EXTENDING THE SUPPORT IN THE 1-LEVEL DENSITY FOR FAMILIES
OF DIRICHLET CHARACTERS

STEVEN J. MILLER

ABSTRACT. We study the distribution of the zeros near the central point for following
families of primitive Dirichlet characters:

(1) all primitive characters of conductet, m a fixed prime;

(2) all primitive characters of conductoen, m an odd square-free number with

factors ( fixed);

(3) all primitive characters whose conductor is a square-free odd integefN, 2N].
For these families thé-level densities agree with the Unitary Group for even Schwartz
functions¢ with supp(%) C (—2,2). We investigate the consequences of conjectures
about the modulus dependence in the error terms in the distribution of primes in con-
gruence classes. We show how some natural conjectures implylével densities
agree with Unitary matrices for arbitrary support. Further, we show how some weaker
conjectures still give an improvement over2, 2), allowing support up tq—4,4).
These are very rough notes.

1. INTRODUCTION

Assuming GRH, the non-trivial zeros of any ni€efunction lie on its critical line,
and therefore it is possible to investigate the statistics of its normalized zeros. Let
F be a family of L-functions, andF, the subset with analytic conductofé (or at
most V). For example, we can study-functions arising from Dirichlet characters
[Ru, HR], families of elliptic curves [Mil, Yo], weight level N cuspidal newforms
[ILS, Ro, HM], L-functions attached to quadratic fields [FI] and symmetric powers of
GL, automorphic representations [GU] to name a few. Katz and Sarnak [KS1, KS2]
have conjectured that the behavior of zeros near the central peint in a family of
L-functions (as the conductors tend to infinity) agrees with the behavior of eigenvalues
nearl of a classical compact group (unitary, symplectic, or some flavor of orthogonal).
Let ¢ be an even Schwartz test functionl&rwhose Fourier transform

= / Z d(z)e 2w gy (1.1)

has compact support. L&y be a (finite) family ofL-functions satisfying GRH. The
1-level density associated 1By is defined by

log ¢
Dy ry(¢ IfN\ > Z¢( i o)) (1.2)
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Where§ + w}(f) runs through the non-trivial zeros @f(s, f). Herec; is the “analytic
conductor” of f, and gives the natural scale for the low zeros.As Schwartz, only
low-lying zeros (i.e., zeros within a distanee @ of the central point = 1) con-
tribute significantly. Thus thé-level density can help identify the symmetry type of the
family.

Based in part on the function-field analysis whéteF) is the monodromy group
associated to the familf, it is conjectured that for each reasonable irreducible family
of L-functions there is an associated symmetry grGig) (one of the following five:
unitaryU, symplectic USp, orthogonal O, SO(even), SO(odd)), and that the distribution
of critical zeros neaé— mirrors the distribution of eigenvalues ndarThe five groups
have distinguishablé-level densities.

To evaluate (1.2), one applies the explicit formula, converting sums over zeros to
sums over primes. By [KS1], thelevel densities for the classical compact groups are

Wl,SO(even{x) = K (557 x)

Wl,SO(oddi-T) = Kfl(l’, .%) -+ (S(LL’)

Wl,o(x) = %WI,SO(evenix) + %WI,SO(oddﬂx)
Wiu(z) = Ky(z, )

Wi usp(z) = K (z,x)

whereK (y) = %, K (z,y) = K(x —y) +eK(x +vy)fore =0,+£1, andd(x) is the
Dirac delta functional. It is often more convenient to work with the Fourier transforms
of the densities:

Wisoeenft) = d(u)+51(u)
Wisopda(u) = d(u) —31(u) +1
/I/KL()(U) = 5(U) + %
Wi(u) = 0(u)

Wiusp(u) = 0(u) — 51(u),

wherel(u) is the characteristic function 61, 1.

We study families of Dirichlet characters below. Hughes and Rudnick [HR] show that
for the family of primitive characters with prime conductor, théevel density agrees
with Unitary matrices for test functions with Supp(q/g) € [—2,2]. Our goal is to show
how reasonable conjectures allow us to increase the support. In this regard our work is
similar to [ILS], where they show that if a classical exponential sum over primes has
some cancellation, then thelevel density of weight: level 1 cusp forms (split by sign)
agrees with the corresponding orthogonal groupstamp(¢) C (—2, 2). For us, the
corresponding quantities involve the modulus dependence in the error terms in primes
in residue classes, and relates how natural conjectures on the distributions of primes
can be used to provide further support for the density conjectures. We sketch two cases

below.
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Let g either be prime or range over primes|[id, 2N]|. Let

Yla) = > An)
Y(r,q,0) = Y An)

n<x
n=a mod q

E(z,q,a) = vY(z,q,a)— 1;2;) (1.3)
If we assume GRH, we have (we could replaseith powers oflog below) that
Y(z) = x+O0(*)
vaga) = 20wk @)
o(q)
E(z,q,a) = O(a:% - (2q)). (1.4)

Probabilistic arguments suggest thatz, ¢, ) should be much smaller. Expect-
ing square-root cancellation, we hayé;) residue classes. NOEZ; E(x,q,a) =
O(z=7). If the error of sizer2*< is spread among thesgq) classes equally, we ex-

pect each)(zx, q,a) to be of size% with errors of size, /7= - (zq); see [Monl]. It

is by gaining some savings inin the errorE(x, ¢, a) that we can increase the support
for families of Dirichlet L-functions. Explicitly, consider the following weaker version
of Montgomery’s Conjecture:

Conjecture 1.1. There is & < [0, ) such that forg prime
0 z €
E(z,q,1) < ¢+ —q~(ﬂfQ)- (1.5)

Conjecture 1.1 implies

Theorem 1.2. Assume Conjecture 1.1 holds. Then tHevel density agrees with Uni-
tary matrices for any test function of finite support.

