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ABSTRACT 

Let X,, X,,. be a sequence of regular graphs with degree ~a2 such that 
n(X,)- cc and ck(X,)/n(X,)-0 as i -cc for each ka3, where n(X,) is the order of 
Xi, and ck( X,) is the number of k-cycles in Xi. We determine the limiting probability 
density f(x) for the eigenvalues of X, as i-cc. It turns out that 

i 

o/4(“-1)-x” 

f(x)= 2n(u”_x’) 
for IrlG2JFi, 

IO otherwise 

It is further shown that f(x) is the expected eigenvalue distribution for every large 
randomly chosen labeled regular graph with degree u. 

1. INTRODUCTION 

Let X be a regular graph with vertex set { 1,2,. . . , n(X)}. As with all our 
graphs, X has no loops, multiple edges, or directed edges. The degree of X 
will be denoted by v, and the number of cycles of length k by ck( X), for each 
ka3. 

The adjacency matrix of X is the matrix A(X)=(aij) of order n(X), where 
a 1 i = 1 if vertices i and i are adjacent and a ii = 0 otherwise. The eigenvalues 
of X are the eigenvalues of A(X). Define the cumulative distribution function 
F(X, x) to be the proportion of the eigenvalues of X which are less than or 
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equal to the real number x. Eigenvalues are counted according to their 
multiplicities. It is easy to see that the fmlction F( X, x) satisfies the following 
conditions: 

(1) F(X, x)=0 if x< -0. 
(2) F(X, x)=1 if x20. 

(3) F( X, x) is monotonically nondecreasing and right-continuous for all x. 

We can now state our main result. 

THEOREM 1.1. Let X,, X,, . . . be a sequence of regular graphs, each of 
degree va2, which satisfies the conditions 

(4) n(X,)+ m us i+ oo, and 
(5) for euch k>3, ck(Xi)/n(Xi)-+O as i+m. 

Z72en for every x, F(X,, x)+F(x) as i-+ CO, where F(x) is the function 
defined as follows: 

(6) F(x)=0 if x& -2m. 

(7) F(x ) / 

z 
= 

v/4(t)-l)-zs 
dz 

-z&Pi 2T( u2 -z”) 

- arctan 
(v-2)x 

vi4(v-1)-x2 

if -2Ju-1<x<2Jv-r. 

(8) F(r)=1 if xaZJu-1. 

Conversely, if F(X,, x) does not converge to F(x) for some x, then the 
condition (5) fails for some k. n 

For v=2, the theorem follows directly from the fact that the eigenvalues 
of the n-vertex polygon are 

2cose 
n ’ 

k=0,1,2 ,..., n-l. 

Consequently, we will assume from now on that v&3. 
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2. EXISTENCE AND UNIQUENESS OF F(x) 

Let v0 be a vertex of a graph X. A closed walk of length r>O starting at v0 

is a sequence vO, vi, vs,. . . , vr of vertices of X such that vr = vO, and vi_ 1 is 
adjacent to v, for 1~ i < r. 

LEMMA 2.1. Suppose X is regular of degree v. Let v0 be a vertex of X, 

and suppose that the subgraph of X induced by the vertices at distance at 

nlost r/2 f;om vg is acyclic. Then the number of closed walks of length r in X 

starting at v0 is e(r), where tI( r)=O if r is odd, and 

0(2&J 2s;k)&k(D-l)~-k (s>O) 

(s>O) 

Proof. Let v=vn, vr,. . . , v, be a closed walk of length r. Corresponding to 
v we have a sequence of nonnegative integers 6=6,, S,, . . . ,a,, where Si is the 
distance in X of vi from vO. Thus 6 satisfies the conditions 

(a) 8, =S, =0, 
(b) S, 30 for O<i<r, and 
(c) ]fSi -&i/=1 for lGi<r. 

Conditions (a) and (c) together imply that r is even. Also, e(O)=1 
obviously, so assume r = 2s, where s > 0. 

