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A few questions

@ How can we write a number as a sum of powers of 27

Example: 2011 =210 4 2° 4 28 4 27 1 26 4 24 4 23 4 21 4 20
@ What can we say about the distribution of the summands?
@ What about powers of 3?7 5? 10?

@ What other sequences can we use besides powers?
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The Fibonacci Numbers

Fibonacci Numbers: Fpy 1 = Fn +Fn_1 (1);
F]_:l, F2:2, F3:3, F4:57____

@ Generating function: g(x) = > .o Fnx".

(1) = Z I:nJrlanrl = Z Fox" T+ Z Fnoax"tt

n>2 n>2 n>2
= Y Fox" =) Fpx" 4 ) Fxt?
n>3 n>2 n>1
= Zan”:xZan”erZZan”
n>3 n>2 n>1
= g(x) — F1x — Fox® = x(g(x) — F1x) + x*g(x)
= g(x)=x/(1—-x —x?).




The Fibonacci Numbers, Continued

Partial Fraction Expansion:

x 1 1 1
=1 %2~ 5 1-x(158) 1-x(1558))

@ Binet's formula follows from geometric series expansion
Ay yk
It — 2.k=0'-
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Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
r_lon-consecutive Fibonacci numbers.

Example: 2011 = 1597 + 377+ 34+ 3 = F]_6 + F]_3 + Fg + F3.

Lekkerkerker’'s Theorem (1952)

The average number of summands in the Zeckendorf

decomposition for integers in [F,, Fry1) tends to @211 ~ .276n,

where ¢ = 1+2—‘/§ is the golden mean.

Central Limit Type Theorem (KKMW 2010)

As n — oo, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn, Fri1) IS
Gaussian.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (°5°11).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (“£P1) ways to do.
Divides the cookies into P sets.

Example:10 cookies and 5 people (C = 10, P = 5):
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (57 1).

Proof: Consider C + P — 1 cookies in a line.

Cookie Monster eats P — 1 cookies: (4P 1) ways to do.
Divides the cookies into P sets.

Example: 10 cookies and 5 people: choose 3, 4, 7 and 13:

OORIRIOCORIOOOOORO
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Preliminaries: The Cookie Problem

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fnt1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
dq Z:il—l,dj Z:ij —ij_l—Z(j >1).
d1+d2+---+dk :n72k+1,dj > 0.

(n—2k+1—k—1) _ (n—k)l

Cookie counting = pp i = k_1 k—1

DA
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Proof of Zeckendorf’'s Theorem

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Consider [Fp, Fn.1), which contains F,,1 — F, = Fp_1 integers.

If a decomposition has largest summand Fp, the sum will lie in
this interval.

Can have at most | § | summands besides Fy,.

By cookie problem, the number of decompositions with largest
summand F, is ZEO (") = P
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Distribution of Gaps

For F, +Fi, +--- + F;,, the gaps are the differences
in —in_1,in—1 —lh—2,...,l2 — 1.

Example: For F; + Fg + F1g, the gaps are 7 and 10.

Let Pn(k) be the probability that a gap for a decomposition in
[Fn, Fny1) is of length k.

What is P(k) = limp_ o Pn(k)?
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Main Results

Theorem (Base B Gap Distribution)

For base B decompositions, P(0) = %, and for k > 1,
P(k) = cgB, with cg = B-D38-2),

Theorem (Zeckendorf Gap Distribution)

For Zeckendorf decompositions, P (k) = (¢ b for k > 2, with

¢ = 155 the golden mean.
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Proof of Fibonacci Result

Lekkerkerker = total number of gaps ~ Fn_lﬁ.

Let Xij = ]{m S [Fn7 Fn+1): decomposition of m includes Fy, Fj, but not Fq fori < g < j }’

n—lk Xi itk
. = i,i
P(k) = lim &=t 2Ltk
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Calculating X; j 1k

How many decompositions contain a gap from F; to Fj «?
1<i<n-k-2:

For the indices less than i: F;_; choices.

For the indices greater thani + k: F,_x_»_i choices.

So total choices number of choices is Fp_x_>_iFi_1.
i=n—-k-—1:0.

i=n-—k: Fq_k_1.
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n—k-—2
Z Xii+k = Fn_k—1 + Z Fi_iFnk—i—2
i=1,n—k
n—k—3
=Fnk-1+ Z FiFn—k-i-3
i=0

S 3 FiFn_k_i_3 is the x"~¥~3 coefficient of (g(x))?!

g(x)? = (%((1_(1@()) - (1—(11—¢)x)))2

— A B C D
(9(x))* = Top + ammape + T T TR
Using geometric series, the x™ coefficient is
AM+1)g"+B(mM+1)(1—¢)"+CopTD(1 — ¢)™.
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Consider the ratio:

Pk+1) . Pa(k+1)
P(k)  n—oo  Py(k)

k—4
— im Frok—2+ 2io FiFn—k—i—4
= k—3

" R k1 Xy FiFn—k—i—4

Frok_2 +A(N —k —3)¢"K=4 4 B(n —k — 3)(1 — ¢)" ¥4+ Co" K% 4 D(1 — ¢)" K4

Fnok—1+AN —k —2)p"—k—=3 £ B(n —k — 2)(1 — p)"—k=3 y Con—k—=3 L D(1 — ¢)n—k—3
A(n—k —3)p" =4 1

TAN—k —2)gn—k=3 " 4’
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Consider the ratio:

Pk+1) . Pa(k+1)
P(k)  n—oo  Py(k)

k—4

— im Frok—2+ 2io FiFn—k—i—4
e D D Ursd 11 T
Fn_k—2 +A
Fn_k—1 + Al

n—k—3)¢" K LBn—k—3)(1—¢)" K4 fCa" K 44D - )" k4
n—k—2)¢pn—k=3 4+ B(n—k —2)(1 — )" k=3 + Copn—k=3 + D(1 — p)n—k—3
(bn—k—zl 1

A(n—k —3
An—k —2

pn—k—3 - ¢

P(k) = =, for some constant E.

1= Ezzgkd)—lk = 5T% = o1
¢
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Consider the ratio:
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_A(n—k —3)" K4 1
AN —k —2)gn—k—3 ~ g’
Pk) = ¢k , for some constant E.
1=Efjqs=55L =_E  E=¢(p-1
2<k ¢k ¢2 ¢k ¢2(17%) ’ ¢(¢ )
_ 9(o—1
P(k) = %24,
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