Consider the total variance

2
T

M ) (1.6)

V(z,q) = Z ’w(w,q,a)—

(a,q)=1

dividing by @ would give the average variance.
Goldston and Vaughan [GV] have shown that under GRH,

Z V(z,q) = QulogQ — cx@Q + O (QQ(m/Q)%E + x%(log Zx)%(log log 3:B)2> :
q<Q
(1.7)
We shall only use such results whers prime. As each term is non-negative, this yields
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Theorem 1.3(Goldston-Vaughan)For ¢ prime, assuming GRH we have
ZV<I>Q) < Ql’]OgQ—l—Q%xi‘H +ZE%+E (18)

9<Q

Note we subtrac% and notigg)) in the definition ofV(x, ¢), though assuming

RH and(Q >> z* either gives the same results in terms of increasing the support (the
calculation is straightforward; see Lemma A.1 for details).

If eachE(x, ¢, a) were of size, /% - (zq)¢, we would expect

V(z,q) ~ x-(2q) (1.9)
and

Y Viz,g) ~ Q- (2Q)". (1.10)
9<Q
In fact, Hooley has conjectured that (1.9) holds for some unspecified randespiac-
ing e with logarithms), and we shall show later that such a result also leads to improving
the support of the test function.
Instead of conjecturing bounds on individua{u, m, a) we consider the relation of
E(u,m, 1) to the total variance.

Conjecture 1.4. There exists & € [0, 1] such that for primen € [N, 2N] with N? <
u << N2,

2N 2N m

1
E E(u,m,1)? <« NY. — E E E(u,m,a)?. 1.11
m=N ( ) N m=N a=1 ( ) ( )

m prime m prime (a,m)=1

Conjecture 1.4 is trivially true fo# = 1, and while it is unlikely to be true for
0 = 0, it is reasonable to expect it to hold fé6r= ¢ (for anye > 0). What we
need is some control over biases of primes congruentitmd m. For the residue
classa mod m, E(u,m,a)? is the variance; the above conjecture can be interpreted as
boundingE(u, m, 1)? in terms of the average variance. Interestingly= 1 recovers
the 1-level density result of support if-2,2). ADD REMARKS THAT ENOUGH
TO HAVE THE ERRORS OF QUADRATIC RESIDUES OF THE SAME MAG-
NITUDE. BY [RubSa]WE KNOW THE QUAD RES AND NON-RES BEHAVE
DIFFERENTLY MOST OF THE TIME.... From Conjecture 1.4 and the results of
Goldston and Vaughan we have

Theorem 1.5. Let F be the family of primitive characters with prime conductorc
[N,2N]. Thel-level density fotFy holds for test functions whose Fourier transforms
are supported if—4 + 26,4 — 20).

In 82 we quickly review the proof that thelevel density for primitive Dirichlet
characters with prime conductor agrees with Unitary matrices for test functions sup-
ported in(—2, 2); in Appendices B and C we show how to extend these results to odd
square-freen and then all odd square-free numberg/\1 2N]. In 83 we show how
the above (and other) conjectures on modulus dependence on the errors of primes in
residue classes lead to increasing the support of the test functions, as well as comment-
ing in what sense Conjecture 1.4 is weaker than Conjecture 1.1.
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2. DIRICHLET CHARACTERS FROM APRIME CONDUCTOR

2.1. Review of Dirichlet Characters. If m is prime, thenZ/mZ)* is cyclic of order
m — 1 with generatorg (so any element is of the formgf for somea). Let(,, , =
e?m/(m=1)_ The principal charactey, is given by

_J1 if(kym) =1
xolk) = {0 if (k,m) > 1. @D

Each of then — 2 primitive characters are determined (because they are multiplica-
tive) once their action on a generatpis specified. As eack : (Z/mZ)* — C*, for
eachy there exists ah such thaty(g) = ¢, _,. Hence for eacth, 1 <1 < m — 2 we
have

la if &K= ¢* modm
k) = ¢ >m b 2.2
xi(k) {0 if (k,m)> 0. (22)
Let x be a primitive character moduta. Set
Z X 27rzk/m (23)

c(m,x) is a Gauss sum of modulqg%. The associated-function and its analytic
continuation are given by

L(s,x) = JJ0—=xmp )™

p
A(s,x) = m2ttor (S e

2

> m2 I L(s, ), (2.4)

where

[0 ifx(-1) =1
T N1 i) =1

Mo = A - s 25
Let ¢ be an even Schwartz function with compact support, say contained in the in-

terval (—o, o), and lety be a non-trivial primitive Dirichlet character of conducter
The explicit formula (see [RS] for a proof) gives

ST .