It can be shown [l] that the number of sequences 8 which satisfy 
conditions (a), (b), and (c), and for which exactly k of the numbers 6,, 6,, . . . ,6, 
are zero, is 

Each such S corresponds to vk( v - l)s-k closed walks v. Summing over k gives 
the first expression for e(2s). The other two can be derived from the first by 
algebraic manipulation. n 
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LEMMA 2.2. For r>O, i 2 1 let C&(X, ) denote the total number of closed 

walks of length r in Xi. Then for each r, +r(Xi)/n(X,)-+8( r) us i+ m. 

Proof. Let n,(Xi) denote the number of vertices of Xi which satisfy the 
requirement of Lemma 2.1 for vO. By condition (5) above, n,( Xi)/n(Xi)+ 1 
as i -+ CC. By Lemma 2.1 the number of closed walks of length r starting at 
each such vertex is e(r). For each of the remaining vertices the number of 
closed walks of length r is certainly less than or. 

Therefore, for each r, there are numbers &Xi) such that OG K( Xi)< or, 

and 

Gr,(‘i> n,(xi>e(r>+[n(xi>-n,(xi)]eT(xi) 

n(X,)= n(xi> 

+0(r) as i&+00. n 

Lemma 2.2 can be written in terms of the functions F( Xi, r) by means of 
the Lebesgue-Stieltjes integral. 

LEMMA 2.3. For each r>O, jxrdF(Xi,x)+8(r) as i+oo. 

Proof The number of closed walks of length r in Xi equals the trace of 
the rth power of A( Xi), and so equals the sum of the rth powers of the 
eigenvalues of Xi. The lemma now follows from the definition of F(X,, r). n 

THEOREM 2.4. There is n unique function F(x) which is rnonotonicnlly 

nondecreasing and right-continuous for nil x such that 

/ 
x’dF=B(r) for euch r>O. 

Furthermore F(X,,x)-+F(x) us i+m, for every x at which F(x) is 

continuous. 

The theorem follows from Lemma 2.3 as a special case of Theorem C of 
[5]. However, it will be as easy to give a direct proof here as to prove that the 
requirements of the latter theorem are met. In fact we will prove a more 
general result, because the proof is the same. 

Let I=[(Y, /3] be a finite real interval. For each finite Ma0 define 
RBV(1, M) to be the set of all real functions E(x) such that 
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(a) E(x)=0 if x<cx, 
(b) E(x) is constant if x>fi, 
(c) E(x) is right-continuous for all x, and 
(d) the total variation of E is at most M. 

The next three lemmas are standard results. 

LEMMA 2.5. IfEERBV(Z, M) und jx’dE=O for euch r>O, then E(x) 

=O for cl11 x. 

LEMMA 2.6 (Helley-Bray theorem). Let E,, E,,. . . be a sequence in 

RBV(Z, M) which converges to some E ERBV(Z, M) at every x for which 

E(x) is continuous. Then jx’dE, -+jx’dE us i+ 00, for each r20. 

LEMMA 2.7 (Helley selection theorem). Let E,, E,, . . . be a sequence in 
RBV(1, M). Then thereexists EERBV(Z, M) andasubsequenceofE,, E,,... 

which converges to E at every x for which E(x) is continuous. 

THEOREM 2.8. LetE,,E,,... be a sequence in RBV( I, M ) such that, for 
euch r>O, jxTdEi-+prus i+ 00, where pO,pl,... urefiniteconstants. Then 
there exists a unique function EERBV(Z, M) such that lxrdE=p, for each 

r 2 0. Furthermore Ei( x) + E( x ) wherever E( x ) is continuous. 

Proof. By the preceding lemmas, there is a unique function EE 

RBV(Z, M) such that every infinite subsequence of E,, E,, . . . contains a 
subsequence which converges to E wherever E(x) is continuous. Now sup 
pose that E,, E,, . . . does not converge to E at some point x where E(x) is 
continuous. Then there exists e>O and a subsequence E,,, E,,, , . . such that 
)E,)(x)-E(x)J>& for all i. Thus E,,(x), E,,(x),... does not cdntain a subse- 
quence which converges to E(x), providing a contradiction. n 

Proof of Theorem 2.4. The functions F(X,, x) satisfy the requirements of 
Theorem 2.8 with M= 1. Furthermore, they are all nondecreasing, which 

proves that the limit F(x) is nondecreasing. W 

3. DERIVATIONS OF F(x) 

Our first task will be to derive an asymptotic expression for e(r). 

