2)φn−k−3 + B(n − k − 2)(1 − φ)n−k−3 + Cφn−k−3 + D(1 − φ)n−k−3

=
A(n − k − 3)φn−k−4

A(n − k − 2)φn−k−3
=

1

φ
.

P(k) = E
φk , for some constant E .

1 = EΣ2≤k
1
φk = E

φ2Σ
1
φk = E

φ2(1− 1
φ
)

, E = φ(φ− 1)

P(k) = φ(φ−1)
φk .
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Decimal Case

Length zero gaps are allowed, for example, 20 = 2 × 101

has one length zero gap.
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For general b, the percent of gaps of length 0 is (b−1)(b−2)
2 ,

geometric series for longer gaps.
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