- ep 5( 8D )[x(p)+Y(p)]p‘5

log(m/m)” \Tog(m/m)
lo ~ lo 2 =2 -1
- Z log(iz;ﬁ) ¢ <210g(§1];7r)) X)X (P)lp
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where we are assuming GRH to write the zero§ asiv, v € R. Sometimes it is more
convenient to normalize the zeros not by the logarithm of the analytic conductor but
rather by something that is the same to first order. Explicitlyyfiog [N, 2N] we have

log(X _ log(m/m)
qu ( > ~ log(N/m) / oy
Z Tog( ep @Aﬁ ( 8D ) [x(p) +X(p)]p~

D=

g(N/m) \log(N/7)
p3 ol 5 (2 ) W)+
(logl N) 5 (2.7)
for any subset of [V 2N] we have
W\ Z ii %Z =1+0 (bglN) : 2.8)

Considerf,,, the family of primitive characters modulo a prime There aren — 2
elements in this family, given bfy; }1<;<m—2. As eachy; is primitive, we may use the
Explicit Formula. To determine thelevel density we must evaluate

/ Z d(y)dy — Z Z 10;0511;7r ¢ (10;(()7%1];%)) X(p) + X(p)lp2
logp -~ log p 5 . L
I — ;0 Zp: og(m/m) " (210g(m /ﬂ) [X*(p) + X" (p)Ip
+ 0 (log:;[m> ' (2.9)

Definition 2.1 (First and Second Sums)Ve call the two sums above the First Sum and
the Second Sum (respectively), denoting thersi by:) and Sy (m).

The Density Conjecture states that the family average should converge to the Unitary

Density:
/_ o(y)dy. (2.10)

We prove this for$ with suitable support, and show how various natural conjectures
allow us to increase the support.

2.2. The First Sum. We must analyze (fom prime)

Sim) = L S G () ) 4w @)
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Since
m—1 ifk=1modm
k) = 2.12
ZX:X( ) {0 otherwise. ( )
we have for any prime # m
m—2 ifp=1modm
= 2.13
Z x(p) {—1 otherwise. ( )
XFX0
Let
1 ifp=1modm
Om(p,1) = . 2.14
(P, 1) {O otherwise. ( )

The contribution to the sum from = m is zero; if instead we substitutel for
>y X(m), our error isO <—m> and hence negligible.

1

log
We now calculateS,; (m), suppressing the errors ¢f (@) ¢ will be an even
Schwartz function with support ift-o, o).

Sim) = o Y st (s ) ) + ol

X#X0 P
_ 1 logp ~( logp !
T om—2% log(m/m) (10g(m/7r)> X;O[X(p) Xy
_ 2 logp ~( logp BT
B m—2zlog(m/7r)¢ <log(m/7r)>p (=1+( 1)om(p, 1))

p

2 logp -~ log p _1
~ m2 S logm/n) ()
camoy (e,
< %Zpé + i P2
< %;k—é + Z k3

N

1 1 1 _1
< E;k 4 EZ/{Z 2
1

< —m/2 (2.15)

Note that we must be careful with the estimates of the second sum. Each residue
class ofk modm has approximately the same sum, with the difference between two
classes bounded by the first term of whichever class has the smallest element. Since we
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are dropping the first terrtk = 1), the class ok = 1(m) has the smallest sum of the
m classes. Hence if we add all the classes and divide bye increase the sum, so the
above arguments are valid.

HenceS;(m) = Lm?/2 + 0O ( ) implying that there is no contribution from the
first sumifo < 2.

Remark 2.2. By a more careful analysis, in [HR] it is shown we may take 2.
2.3. The Second Sum.We must analyze (fom prime)

x#x . log m/7r log(m/w)

If p==£1(m) thend_ . [x*(p) +X°(p)] = 2(m — 2). Otherwise, fix a generatgr
and writep = g”(m). Asp # +1, a # 0, 2! mod (m — 1), as(Z/mZ)* is cyclic of
orderm—1. Hence*™¢/(m=1) - 1 Recall(,,_; = >/ (m=1) Lety = emie/(m=1) oL 1,

m—2

s = > W p)+Xi(p

=1

=<
S

=

o

= - = -2, (2.17)

l—2z 1—2z!
The contribution to the sum from = m is zero; if instead we substitute2 for
D vixo X (m), our error isO ( ) and hence negligible.
Therefore
— 2(m —2) p==+1(m)
2 2 .
> D) + X)) = { Lo psti(m) (2.18)
Let
1 if p=+1modm

2.19
0 otherwise ( )
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UptoO (@) we find that

sm = 5 Y a5 (2l ) ) +
B log p 3 logp 2 —2 1
- —QZIOg m/ﬂ' ( log(m/ﬂ'));o[x (p)+X (p)}p

p==+1(m
0/2 0/2 ‘7/2
SN SR DR
k=1(m) k=—1(m)
k>m+41 k>m—1
1 mo/2 meo/2
1 m?/?) P+ =Y k140
< - og Z + Z +
lo lo lo 1
< a< s, o8l gm+—>. (2.20)
m m m m

ThereforeSy;(m) = O(alOgm) so for all fixed, finites there is no contribution.
2.4. Density Function from a Prime Conductor.

