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1. Background

Definition 1.1. Fix A ⊂ Z and integers m,n ≥ 0. The generalized
sum and difference set with m positive summands and n negative
summands is

mA− nA :=


m∑
i=1

ai −
n∑
j=1

bj | ai, bj ∈ A


MSTD Sets: Classically, we are interested in the size of A + A
and A − A. Because addition is commutative and subtraction is
not, we expect A + A to be smaller than A − A (given distinct
a, b ∈ A, a + b = b + a is a single term of A + A, but a − b and
b − a are two distinct terms of A − A). This intuition turns out to
be correct in some sense, and we expect that for most sets A, we
have |A + A| < |A− A|. If |A + A| > |A− A|, we call A a more
sum than difference set, or MSTD set. For example,

{0, 2, 3, 4, 7, 11, 12, 14}
is an MSTD set, and a number of infinite families of MSTD sets
are known. Martin and O’Bryant showed that if A is selected uni-
formly at random from the set of all subsets of {0, . . . , N}, then
the probability that A is an MSTD set stays above some positive
lower bound for large N . Essentially, given a randomly chosen
set A, A is an MSTD set a positive percentage of the time. Martin
and O’Bryant also showed that A + A and A− A are expected to
contain almost all possible sums and differences. Lazarev, Miller,
and O’Bryant further analyzed the distribution of missing terms
from A + A, and a graph of this distribution is shown below.

Figure 1: The distribution of the number of missing sums for
2A = A + A (the random variable Sc = 2N + 1 − |2A|) given A
chosen uniformly at random from P ({0, . . . , N}) with N = 29 and
217 trials.

Generalized Sum and Difference Sets: In general, we are in-
terested in the relative sizes of all mA − nA where h = m + n
is fixed. Iyer, Lazarev, Miller, and Zhang proved that given non-
negative integers m,n,m′, n′ with m + n = m′ + n′ > 1 and
m 6= m′, |mA− nA| >

∣∣m′A− n′A∣∣ a positive percentage of the
time. When investigating these relative sizes, we can restrict to
the case where m ≥ n (otherwise, we can negate the sum to get
a set with the same cardinality). Using a similar intuitive argu-
ment as in the simple case, we expect sets with n close to m to
be larger than sets with n close to 0 given fixed m + n.

2. Generalized Sum and Difference Sets with Decay

We now let A be a randomly chosen subset of {0, . . . , N} where
each element of this set has probability p (N) of being in A. We
are specifically interested in the case where p (N) = N−δ for some
δ ∈ (0, 1). Given this distribution on A we wish to investigate the
relative sizes of all mA − nA for fixed h = m + n as N tends to
infinity. We require m ≥ n as otherwise we could simply negate
our set to get a set of the same cardinality with this property.

h = 2: Hegarty and Miller investigated this case, allowing p (N)
to be any function such that p (N) decays to 0 as N approaches
infinity and N−1 = o (p (N)). They showed that as N tends to in-
finity A−A is almost surely larger than A+A. Furthermore, they
investigated the ratios of the sizes of A− A and A + A and found
two regimes of behavior separated by a phase transition based
on the decay rate of p (N).

Theorem 2.1 (Hegarty-Miller). Let S be a random variable repre-
senting |A + A| and D be a random variable representing |A− A|
with A and p (N) as described above. There are three possible
behaviors for these random variables:

• p (N) = o
(
N−1/2

)
: We have D ∼ 2S ∼ (N · p (N))2.

• p (N) = cN−1/2 for some c ∈ (0,∞): We have S ∼ g
(
c2

2

)
N and

S ∼ g
(
c2
)
N where g (x) := 2

(
e−x−(1−x)

x

)
.

•N−1/2 = o (p (N)): Letting Sc = (2N + 1) − S and Dc =
(2N + 1)−D, we have Sc ∼ 2D ∼ 4

p(N)2
.

