Bounds for Vanishing of *L*-functions at the Central Point

Ryan Chen, Eric Winsor

rcchen@princeton.edu, rcwnsr@umich.edu

with Yujin Kim, Jared Lichtman, Jianing Yang

Advisor: Steven J. Miller

SMALL REU 2017

Introduction

Introduction

Introduction

An L-function is a way of encoding arithmetic information into an analytic object. Our prototype for L-functions is the Riemann zeta function:

Introduction

An *L*-function is a way of encoding arithmetic information into an analytic object. Our prototype for L-functions is the Riemann zeta function:

Riemann Zeta Function

The Riemann zeta function is defined to be the analytic continuation of

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

The resulting function holomorphic except for a simple pole at 1.

Introduction

An *L*-function is a way of encoding arithmetic information into an analytic object. Our prototype for L-functions is the Riemann zeta function:

Riemann Zeta Function

The Riemann zeta function is defined to be the analytic continuation of

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

The resulting function holomorphic except for a simple pole at 1.

The distribution of prime numbers is closely linked to the distribution of the zeroes of the Riemann zeta function.

An *L*-function is an analytic continuation of a function of the form

$$L(s, f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s}$$

where f is some mathematical object, and $a_f(n)$ is some sequence of coefficients encoding information about this object.

An *L*-function is an analytic continuation of a function of the form

$$L(s,f) = \sum_{n=1}^{\infty} \frac{a_f(n)}{n^s}$$

where f is some mathematical object, and $a_f(n)$ is some sequence of coefficients encoding information about this object.

In addition to this series formula, we often require *L*-functions to have other nice properties.

1-level

Properties of *L*-functions

The Riemann zeta function has a form known as the Euler product:

$$\zeta\left(s\right) = \prod_{p \text{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}$$

1-level

Properties of *L*-functions

The Riemann zeta function has a form known as the Euler product:

$$\zeta\left(s
ight) = \prod_{p ext{ prime}} \left(1 - \frac{1}{p^s}\right)^{-1}$$

We usually want *L*-functions to have an Euler product form:

$$L(s, f) = \prod_{p \text{ prime}} L_p(s, f)^{-1}$$

Properties of *L*-functions

The Riemann zeta function has a functional equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s)$$

Properties of *L***-functions**

Introduction

The Riemann zeta function has a functional equation:

$$\xi(s) = \Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}\zeta(s) = \xi(1-s)$$

We usually want *L*-functions to have a functional equation:

$$\Lambda(s, f) = \Lambda_{\infty}(s, f) L(s, f) = \Lambda(1 - s, f)$$

Zeroes of *L*-functions

Zeroes of L-functions encode information about mathematical objects. As such, the distribution of these zeroes is the subject of a famous conjecture:

Zeroes of *L*-functions

Zeroes of *L*-functions encode information about mathematical objects. As such, the distribution of these zeroes is the subject of a famous conjecture:

Riemann Hypothesis

The nontrivial zeroes of the Riemann zeta function lie on the line $\Re(s) = \frac{1}{2}$.

Zeroes of *L*-functions

Introduction

Zeroes of L-functions encode information about mathematical objects. As such, the distribution of these zeroes is the subject of a famous conjecture:

Riemann Hypothesis

The nontrivial zeroes of the Riemann zeta function lie on the line $\Re(s) = \frac{1}{2}$.

We often want the same property to hold for zeroes of L-functions that we study. We call this the **Generalized** Riemann Hypothesis.

Zeroes and the *n*-Level Density

Zeroes of *L* **Functions**

Classically, statistical analysis of the zeroes of L-functions was insensitive to changes in finitely many zeroes. Many universal results for L-functions were found with these statistics. Concentrating on zeroes near the central point (the point $\frac{1}{2}$) offers the potential for new results:

Zeroes of *L* **Functions**

Classically, statistical analysis of the zeroes of L-functions was insensitive to changes in finitely many zeroes. Many universal results for L-functions were found with these statistics. Concentrating on zeroes near the central point (the point $\frac{1}{2}$) offers the potential for new results:

Birch and Swinnerton-Dyer Conjecture

The rank of the Mordell-Weil group of rational solutions of an elliptic curve is equal to the order of vanishing of the associated *L*-function at the central point.