Theorem 2.3(DensAity Function from a Prime Conductot)etgg be an even Schwartz
function with supfy) C (—2,2), m a prime, and?,, = {x : x is primitive modm}.
Then assuming GRH we have

LX) [ (s

Xefm'yL( +iv,x)=0

) . (2.21)

Note the above theorem can trivially be modified to handle the family
Fn = {x: xis primitive with conductorn for some primen € [N,2N]}. (2.22)

It is possible to handle larger families (eitheris square-free and tending to infinity,

or m is square-free and inV, 2N] with N — o0); see Appendices B and C for details.
This theorem was also proved by Hughes and Rudnick [HR], where they show we may
takeo < 2. We shall use this fact whenever needed below.

In the arguments below, where we try to extend the support, it is often useful to
havem € [N,2N], as then we only need bounds to hold on average. There does not
appear to be any gain by extending our family to include squarerfredhe reason
for this is that the cardinality of the two families, namely (1) primitive characters with
prime conductor iV, 2N] and (2) primitive characters with square-free conductor in
[N, 2N], have approximately the same cardinality. The reason is that there are about
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logN primes in[N, 2N], so the families’ cardinalities differ only by powers log N .

Thus, in general if we are unable to obtain sufficient cancellation whisrestricted to

prime values, we will not obtain the needed cancellation over square-free (as the prime
m’s are too large a subset).

3. NATURAL CONJECTURES TOEXTEND THE SUPPORT

Trivial estimation of prime sums yield thielevel density for families of Dirichlef.-
functions for supp%) C (—2,2). We discuss some natural (we hope!) conjectures for
the distribution of primes in residue classes, and how these would allow us to increase
the support. Specifically, consider estimates of errors for the distribution of primes in
residue classes. Assuming GRH (and other reasonable), how are the errors or excesses
split among the various classes? Specifically, what is the modulus dependence on aver-
age?

3.1. Sums to Investigate.We state the sums that we must bound. Again the families
we shall investigate are either prime and tending to infinity or
Fn = {x: xis primitive with conductorn for some primen € [N,2N]}. (3.1)

It is straightforward to extend many of our results to this second family. By (2.20) we
see that the second sum (the sum over the squares of primes) is always negligible for
any finite support. In fact, as long as= o ( ) these terms will not contribute.

The difficulty arises from the first sum (the sum over primes). By (2.15) we have

log p A logp _1
= 2(—1 -1 1
s = 5 X 6 (o ) 1 (= Dol 1),
(3.2)
where
1 ifp=1modm
om(p, 1) = _ 3.3
(1) {O otherwise. (3:3)
It is natural to analyze (3.2) by partial summation. kqrime let
ap, = (=14 (m—1)0,(n,1))logn
B 1 ~ logn 1
) = oty Gtgr) &4
seta, = 0if nis not prime and4,,,(z) = }_, ., a,. Then
2 m? . 1

By our previous arguments, there is no contribution from this teren<f 2. Thus for
o > 1 it suffices to study

Si(m) = % A ()R (w)du + o(1). (3.6)

If needed, by [HR] we may replace the lower bound:oby m?2.
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Note 7’ (u) < u~2. What is the true size of,,(u)? Asm is prime,¢(m) = m — 1
and

Am(w) = > [=1+ ¢(m)dm(p,1)]logp
= o(m)| D, logp- Zlogp . (3.7)
Let
Bu(w) = é(m) | 3 A(n)—@ZA(n) | (3.8)

n=1 mod m

We want to showA,, (u) — B,,(u)| is small. Clearly the contributions t8,,(«) from
n = p” for v > 3 are bounded by (m)us log u. Ther = 2 terms contribute

¢(m) | Y logp— W > logp| = An(vu). (3.9)
o= PV
Thus
Bm(u) — An(u) = Am(v/) + O(mus logu). (3.10)
Repeating this argument gives
Bin(Vut) = An(v1) = An(Vau) + O(mus logu). (3.11)

As trivially A,,(z) < = we have

| B (1) — A (u)| < [Bim(Vu) — A (V)] +muilogu < B (V) + mus log u.

(3.12)
Assuming GRH, by (1.4) we hav,, () = ¢(m)E(z,m,1) = O(mzx= - (xm)<). Thus
the error fromB,,,(1/u) may be absorbed by the other error, giving

Ap(u) = Bp(u)+ O (mu% log u) : (3.13)
Thus (3.6) becomes
Si(m) = B (u)h (u)du + O ( / mus logu - u_gdu) +o(1)
m—2 m m J,,
_ / w)du + O(m™+¢) + o(1). (3.14)

Therefore to increase the support for théevel density for the family of Dirichlet
characters with prime conductor we need a good bound f@#,, (u).
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3.2. Bounds from Montgomery’s Conjecture. We now explore various bounds for
(3.14). NoteB,,(u) = ¢(m)E(u, m, 1). Probabilistic arguments (along the lines of the

central limit theorem; see [Mon1]) lead to the conjectiier, ¢, a) < |, Fok (zq)°.
Assuming such a bound gives

1 m? U%Jre _3
Si(m) < —/ d(m)—— -u" 2du+ o(1)
m Jm m2"°¢

o

< m_é“/ u du + o(1)

m

< moTE 4 o(1), (3.15)

and this iso(1) for fixed o ande sufficiently small.
Of course, we only need such a bound do= 1. We consider weaker versions of
Montgomery’s conjecture. Explicitly, recall Conjecture 1.1:

Conjecture 1.1: There is & € [0, %) such that forg prime

E(z,q,1) < ¢ - (zq)°. (3.16)

o
¢(q)
Conjecture 1.1 implies Theorem 1.2:

Proof of Theorem 1.2As B,,,(u) = ¢(m)E(u, m, 1), substituting the bound fdt' (u, m, 1)
from Conjecture 1.1 in (3.14) yields

Si(m) < m/ o(m Jrﬁ-u_%du—i—o(l)

< A / utdu + o(1)
< mo G0 4 o(1), (3.17)

Aslong a9 < % by choosing sufficiently small the above ig(1) for any fixeds. O

The above is amazing. Assuming GRH we hale, m, 1) < u2 (um)<. This bound
just fails, givingS; (m) < m1+9). Any power savings inn (log” m savings would
suffice for A sufficiently large) in boundind’(u, m, 1) leads to arbitrarily large support!

Remark 3.1. The consequence of Montgomery’s original conjecture extending the
range of support has been independently observed by others as well. See for exam-
ple [Sar]. Below we try and explore the consequences of weaker conjectures.

Let us consider the famil§,, where we consider all primitive characters with prime
conductorm € [N,2N]. The sum over primes (the first sum) is now just

2N

1
S = — S1(m). 3.18
il mZ (m) (3.18)

m prime
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There arer(2N) — 7(N) = 2=+ o0 ( N ) primes in[V, 2N], and for each prime:

T log N log N
we havep(m) = m — 2 primitive characters. Thus
2 2
— 3.19
log N < vl < log N’ (3.19)

we will divide by |Fy| instead ofn —2 as this is the cardinality of the family. Summing
(3.14) over the familyFy now gives

9 2N me

S = o Z/ Bon(w)H (u)du + o1): (3.20)

m=N m
m prime

Using B,,(u) = ¢(m)E(u, m, 1) yields

9 (2N)° 2N
S = W/N Z d(m)E(u,m, 1) | h'(u)du+o(1).  (3.21)

m prime

ADD REMARK THAT CAN EXTEND INTEGRATION TO THESE BOUNDS.

Remark 3.2. We need to be a little careful as the above equation is slightly wrong.
Technicallyh/(u) has somen dependence. We have

h(u) = log(:ﬂ/ﬁ)a(logh()f;/LWQu

Plw) = 1og<;/7r> [5’<10g1?fj;ﬁ))bg(;/ﬁ)%(b;’%)]u"
(3.22)

As m varies fromN to 2NV, there are oscillations of sizlggl—N in A'(u). There are two
solutions. If we are not interested in exploiting cancellation in sign inAbe, m, 1),

then all is fine. If we do want to try and use the sigréis, m, 1), instead of normaliz-

ing the zeros of.(s, x) (wherey is a conductor with prime character) by % we

should instead us&X2™ This leads to trivial modifications in the explicit formula

(see (2.7)). The reason such a change in scaling is tractable is that the conductors are
monotone increasing; see [Mil] for more on handling oscillation in conductors. In all
arguments below we assume these corrections have been made (if needed).

N

W

The following conjecture is an average version of Montgomery’s:

Conjecture 3.3. There exists & € [0, 1) such that for alle andu with N < u < N°

2N
3 G(m)E(u,m,1) < N".NZ,/% (uN)® < N*G=0-9ys+e (3.23)
m=N

m prime

The above is weaker as we have the potential for some cancellation because we have
signed errors; however, it is possible there may be no variation in sign (see Rubinstein
and Sarnak’s work on Chebyshev’s Bias [RubSa]). We immediately obtain
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-~

Theorem 3.4.Assuming Conjecture 3.3, there is no contribution fi®nfior supp(¢) C
(_07 U)'

Proof. From (3.19), (3.21), and Conjecture 3.3 we have

log N [&N)°

e N2=G=0=yate =3 qy + o(1)
N

S <

. (2N)°
< NG 9]og N/ u du + o(1)
N

1

< NG99 N“Jog N + o(1). (3.24)
As long ad) < 1 the above i9(1). O

Conjecture 3.3 is very plausible. Here we are summsiggedquantities, and only re-
quire slight cancellation in the modulus aspect. Consider the terms on the left hand side
of (3.23). By GRH, each is at mosfuz (uN)<. Hence their sum is at moa2+yz+.
The existence of & € [0, %) implies there is a small power savings in this signed sum,
and this is enough to obtain unlimited support (if we assume the conjecture holds for
all o). Itis also now possible that a small number of moduli have a large contribution;
for instance, for any) < 1 there can beéV” choices ofin € [N, 2N] such that

E(u,m,1) < N%”% (uN)* < Neuz*e (3.25)

Thus the sum of these terms (weighteddgyn)) is < NUtnteyste Aslong asl + 7+
e < 2, these terms will not contribute.

Is it reasonable to expect there to be oscillation in the sign&(af m, 1), or do
we expect these terms to have the same signs? Nist@lways a quadratic residue,
so perhaps by the arguments in [RubSa] we should expect that most of the time these
are the same sign. Below we investigate conjectures where we do not try to exploit
cancellation by sign.

3.3. Conjectures for Distribution Among Residue ClassesWe now investigate some
weaker conjectures. These will not yield unlimited support but have the advantage of
incorporating known results as well as allowing some biases among the residue classes.