Generalizing to h > 2: In the previous case, we saw a phase
transition at δ = 1

2. In general, we expect a phase transition at
δ = h−1

h . For p (N) = cN−δ for some positive constant c with
δ ≥ h−1

h , Hogan and Miller proved a result similar to the above
theorem:

Theorem 2.2 (Hogan-Miller). Let

g (x; s, d) :=

∞∑
k=1

(−1)k−1
bh,k

(s!d!)k
x(s+d)k,

where bh,k is a constant dependent on h and k. Fix integers h ≥ 2
and m1, n1,m2, n2 ≥ 0 s.t. m1 + n1 = m2 + n2 = h, mi ≥ ni, and
n1 > n2. Consider A and p (N) as above. There are two possi-
ble behaviors for the sizes of the generalized sum and difference
sets:

• δ > h−1
h : As N → ∞, with probability one we have

|m1A− n1A| / |m2A− n2A| = (m2!n2!) / (m1!n1!) + o (1).

• δ = h−1
h : Almost surely |Amini| ∼ Ng (c;mi, ni) and

thus with probability one |m1A− n1A| / |m2A− n2A| =
g (c;m1, n1) /g (c;m2, n2) + o (1).

This theorem leaves open the case of slow decay, δ < h−1
h , and

we hope to shed some light on this case.

3. Obstructions in Analysis of Slow Decay

The case of slow decay with δ < h−1
h is not well under-

stood. To analyze this case for h = 2, Hegarty and Miller
analyze the distribution of missing terms from mA − nA ⊆
{−nA,−nA + 1, . . . ,mA− 1,mA}. For A + A and A − A, these
distributions are fairly well understood. Hegarty and Miller con-
sider

E [Sc] =
2N∑
n=0

P (En)

where En is the event that n 6∈ A + A. Using the fact that any two
ways of writing an element of A + A as a sum of elements of A
are independent along with the geometric series formula, they are
able to prove that this expectation is 4

p2
. They then prove that Sc

is strongly concentrated about its mean. While some details must
be modified for the case of A−A, the argument is fairly similar. In
the general case, the representations of an element of mA − nA
are not all independent, and we have yet to find a way of dealing
with these dependencies. Thus, we turn to numerics to illuminate
the missing term distribution for mA− nA.

4. Missing Term Distributions

We start by analyzing the distribution of missing terms from
mA− nA when each element of A is chosen from {0, . . . , N} with
fixed probabilty p. We ran simulations of 217 trials with N = 29 for
all choices of m ≥ 0 and n ≤ 0 with 2 ≤ m + n ≤ 5. We include a
graph of the missing term distribution for 4A as this distribution is
fairly representative of the patterns we see in general.

Figure 2: The distribution of the number of missing sums for 4A
(the random variable Sc = 4N+1−|4A|) given A chosen uniformly
at random from P ({0, . . . , N}) with N = 29 and 217 trials.

The distribution in Figure 2 seems to have a repeating pattern of
vertical ridges of 4 points each. If we look only at numbers of
missing sums congruent to some fixed k mod 4, we can pick out
4 seemingly smooth distributions (or discrete approximations of
them). This suggests that we may be able to write this missing
term distribution as a combination of 4 distributions constructed
from a single underlying distribution. Finding the underlying dis-
tribution may aid in computing the expectation of the number of
missing terms.

5. Future Work

We hope to apply our work to analyzing the expectation of the
number of missing terms from mA − nA. Currently, numerics
seem to suggest that a result similar to Hegarty and Miller’s holds
in this case. A plot of the expectation of missing terms from 4A

with p (N) = N−1/4 is shown in Figure 3. The expectation seems
to grow as cN1/2 for some constant c, which is similar to the case
of 2A. However, values of N are fairly small for this simulation, so
we cannot be sure that the limiting behavior has set in.

Figure 3: The expectation of the number of missing sums from 4A
(the random variable Sc = 4N + 1− |4A|) as a function of N given
A ⊆ {0, . . . , N}, where each element is chosen with probability
p (N) = N−1/4. Each N is simulated with 216 trials.
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