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Fibonacci Sequence

Fn+1 = Fn + Fn−1
1, 2, 3, 5, 8, 13, 21, . . .

Fibonacci Spiral
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Zeckendorf Decompositions

Theorem (Zeckendorf)
Every positive integer has a unique representation as a
sum of nonadjacent Fibonacci numbers.

Edouard Zeckendorf
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Summand Minimality

Example
18 = 13 + 5 = F6 + F4, legal decomposition, two
summands
18 = 13 + 3 + 2 = F6 + F3 + F2, nonlegal
decomposition, three summands
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Question

Definition
The Zeckendorf decomposition is summand minimal,
because the Zeckendorf decomposition of any positive
integer n uses the fewest summands out of any
decomposition of n into Fibonacci numbers.

Overall Question
What other recurrences are summand minimal?
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Positive Linear Recurrence Sequences

Definition
A positive linear recurrence sequence (PLRS) is the
sequence given by a recurrence a of the following form:

an = c1an−1 + · · ·+ ctan−t

where all ci ≥ 0 and c1, ct > 0.

We use ideal initial
conditions a−(n−1) = 0, . . . ,a−1 = 0,a0 = 1.

Definition
We call (c1, . . . , ct) the signature of the sequence.
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Representation Notation

Definition
For some sequence {ai}, suppose we have:

n = bkak + bk−1ak−1 + · · ·+ b0a0

Then we call [bk ,bk−1, . . . ,b0,∞] a representation of n
over {a0}.

Example
18 = F6 + F4 and F6 + F3 + F2

We denote these two representations of 18 by:

[1,0,1,0,0,0,0,∞] and [1,0,0,1,1,0,0,∞]
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Allowable Blocks

Definition
Given a PLRS with signature (c1, . . . , ct), we say that
[b1, . . . ,bk ] is an allowable block if k ≤ t and bi = ci for
i < k and 0 ≤ bk < ck .

Example
Signature: (1, 2, 1)
Legal blocks: [0], [1,0], [1,1], [1,2,0]
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Generalized Zeckendorf Decompositions

Definition
Given a positive linear recurrence, a representation of a
positive integer n is a generalized Zeckendorf
decomposition (GZD) if it can be formed as a tiling of a
set of allowable blocks.

Theorem (Miller et. al., Hamlin)
Given any positive linear recurrence, each positive integer
n has a unique generalized Zeckendorf decomposition.
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Not All Recurrences are Summand Minimal

Recurrence: fn = fn−1 + 2fn−2 + fn−3
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Main Result

Theorem
Suppose we have a PLRS with signature (c1, c2, . . . , ct)
The corresponding GZD of each positive integer n is
summand minimal if and only if:

c1 ≥ c2 ≥ · · · ≥ ct .
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Borrow and Carry

20
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Proof Sketch

Theorem (=⇒)
If the signature of a recurrence is weakly decreasing, then
the recurrence is summand minimal.

Proof.
Start with any representation and use successive borrows
and carries to reach the GZD.
Because after borrowing we can always carry, we never
increase the number of summands.
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Sufficency Example
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Sufficiency Example

24



Introduction and Notation Sufficient Condition Necessary Condition Acknowledgments

Sufficiency Example
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Theorem (⇐=)
If a recurrence is summand minimal, then its signature is
weakly decreasing.

Proof.
Two cases: c1 > 1 or c1 = 1.
If c1 > 1, then the general idea is to construct a non-legal
representation and show that the corresponding legal
representation uses more summands.
If c1 = 1, then we use a growth rate argument to
demonstrate the existence of a non-legal
representation.
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Case 1: c1 > 1

Further subcases. One example:
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Case 2: c1 = 1

Assume c1 = 1. What are good subcases? Let k > 1.
{1, k , · · · }
{1, · · · ,1︸ ︷︷ ︸

a

, k , · · · }, a ≥ 2

{1, . . . ,1︸ ︷︷ ︸
a1

,0, . . . ,0︸ ︷︷ ︸
b1

, · · · ,1, . . . ,1︸ ︷︷ ︸
at

,0, . . . ,0︸ ︷︷ ︸
bt

, k , · · · } a1 > 1

{1,0, . . . ,0︸ ︷︷ ︸
a

, k , . . . }
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Example Construction

32
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Subcases Start to get Overwhelming
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Solution: Growth Rates!

Definition
The characteristic polynomial of a recurrence with
signature (c1, c2, . . . , ck) is

xk − c1xk−1 − · · · − ck .

Theorem
Given a PLRS with a signature of the form (1, c2, . . . ) , the
characteristic polynomial has a unique largest positive
root α > 1. For large n,

an ≈ Cαn

.

34



Introduction and Notation Sufficient Condition Necessary Condition Acknowledgments

Solution: Growth Rates!

Definition
The characteristic polynomial of a recurrence with
signature (c1, c2, . . . , ck) is

xk − c1xk−1 − · · · − ck .

Theorem
Given a PLRS with a signature of the form (1, c2, . . . ) , the
characteristic polynomial has a unique largest positive
root α > 1. For large n,

an ≈ Cαn

.
35



Introduction and Notation Sufficient Condition Necessary Condition Acknowledgments

Counterexample: Trying to represent 2an

Theorem
For every non-weakly-decreasing signature with c1 = 1,
then there exists some n for which the GZD of 2an has at
least 3 summands.

If summand minimal, the GZD of 2an must have only 1 or
2 summands:

[1,0,0, . . . ]
[1,0, . . . ,1,0, . . . ]
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Representations of 2an

Growth rate arguments give three specific forms:
2an = an+r

2an = an+r + an−s

2an = an+r + an−s+1

for some fixed r, s.

These recurrences have different growth rates; only one
can correspond to our sequence.

For all n > N, every representation of 2an must be of the
same form.
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Last Step

The characteristic polynomial of a truncated sequence
must divide exactly one of the following characteristic
polynomials:

x r − 2
x r − 2xs − 1
x r − 2xs−1 − 1

By a result of Schinzel on the factorization of these
polynomials, this cannot be the case.
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Sufficency Example
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Sufficency Example
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Sufficency Example
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Case 1: c1 > 1 Further example

Further subcases. One example:
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