We use the results of [HR] to replag"ga with fnT; Recall Conjecture 1.4:

Conjecture 1.4: There exists & € [0, 1] such that for primen € [N, 2N] with N? <

2N 2N m
1
2 0 2
;N B(u,m,1)? < N e mEN ;1 E(u,m,a)’. (3.26)

m prime m prime (a,m)=1

Note the right hand side of (3.26) %’ (V (u,2N) — V (u, N)). Conjecture 1.4 and
Goldston-Vaughan’s result imply Theorem 1.5:
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Theorem 1.5: Let Fy be the family of primitive characters with prime conductor
m € [N,2N]. Thel-level density fotFy holds for test functions whose Fourier trans-
forms are supported if—4 + 26,4 — 20).

Conjecture 1.4 is trivially true fo# = 1, and while it is unlikely to be true for
0 = 0, it is reasonable to expect it to hold fér= ¢ (for anye > 0). What we need
is some control over biases of primes to be congruentied m. For the residue
classa mod m, E(u, m, a)? is the variance; the above conjecture can be interpreted as
boundingE(u, m, 1)? in terms of the average variance. Interestingly= 1 recovers
the 1-level density result of support if+-2, 2).

Bounds such as these are useful as, by using the Cauchy-Schwartz inequality, the
variance E(u, m, 1)? surfaces in investigating thée-level density sums. If we can
express the variancg(u, m,1)? in terms of the average variance, the bounds from
Goldston-Vaughan are applicable. There is also the possibility of using higher moment
bounds and Holder’s Inequality instead of Cauchy-Schwartz (see [Va]); unfortunately,
Vaughan's results only hold for “close” tou. Explicitly, uite < m < u. To obtain
better support thaf-2, 2), we need: > /m.

The question is: for what is the above conjecture “reasonable”™? Can we glean a
reasonable value fat from the arguments in say [RubSa], or from probabilistic argu-
ments on random primes (where with probability one we know RH is true for a random
sequence of primes — what is known there about error terms in congruence classes, and
how that depends on the modulus)?

One could probably work with all square-freeand not just primen in the Dirichlet
L-function’s densities; however, as the variances are positive, if bounds like this do not
hold form restricted to prime values, they will not hold for square-free (because we
are going for more than a logarithm savings).

Proof of Theorem 1.5lt suffices to show (3.21) is negligible for < 4 — 26. We shall
only do the case when the second part of Conjecture 1.4 holds. We must therefore study

Sp o= ‘]__N’/ d(m)E(u,m, 1)k (u) | du+o(1).  (3.27)

m prime

Using Cauchy-Schwartz and Conjecture 1.4 we have

> d(m)E(u,m, A (u)| < > dmpw(w)? | > BE(u,m,1)?

m prime m prime m prime

< N2W(u)]- Z Z (u,m,a)?

m=N a=1
m prime (a,m)=1

< Ni|W(u)|- N1V (u,2N) = V(u, N)).
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Using Goldston-Vaughan’s bounds (Theorem 1.3) yields

2N

N7 bm)E(u,m, DI (u)| < NYER(u)] - /V(u,2N) = V(u, N)

m=N
m prime

< N'Yi. \/NuloquLNguiJre +uste
< [l NG N (),

(3.29)
Recallh/(u) < u~3 andlog N < N°. We have ¢ changes from line to line)
(2N)°
S < loﬁ—i\f [N%“*%u% + NEFayste 4 Nng%“} w2 du+ o(1)
N2
1,06 (2]\[)” 1 %) (QN)U 11
< N_2+2+6/ utdu + N_16+2+“/ u” s Tdu
N2 N2
[’ (2N)U 3
+ N~1tate / u” 1 du + o(1)
N2
< N—%—&-g—&-e _{_N—%G—&-%—&-E(N?)—%—i—e _{_N—l—f—g—i-e(Na)i—&-e +0(1)
<< N_l—g-}-e + N 13— 89+6 _|_ N4(o__(4 29)) _|_ 0(1) (3 30)
The first term is negligible wheé < 1, the second term wheh < 13 and the third
wheno < 4 — 20. Therefore, as long as< 1 we may take any < 4 — 20 0

Remark 3.5. The reason Conjecture 1.4 only allows us to go uprtec 4 — 20 is
because of thé)(:ﬁ“) error in Theorem 1.3. Assume we could replace that error with

O(z'+7F) for somen € [0, 1]. Then we would replace?t with uzt3+<. This piece
would now give

(2]\7)‘7
— Q _ n no
N 1+z+6/ wHItedy <« NTMsteN T e
N

2

< NGF9o-(-gta), (3.31)
Thus there is no contribution for
1-2¢
o< 2T (3.32)
3 T €
or for 5_ g
o< —. (3.33)

n
If we could taken arbitrarily close to) then we would have unlimited support. Note

thatd = 1 andn = 1/2 (both of which are valid choices) recovers< 2.
Remark 3.6. For N? < u < N¢, we discuss in what sense Conjecture 1.4,

2N

Z E(u,m,1)*> < N". N Z Z (u,m,a)?, ne€l0,1) (3.34)

m=N
m prime

m prime (a, m)
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is weaker than Conjecture 1.1,

T 0. i xa)€ 1
E(z,q,1) < ¢ ,/qﬁ(q) (zq), 0 € [0,2), (3.35)

we could use Conjecture 3.3 instead of Conjecture 1.1, but we would obtain similar
results. The two conjectures are essentially equivalentfeuch thatV? < v <
N*=21, with ¢ + 3 playing the role of).