1-Level Density

We want to extract information about low-lying zeroes (zeroes close to the central point) by using a test function $\phi(x)$.

1-Level Density

We want to extract information about low-lying zeroes (zeroes close to the central point) by using a test function $\phi(x)$.

1-level Density

Let L(s, f) be an L-function. Let $\phi(x)$ be an even Schwartz (rapidly decaying) function. Let $\gamma_f^{(j)}$ denote the jth zero of L. Then the 1-level density is defined to be

$$D_{1,f}\left(\phi\right) = \sum_{i} \phi\left(L_{f}\gamma_{f}^{(j)}\right)$$

where L_f is a scaling parameter.

Introduction

We are in a more general statistic known as the *n*-level density:

n-level Density

We are in a more general statistic known as the *n*-level density:

n-level Density

Let L(s, f) be an L-function. Let ϕ_1, \ldots, ϕ_n be even Schwartz (rapidly decaying) functions. Let $\gamma_f^{(j)}$ denote the jth zero of L. Then the n-level density is defined to be

$$D_{n,f}\left(\phi\right) = \sum_{\substack{j_1,\ldots,j_n\\j_k \neq j_l}} \phi_1\left(L_f \gamma_f^{(j_1)}\right) \cdots \phi_n\left(L_f \gamma_f^{(j_n)}\right)$$

where L_f is a scaling parameter.

Connection with Random Matrix Theory - Katz Sarnak

The following conjecture bridges random matrix theory and zeroes of *L*-function:

Conjecture (Katz Sarnak)

The statistics of zeroes of *L*-functions are well modeled my random matrix ensembles. In particular, the *n*-level density of *L*-function zeroes is well modeled by random matrix theory.

For a family $| \mathcal{F}_N |$ of L-functions, we can write

$$\lim_{N\to\infty}\sum_{f\in\mathcal{F}_N}\sum_{\gamma}\operatorname{Rank}(f(0))\phi(0)$$

For a family $\bigcup \mathcal{F}_N$ of *L*-functions, we can write

$$\begin{array}{l} \lim_{N\to\infty} \sum_{f\in\mathcal{F}_N} \sum_{\gamma} \operatorname{Rank}(f(0))\phi(0) \\ \leq \lim_{N\to\infty} \sum_{f\in\mathcal{F}_N} \sum_{\gamma} \operatorname{Rank}(f(\gamma))\phi(\gamma) \end{array}$$

For a family $\bigcup \mathcal{F}_N$ of *L*-functions, we can write

$$\lim_{N\to\infty} \sum_{f\in\mathcal{F}_N} \sum_{\gamma} \operatorname{Rank}(f(0))\phi(0)
\leq \lim_{N\to\infty} \sum_{f\in\mathcal{F}_N} \sum_{\gamma} \operatorname{Rank}(f(\gamma))\phi(\gamma)
= \int_{\mathbb{R}^n} \phi(x) W_{n,G}(x) dx.$$

The idea is simple: throw out the zeroes on the left hand side that aren't at the central point since ϕ is nonnegative everywhere. Thus:

For a family $\bigcup \mathcal{F}_N$ of *L*-functions, we can write

$$\lim_{N\to\infty} \sum_{f\in\mathcal{F}_N} \sum_{\gamma} \operatorname{Rank}(f(0))\phi(0)
\leq \lim_{N\to\infty} \sum_{f\in\mathcal{F}_N} \sum_{\gamma} \operatorname{Rank}(f(\gamma))\phi(\gamma)
= \int_{\mathbb{R}^n} \phi(x) W_{n,G}(x) dx.$$

The idea is simple: throw out the zeroes on the left hand side that aren't at the central point since ϕ is nonnegative everywhere. Thus:

$$\lim_{N\to\infty} \operatorname{AvgRank}(\mathcal{F}_N) \leq \frac{\int_{\mathbb{R}^n} \phi(x) W_{n,G}(x) dx}{\phi(0)}$$

1-level

Optimal Test Functions: 1-level

We can consider the test function $\phi(x) = \left(\frac{\sin 2\pi x}{2\pi x}\right)^2$

