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What is an L-function?

An L-function is a way of encoding arithmetic information
into an analytic object. Our prototype for L-functions is the
Riemann zeta function:

Riemann Zeta Function
The Riemann zeta function is defined to be the analytic
continuation of

ζ (s) =
∞∑

n=1

1
ns .

The resulting function holomorphic except for a simple
pole at 1.

The distribution of prime numbers is closely linked to the
distribution of the zeroes of the Riemann zeta function.
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What is an L-function?

An L-function is an analytic continuation of a function of
the form

L (s, f ) =
∞∑

n=1

af (n)

ns

where f is some mathematical object, and af (n) is some
sequence of coefficients encoding information about this
object.

In addition to this series formula, we often require
L-functions to have other nice properties.
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Properties of L-functions

The Riemann zeta function has a form known as the Euler
product:

ζ (s) =
∏

p prime

(
1− 1

ps

)−1

We usually want L-functions to have an Euler product
form:

L (s, f ) =
∏

p prime

Lp (s, f )−1
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Properties of L-functions

The Riemann zeta function has a functional equation:

ξ (s) = Γ
(s

2

)
π−

s
2 ζ (s) = ξ (1− s)

We usually want L-functions to have a functional equation:

Λ (s, f ) = Λ∞ (s, f ) L (s, f ) = Λ (1− s, f )
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Zeroes of L-functions

Zeroes of L-functions encode information about
mathematical objects. As such, the distribution of these
zeroes is the subject of a famous conjecture:

Riemann Hypothesis
The nontrivial zeroes of the Riemann zeta function lie on
the line R (s) = 1

2 .

We often want the same property to hold for zeroes of
L-functions that we study. We call this the Generalized
Riemann Hypothesis.
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Zeroes and the n-Level Density
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Zeroes of L Functions

Classically, statistical analysis of the zeroes of L-functions
was insensitive to changes in finitely many zeroes. Many
universal results for L-functions were found with these
statistics. Concentrating on zeroes near the central point
(the point 1

2 ) offers the potential for new results:

Birch and Swinnerton-Dyer Conjecture
The rank of the Mordell-Weil group of rational solutions of
an elliptic curve is equal to the order of vanishing of the
associated L-function at the central point.
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1-Level Density

We want to extract information about low-lying zeroes
(zeroes close to the central point) by using a test function
φ (x).

1-level Density
Let L (s, f ) be an L-function. Let φ (x) be an even
Schwartz (rapidly decaying) function. Let γ(j)f denote the
j th zero of L. Then the 1-level density is defined to be

D1,f (φ) =
∑

j

φ
(

Lfγ
(j)
f

)
where Lf is a scaling parameter.
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n-level Density

We are in a more general statistic known as the n-level
density:

n-level Density
Let L (s, f ) be an L-function. Let φ1, . . . , φn be even
Schwartz (rapidly decaying) functions. Let γ(j)f denote the
j th zero of L. Then the n-level density is defined to be

Dn,f (φ) =
∑

j1,...,jn
jk 6=jl

φ1

(
Lfγ

(j1)
f

)
· · ·φn

(
Lfγ

(jn)
f

)
where Lf is a scaling parameter.
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Connection with Random Matrix Theory - Katz Sarnak

The following conjecture bridges random matrix theory
and zeroes of L-function:

Conjecture (Katz Sarnak)
The statistics of zeroes of L-functions are well modeled
my random matrix ensembles. In particular, the n-level
density of L-function zeroes is well modeled by random
matrix theory.
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Obtaining bounds on vanishing with n-level density

For a family
⋃
FN of L-functions, we can write

limN→∞
∑

f∈FN

∑
γ Rank(f (0))φ(0)

≤ limN→∞
∑

f∈FN

∑
γ Rank(f (γ))φ(γ)

=
∫
Rn φ(x)Wn,G(x)dx .

The idea is simple: throw out the zeroes on the left hand
side that aren’t at the central point since φ is nonnegative
everywhere. Thus:
limN→∞AvgRank(FN) ≤

∫
Rn φ(x)Wn,G(x)dx

φ(0)
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Optimal Test Functions : 1-level
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Optimization in the 1-level

We can consider the test function φ(x) =
(

sin 2πx
2πx

)2
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1-Level Optimization from ILS

The function φ(x) =
(

sin 2πx
2πx

)2 minimizes
∫∞
−∞ φ(x)W (x)dx

φ(0) , for
W corresponding to:

Orthogonal
Unitary

and is almost minimal (but not quite) for
Special Orthogonal (+,-,∗)
Symplectic
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Fredholm Theory

Weight functions Ŵ (u) in the 1-level take the form
δ(u) + m(u).

The positivity condition on φ forces φ̂ = g ∗ g, via Ahiezer
and Paley-Wiener.
ILS rewrites the ratio

∫∞
−∞ φ(x)W (x)dx

φ(0) = 〈(I+K )g,g〉
|〈g,1〉|2 where

Kg = m ∗ g.
Using Fredholm theory, we can reinterpret this as solving
(I+K)g=1.
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Better Bounds - Larger Support

One can ask for optimal test functions, given larger
support for the Fourier transform.

These provide conditional results, since number theory
does not have have agreement for large support of the
Fourier transform.
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Optimal Test Functions : 2-level
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Fredholm Theory for the 2-level

We encounter significant obstacles with such methods in
higher levels.

By Plancherel we can write:

∫
R2 φ1(x1)φ2(x2)W (x)dx

φ1(0)φ2(0)
=

∫
R2 φ̂1(x1) · φ̂2(x2)Ŵ (x)dx

φ1(0)φ2(0)

It is of interest to study the special case φ := φ1 = φ2.
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2-level Unitary Example Calculation

The two level unitary weight takes the form

Ŵ2,U(x1, x2) = δ(x1)δ(x2)− δ(x1 + x2) · (1− |x1|)I(x1)

and we can obtain a similar-looking inner product ratio

〈(I0 + K ′)φ̂, φ̂〉
〈φ̂,1〉2

for some (now different) operators I0 and K ′.

The point is that positivity of φ does not translate to the
positivity of the Fourier transform, so we cannot apply
Fredholm Theory as before.
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Linear Combinations

Thus we restrict our attention to linear combinations of
shifts of the original test function φ(x) =

(
sin 2πx

2πx

)2, still in
the special case φ1 = φ2 = φ.

The point is that shifts of the original test function do not
change the support of the Fourier transform:
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Consider test functions φ(x1)φ(x2) with φ linear
combinations of the form:

φ(x) =
∑

αi

(
sin 2π(x + ci)

2πx

)2

Theorem (SMALL 2017)
Test functions of the above yield best bounds when c = 0
and α0 = 1, for all families (Unitary, Orthogonal,
Symplectic, SO +,-,∗).
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Thank you!
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