If each E(u, m, 1) < m® zuz (um)*, then

2N
> Bu,m,1) < Nzt (3.36)
m=N

m prime

Using Theorem 1.3, Conjecture 1.4 and Cauchy-Schwartz gives

2N 2N 2N
S Ewm1) < | Y Bwm?| | 30
m:N m:N m:N
m prime m prime m prime
2
2N m
1
< N Z Z E(u,m,a)* | - N2

1
< (N”’l (NHEU 4+ Nsteyi 4 u%“)) ‘N2
<« N2t (N% + Niy~¢ —l—ui) uz
< Niteyr. u%, (3.37)
because ag > N?, the dominant termis the last. The two conjectures provide identical
bounds for the sum of intereX;,, E(u, m, 1), whenN? < u < N*4=21=4" (with §+1
equivalent tol — 7).

While we expect the variance sum to be of sive - N<, the best bounds (Theorem
1.3) have an error of size: <. This bound is larger than what we expect the truth to
be foruz > N; however, it is exactly such a range that we need to investigate, and
whenw is so much larger tha, results are harder to obtain. If the error were such
that Nu - N€ was always the main term, then we would regain Conjecture 1.1 (actually
Conjecture 3.3). Thus Conjecture 1.4 is basically the average version of Montgomery’s
conjecture when is restricted toN? <« u < N*~2—*"; however, as we are using

Goldston and Vaughan's results on the variance, we feel this does provide some support
for Montgomery’s conjecture.

3.4. Analogue of Theorem 1.5 forF,,.

Conjecture 3.7. There exists & < [0, 1] such that for all primem (or at least a
sequence of primes tending to infinity)pit < © < m*=% then
1 m
E(u,m,1)? <« m? - —— Z E(u,m,a)’. (3.38)

(m)

(a,m)=1
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For the above conjecture to imply an analogue of Theorem 1.5 for the fafyjly
(primitive characters with prime conducter), we need an analogue of Theorem 1.3
where we do not sum over. Hooley has conjectured that (1.9), namely

V(r,q) ~ x-(2q)", (3.39)

holds for some unspecified range @ftelative toxz. In [Ho] he shows (1.9) is true
for almost allg € [%,Q] with z(logz)™* < @ < z, and under GRH the range may
be extended ta:s+e < @) < z. This range was extended further by Friedlander and
Goldston [FG] torite < Q@ < z. If we assume that we can find a sequence of primes
m such that (1.9) holds for all with m? < u < m?, then we can prove the analogue
of Theorem 1.5 fotF,,. From (3.14) and recalling tha,,(u) = ¢(m)E(u, m,1) we
have

o

1 m 3
Sim) < o [ om)|B(wm D] tdu+ o)
o [ (e "
2d 1
< m /. Z (u,m,a)* | w 2du+ o(1)
(a,m)
< (me_lu(um)e)% u”Edu + o(1)

< mg_éJ“/ u”'du + o(1)

< mr 2t 4 o(1). (3.40)

As long a9 < 1, S1(m) is negligible.

We do not need the full strength of 3.7. As Hooley’s conjecture (and results towards
it) hold with log x andlog ¢ instead ofz¢ and ¢, we may replacen’ by s for
C sufficiently large. While Hooley’'s conjecture gives arbitrarily large support, it is
important to note that the difficulty in the proof of Theorem 1.5 was in the error terms
in Goldston-Vaughan's bound (Theorem 1.3). Thus we should be careful about our
assumptions on the error terms in Hooley’s conjecture wheés much smaller than.

APPENDIXA. ALTERNATE FORM OF THE GOLDSTON-VAUGHAN BOUND
Lemma A.1. Let

q 2
(=1
Assume RH. Then fa@p > 22
> Wir.q) < QulogQ +Qizt™ a7 (A2)

q<Q

where the sum is over prime
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Proof. We have

Wz, = Y, ¢($7q,a)—ig))

(a4> 1

= Z Y(z,q,a) — z 4 _l(i(l’)

a=1
(a,q)=1

d x| pit2e
< 3 Z w(:v,q,a)—@ +0(¢(q)). (A.3)
Summing over prime g(g_glives
(;%W(x,q) < (IZ;?V(x,q) 1+26q;2 e (A.4)

the proof is completed by using Goldston and Vaughan’'s bound for the slirwof).
Note we used GRH to give — ¢(z) = O(z27), and thenzq<Q 5 KlogQasgis
prime. AsQ > 2%, we may replace! "2 with Q. O

APPENDIXB. DIRICHLET CHARACTERS FROM ASQUARE-FREENUMBER

Fix anr and letm,, ..., m, be distinct odd primes. Let
m = MiMa - M,
My = (mi—1)(mz—1)---(m, — 1) = d(m)
My = (my—2)(mgy—2)---(m, —2). (B.1)

M, is the number of primitive characters med each of conductom. For each; €
[1,m; — 2] we have the primitive character discussed in the previous segtionA
general primitive character mod is given by a product of these characters:

x(u) = xi, (w)xi, (u) - xa, (w) (B.2)