LEMMA 3.1. 8(2s)- 
4"v(v-l)"+' 

s(v-2yfi 
USS-FOO. 
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Proof We need three elementary results: 

(9) 1-(1-x)” Gmx if mZ1, OGx=Gl. 

(10) 5 izip = 
1-z”(mH-mz) ~ 1 

(1-z)2 
- if O=Gx<l. 

i=l (1-z)2 

(11) (m21”1 j-s as m+ca. 

Assume s > 1 and define z= l/( o - 1). The second formula of Lemma 2.1 
can be written as 

(32s) = 
v(v-l)“_’ S 2s 

2(-j 
isi-1 

s 
i=l 

s i 

= 
v(v-l)“_’ 2s 

S 
( ji 

s-l i iz” -E(S) , 
i=l 1 

where 

E(S)= f: [l-(syi j/( sT1 j]i-” 

i=l 

=i~~[l-(sr:j/(:‘:j]~~i-l 

=iiI [l-(7; j/q ;‘; j]izip+j+l [1-( 11: j/q i”‘; jp 

for l&k<s. Now 

and 

1-(;J/( ;f; j<l-[I-$pJ]*’ if lGci=Gk 

~ 2(k- 1)” 
s+k-1 ’ by (9). 
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Therefore 

209 

s=ipl 

i=k+l 

sz 
k 

.~ - 
+ I_=’ by (10). 

Now let s-) co while holding k= [s~/~]. Both terms on the right approach 
zero. Hence E(S) + 0 as s + cc. Therefore 

9(2s) - 
u(u-l)s-l 2s 

( i f: 
izi-l 

s s-l i=l 

4”v( 0- l)“+’ 

s(v-2)2v% ’ 
by (10) and (11). n 

LEMMA~.~. Definew=sup{Jx(IO<F(x)<l}. Then w=ZJv-1. 

Proof. For any ~30, /x2s+2dF<a2/x2SdF, 
Therefore 

by the definition of o. 

lim sup 
/ 

x2s+2 dF 
<02. 

s--t 30 J X2sdF 

Choose (Y and /3 such that O<(Y<~<W. Then 

and 
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since l-F(P)+F(-P)>O. Thus 

/ 
x~‘+~ dF 

lim inf zp2. 
s+m 

/ 
x2”dF 

Allowing fi to approach w, we find that o2 =lim,,, 8(2s+2)/0(2s). Hence 

0=2- by Lemma 3.1. n 

LEMMA 3.3. F(x) is continuous at x= +a. 

Proof Define 8=F(-a)-F(-o-O)+F(w)-F(w-0). Then 0(2s)a 
wzS 6 =4”( u - 1)” S, by Lemma 3.2. Comparison with Lemma 3.1 shows that 

6=0. 4 

Lemmas 3.2 and 3.3 together permit us to replace jxTdF by /E, x’dF. In 
fact it will be convenient to replace the interval [-w, w] by [ - 1, 11. To 
accomplish this, define G( x)x F( ox). Thus 

(12) J 
1 

x’dG= e(r> for each ~20. 
-1 Wr 

We will now seek a solution of (12) such that the derivative g(x) = G’( x ) 
exists for - 1 <x< 1. Under this assumption, (12) can be replaced by 

(13) / 

1 O(r) 
x’g(x)dx=- for each r>O. 

-1 W’ 

The Tchebysheff polynomials T,(X), T,(X), . . . , are defined by T,(cos 0)~ 
cos no. The properties which we shall require are recalled in the next lemma. 
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LEMMA 3.4. 

(a) Zfn>O then 

1 Tlw”mb) dxz 1 z if nfm, 

(b) I_, d_ 
if n=m=O, 

r/2 if n=m#O. 

We now define 1z(x)=g(x)J1-x” and suppose that for - ltxt 1 we 
can expand 

h(x)= 2 aiT( 
i=O 

Then Lemma 3.4(b) gives 

a, = - 9 j_llw)d*)~~ if n>O. 

If n is odd, T,,(x) only contains odd powers of x, and so (Y,, =O. Now 
suppose n = 2m > 0. 

