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Introduction
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A few questions

How can we write a number as a sum of powers of 2?

Example: 2017 = 210 + 29 + 28 + 27 + 26 + 25 + 20

What can we say about the distribution of the summands?

What about powers of 3? 5? 10?

What other sequences can we use besides powers?
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The Fibonacci Numbers

Fibonacci Numbers:

Fn+1 = Fn + Fn−1; F1 = 1,F2 = 2,F3 = 3,F4 = 5.

Generating function:

g(x) =
∑
n≥1

F nxn =
x

1− x − x2 =
1√
5

(
1

1− x(1+
√

5
2 )

− 1

1− x(1−
√

5
2 )

)
.

Binet’s formula follows from geometric series expansion
Fn = (1+

√
5)n−(1−

√
5)n

2n
√

5
.
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Previous Results

Zeckendorf’s Theorem
Every positive integer can be written uniquely as a sum of one
or more non-consecutive Fibonacci numbers.

Example:
2017 = 1597 + 377 + 34 + 8 + 1 = F16 + F13 + F8 + F5 + F1.

Lekkerkerker’s Theorem (1952)
The average number of summands in the Zeckendorf
decomposition for integers in [Fn,Fn+1) tends to n

ϕ2+1 ≈ .276n,

where ϕ = 1+
√

5
2 is the golden mean.
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Previous Results continued

Central Limit Type Theorem (KKMW 2010)
As n→∞, the distribution of the number of summands in the
Zeckendorf decomposition for integers in [Fn,Fn+1) is
Gaussian.

Remark:
Note that this is equivalent to choose summands from the first n
Fibonacci numbers with the largest summand being Fn.
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Previous Results continued

Number of summands
Gaps between adjacent summands in a decomposition
Legal decomposition
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Main Result

Theorem

Let bi be the number of terms in the i th bin of a sequence, N
the number of bins, and Yi the number of summands chosen
from the i th bin. Then if

∑∞
i=1

1
bi

diverges, the distribution of the
average number of summands in a decomposition converges to
a Gaussian as N →∞.
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The Bin Approach

Another representation of the Fibonacci numbers is as follows:

1,2
1,2,3
1,2,3,5, . . .
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Bins

We put each term of a sequence into a "bin" of positive integer
size, and define a collection of rules on how we choose
summands from each bin.

Then, the sequence is determined by the rules on its bins.

For example, we can view the Fibonacci sequence as having
bins of size 1, and only being allowed to choose numbers from
nonadjacent bins.

1 2 3 5 · · ·
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Example

Example: Bins of constant length 2, may choose 0 or 1
summand from each bin, adjacent bins allowed

1 2 3 6 9 18 . . .
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The following questions arise:

What happens when we allow the size of the bin to vary?

What happens when the allowed numbers of summands
per bin vary?
What happens when we put various adjacency conditions
on the bins?
In what situations do we retain uniqueness of
decomposition?
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We can generalize this notion further by choosing arbitrary
numbers of elements from each bin.

We let Ai ⊆ {0,1, . . . ,bi} be a set of integers so that if a ∈ Ai ,
we may choose a summands from the i th bin.

Example: A = {0,1,2}, bi = 3 for all i

1 2 4 7 14 28 . . .

29



Intro Bin Decomposition Non-adjacency Rules

We can generalize this notion further by choosing arbitrary
numbers of elements from each bin.

We let Ai ⊆ {0,1, . . . ,bi} be a set of integers so that if a ∈ Ai ,
we may choose a summands from the i th bin.

Example: A = {0,1,2}, bi = 3 for all i

1 2 4 7 14 28 . . .

30



Intro Bin Decomposition Non-adjacency Rules

Theorem
Let bn ∈ N be the size of the n-th bin, and An ⊆ {0, . . . ,bn} be
the set of legal number of summands from the n-th bin. Assume
|A| = |An| ≥ 2 is constant. Then the distribution of the number
of summands is Gaussian if

∑ 1
bm−m′

n
diverges, where m is the

maximal element of A and m′ is the second maximal element.
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Sketch of the Proof

We will need the following theorem for the proof:

Theorem (Lyapunov CLT)
Let {Y1,Y2, . . . } be independent random variables, each with
finite mean µi and variance σ2

i . Define s2
n =

∑n
i=1 σ

2
i . Then if

there exists a δ > 0 such that
limn→∞

1
s2+δ

n

∑n
i=1 E(|Yi − µi |2+δ) = 0, 1

N
∑∞

i=1 Yi converges to a
Gaussian as N →∞.
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Sketch of Proof

The probability of choosing i summands from the n-th bin is

p(Yn = i) =

(bn
i

)∑
t∈An

(bn
t

) ,

and the expectation values of Yn and Y 2
n are

E[Yn] =

∑
t∈An

t
(bn

t

)∑
t∈An

(bn
t

)
E[Y 2

n ] =

∑
t∈An

t2(bn
t

)∑
t∈An

(bn
t

)
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Sketch of Proof continued

We then find that

σ2
n = E[Y 2

n ]− E[Yn]
2

=

∑
i,j∈An,i 6=j(i − j)2(bn

i

)(bn
j

)
2
(∑

t∈An

(bn
t

))2 ,

and the absolute centered moment

ρ2+δ
n := E

[
|Yn − µn|2+δ

]
=

∑
i∈An

(bn
i

) ∣∣∣∑t∈An
(i − t)

(bn
t

)∣∣∣2+δ(∑
t∈An

(bn
t

))3+δ
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Sketch of Proof continued

We come to the conclusion of the theorem by analyzing σ2
n and

ρ2+δ
n asymptotically and applying the Lyapunov Central Limit

Theorem.

36



Intro Bin Decomposition Non-adjacency Rules

Sequences with Non-adjacency Rules

Now let’s address the question of the behavior of sequences
with adjacency conditions.
For instance, if we have constant bin size bn = 2, choose at
most 1 summand from each bin, and disallow summands from
adjacent bins, we have the following sequence:

1,2, 3,4, 5,8, 11,16, · · ·

Note that the Fibonacci sequence is an example of such
sequences with bn = 1.
There exist previous combinatorial proofs that the distribution of
number summands for the Fibonacci sequence is gaussian.
However, to generalize to growing bin sizes, we consider using
dependent Central Limit Theorem type result.
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α-mixing

In order to use a version of the Central Limit Theorem for
dependent random variables, we need to show that bins which
are far apart are essentially independent.

Definition
Let {Xi} be a sequence of random variables. Then the i th
α-mixing coefficient, αi is defined to be

αi = sup
{
|P (A ∩ B)− P (A)P (B)| : t ∈ (−∞,∞),A ∈ X t

−∞,B ∈ X∞t+i
}

where X b
a is the set of events involving finitely many random

variables in the set {Xa, . . . ,Xb}.
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We wish to bound αi for general bin sizes, and we have the
following bound for constant bin sizes.

αi ≤ c

((
ψb

φb

)i
)

where c constant, φb = 1+
√

4b+1
2 and ψb = 1− φb.

Future Directions:
If we get bounds for the variance as well as the mixing
coefficients, we can use a dependent type of CLT to show that
for all bin sizes with growth rate less than n1−ε, the distribution
of number of summands is Gaussian.
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Thank You
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