1-Level Optimization from ILS

The function $\phi(x) = \left(\frac{\sin 2\pi x}{2\pi x}\right)^2$ minimizes $\frac{\int_{-\infty}^{\infty} \phi(x)W(x)dx}{\phi(0)}$, for W corresponding to:

- Orthogonal
- Unitary

1-Level Optimization from ILS

The function $\phi(x)=\left(\frac{\sin 2\pi x}{2\pi x}\right)^2$ minimizes $\frac{\int_{-\infty}^{\infty}\phi(x)W(x)dx}{\phi(0)}$, for W corresponding to:

- Orthogonal
- Unitary

and is almost minimal (but not quite) for

- Special Orthogonal (+,-,*)
- Symplectic

Fredholm Theory

Weight functions $\hat{W}(u)$ in the 1-level take the form $\delta(u) + m(u)$.

Fredholm Theory

Introduction

Weight functions $\hat{W}(u)$ in the 1-level take the form $\delta(u) + m(u)$.

The positivity condition on ϕ forces $\hat{\phi} = g * g$, via Ahiezer and Paley-Wiener.

ILS rewrites the ratio $\frac{\int_{-\infty}^{\infty} \phi(x)W(x)dx}{\phi(0)} = \frac{\langle (I+K)g,g\rangle}{|\langle g,1\rangle|^2}$ where Kq = m*q.

Using Fredholm theory, we can reinterpret this as solving (I+K)g=1.

Better Bounds - Larger Support

One can ask for optimal test functions, given larger support for the Fourier transform.

These provide *conditional* results, since number theory does not have have agreement for large support of the Fourier transform.

Optimal Test Functions: 2-level

Fredholm Theory for the 2-level

We encounter significant obstacles with such methods in higher levels.

By Plancherel we can write:

$$\frac{\int_{\mathbb{R}^2} \phi_1(x_1) \phi_2(x_2) W(x) dx}{\phi_1(0) \phi_2(0)} = \frac{\int_{\mathbb{R}^2} \widehat{\phi_1}(x_1) \cdot \widehat{\phi_2}(x_2) \widehat{W}(x) dx}{\phi_1(0) \phi_2(0)}$$

It is of interest to study the special case $\phi := \phi_1 = \phi_2$.

2-level Unitary Example Calculation

The two level unitary weight takes the form

$$\widehat{W}_{2,U}(x_1,x_2) = \delta(x_1)\delta(x_2) - \delta(x_1+x_2)\cdot(1-|x_1|)I(x_1)$$

and we can obtain a similar-looking inner product ratio

$$\frac{\langle (\mathit{I}_0 + \mathit{K}')\hat{\phi}, \hat{\phi}\rangle}{\langle \hat{\phi}, 1\rangle^2}$$

for some (now different) operators I_0 and K'.

The point is that positivity of ϕ does not translate to the positivity of the Fourier transform, so we cannot apply Fredholm Theory as before.

Linear Combinations

Thus we restrict our attention to linear combinations of shifts of the original test function $\phi(x) = \left(\frac{\sin 2\pi x}{2\pi x}\right)^2$, still in the special case $\phi_1 = \phi_2 = \phi$.

The point is that shifts of the original test function do not change the support of the Fourier transform:

Consider test functions $\phi(x_1)\phi(x_2)$ with ϕ linear combinations of the form:

$$\phi(x) = \sum \alpha_i \left(\frac{\sin 2\pi (x + c_i)}{2\pi x} \right)^2$$

Theorem (SMALL 2017)

Test functions of the above yield best bounds when c=0 and $\alpha_0=1$, for all families (Unitary, Orthogonal, Symplectic, SO +,-,*).

References

Henryk Iwaniec, Wenzhi Luo, and Peter Sarnak. "Low lying zeros of families of L-functions." *l'Insttut des Hautes Etudes Scientifiques Publications Mathematiques* 91 (2000):55-131.

Michael Spoerl, Ani Sridhar, and Steven J. Miller. "Investigating Optimal Test Functions for the 2-Level Density." (2016).

Chris P. Hughes and Steven J. Miller. "Calculating the level density a la Katz-Sarnak."

Jesse Freeman and Steven J. Miller. "Determining Optimal Test Functions for Bounding the Average Rank in Families of *L*-Functions." *Contemporary Mathematics* (2015).

2-level 00000

Thank you!