By Lemma 3.4(a), 
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where 

By direct calculation, &, = $ and pl= - 4. If ta2, 

P, = 
m(27?-2t+ 1) f 

t(t-1) ~~(-l)ki:)(2?~~t~~-1~ 

n1(2111-2t+1) 2m_t_l 

t(t-1) ( i 2rU-t+1 ’ 

Therefore 

=O. 

by the Vandermonde convolution [ 61 

v-2 

7r( u- 1y* . 

Thus we can expand 

m T27Jx) 
&(x)=1-(v-2) c ~ 

,,,=I (v-l),’ 

=l-(G-2) 

I 

(u-1)(2x”-1)-l 

I (“-1)2-2(v-1)(2X~-l)+1 ’ 

which gives 

2u(o-l)Ji7 

g(x)= a[+4(v-1)x2]. 



EXPECTED EIGENVALUE DISTRIBUTION OF GRAPHS 

Recalling that g(x)=oF’(wx), we find that for -w<x<o, 

dz 

f(x) 

v=2 2 I.3 

j.2 

2 

=3 

v=4 

v=5 

v=10 kil 
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 

213 

FIG. 1. Limiting eigenvalue densities for various O. 
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Proof of Theorem 1.1. The function F(x) we have obtained satisfies the 
requirements that G(x) be differentiable for - 1 <z< 1 and that g(x) have a 
convergent expansion in terms of Tchebysheff polynomials. Since it is also 
continuous, Theorem 1.1 follows from Theorem 2.4. n 

Figure 1 illustrates the shape of the probability density function f(x) for 
various values of O. As o becomes very large, the shape approaches that of an 

ellipse. 

4. RANDOM LABELED REGULAR GRAPHS 

Fix ~22. Let nl <n, <n, < . . . be the sequence of possible orders of 
regular graphs with degree v. For each i define Ri to be the set of all labeled 
regular graphs with degree v and order ni. For each real x, define F,(x) to be 
the average value of F( X, x ), where the average is taken over all X ER,. We 
can think of Fi( x) as giving the expected eigenvalue distribution of a random 
labelled regular graph with degree v and order ni. 

The following lemma appears in [7]. 

LEMMA 4.1. For euch k>3 define ck, i to be the averuge number of 

k-cycles in the members of Ri. Then for each k, c~,~ -(v- l)k/2k as i+ CO. 

THEOREM 4.2. For every x, F,(x)+ F(x) as id CO), where F(x) is the 

function defined in Theorem 1.1. 

Proof. Consider the graph Y, consisting of the disjoint union of all 
members of Ri. Then Fi( x) = F( Y,, x ). Consequently, the theorem follows 

from Lemma 4.1 and Theorem 1.1. n 

A stronger version of Lemma 4.1 [4] can be used to improve on theorem 
4.2. 

THEOREM 4.3. For each i choose Xi ER, at random. Then, with prohahil- 

ity one, F(X,, x)-+F(x). 

Finally, we show that a precise bound can be given on the deviation of 
F(X, x) from F(x) in terms of the degree and the girth. 
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THEOREM 4.4. Let X be a regular graph with degree v and girth r. Then, 

for every x, 

JF(X,x)--F(x)l< 2,4;1:,-,; . 

Proof, From Equations 3.2, 3.6, and 3.12 of Chapter XVI of [2] we find 
that, for any T>O, 

where I$( z) and y(z) are the characteristic functions of F(x) and F(X, x) 
respectively, and rn is an upper bound on ]F’(.x)l for all x. From Theorem 1.1, 
we can take m=w/2rv. Furthermore, the power-series expansions of +(z) 
and y(z) agree up to the terms involving z’-l. Therefore, 

Performing the integration, we obtain 

and inserting the value of T for which this bound is smallest, we find 

since v>3 and ra3. n 

The problem was introduced to me by B. E. Eichinger and J. E. Martin, 
who also suggested the use of moments for its solution. An error in an early 
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version of Lemma 2.1 was pointed out by R. G. Cowell. Finally, C. D. Godsil 

has suggested that Theorem 1.1 might be proved more easily using the existing 

statistical theory of random walks. See, for example, pp. 108-109 of [3]. 
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