LetF = {x : x = xux - X1, }- Then|F| = M,, and we are led to investigating
the following sums:

log p A log p 1 -
o Z log(m/) (lOg(m/w)) P X;[X(P) +X(p)l
% = 35 Z 10;0512;7r ¢ (2 10;51%)) P KPP +X(p)]  (B.3)

XEF
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B.1. The First Sum (m Square-free). We must studﬂxef x(p) (the sum withy is
handled similarly). In the previous section we showed

mi;—2 .
. m; —1—1 if p=1modm;
_ = B.4
Z v, () {—1 otherwise. (B.4)
Define
1 if p=1modm;
Om, (p, 1) = _ B.5
(p,1) {0 otherwise. (B.5)
Then
mi—2 my—2
doxtp) = DD @)
XEF =1 =1
ro om;—2
=1 [;=1
= -1+ (mi = 1)6m,(p, 1)). (B.6)

Let us denote by(s) an s-tuple(ky, ko, . .., ks) with &y < ko < --- < k,. This is just
asubset of 1,2,...,r}. There ar&" possible choices fok(s). We will use these to
expand the above product. Define

Or(s)(p, 1 Hamk p.1). (B.7)

If s =0 we defined, o (p, 1) = 1 for all p. Then

s S

[I(=1+ (m = D)6, (p1 Z Z )0k (P, ) [ [(me = 1) (BB

=1 s=0 k(s i=1

Leth(p) = 228 )$< logp )<<!|<;§\|.Then

log(m/m log(m/x)

S1o= Z%h(l?)p_l !
= Y hpp:

[x(p) +X(»)]

S

)840 (0, 1) [[ma, — 1)

s=0 k(s i=1

< Zp z— 1+225ks)p, Hmki—l) . (B.9)

2 slk;( =1

Observing thatn /M, < 3" we see the = 0 sum contributes

Sio==3 p 2 < 3m, (B.10)
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hence negligible fos < 2. Now we study

S1xs) =3, 1o - 1) Zp 04(s) (D, 1) (B.11)

The effect of the factoby,(p, 1) is to restrict the summation to primes= 1(my,)

for k; € k(s). The sum WI|| increase if instead of summing over primes satisfying
the congruences we sum over all numbersatisfying the congruences (with >

1+ [I;_, ms). But now that the sum is over integers and not primes, we can use basic
uniformity properties of integers to bound it. We are summing integersJmiod m;,,,

so summing over integers satisfying these congruences is basically]justrny,) !

S T = Hle(mki)*lm%". We can do this as the sum of the reciprocals from the
residue classes §f;_, my, differ by at most their first term. Throwing out the first term
of the classl + [];_, my, makes it have the smallest sum of thg_, my, classes, so
adding all the classes and dividing bJ;_, m,, increases the sum.

Hence (recallingn/M, < 3")
1 S S
St < A H(mk - 1) H(mki)_lm%”
2 i=1

< 3'm27 (B.12)

Thereforeys the S ;) contribute3"mz2°~!. There ar@" choices, yielding

1

S < 6"m27"1, (B.13)

which is negligible asn goes to infinity for fixed r ifc < 2. We cannot let- go to
infinity in the arguments above becauseiis the product of the first primes, then for
r large,

logm = ilogp

Zlogp ~ T

p<r

N 67" ~ mlogﬁ ~ m1.79‘ (814)

B.2. The Second Sum:{x Square-free). We must study - _ x%(p) (the sum withy
is handled similarly). In the previous section we showed

m;—2 .
: m; —1—1 if p==+1modm;
= B.15
; atl { 1 otherwise. (B.15)
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Then
mip—2 my—2
) = > - th - xi.(p)
xEF l1=1

rom;—

- I3 o
i=1 [;=1

= JI(-1+ (mi = 1éu,(p. 1) + (mi = )b, (p, ~1)).  (B.16)

i=1
We now show the Second Sum is negligible forall Instead of havin@” terms
we have3”. Let k(s) be as before, and lgts) be an s-tuple oft1s. Ass ranges
from 0 to  we get each of tha" possibilities, as for a fixed, there are(”) choices
for k(s), each of these having' choices forj(s). But .7 _2°(;) = (1 +2)". Let

h(p) = 2. Jeer 25(2 logp ><<||$|].Define

log(m/m) log(m/m)
k(o) (P2 (s H% P, ji)- (B.17)
Then s
>_X'(p) ZZZ )"0y (P () [ [(me = 1) (B.18)
XEF 5=0 k(s) j(s) i=1
Therefore
lng A logp 1 5 L
S =
’ Z log(m /) ( 1og(m_/7r)) p XZG;[X (p) +X"(p)]
ST Zh )33 S 1 b ) [T — 1)
? 5=0 k(s) j(s) i=1
<MZZZZW%n>Hmﬁn
2 p  s=0 Kk(s) j(s) i=1
- Z Z Z S2,5(s),(s)- (B.19)
s=0 k(s) j(s)
The term where = 0 is handled easily (recath /M, < 37):
1
S200 = 31 Z gy BT (B.20)

We would like to handle the terms f@r;é 0 analogously as before. The congruences
onp from k(s) andj(s) force us to sum only over certain primes mpf_, m,, with
each prime satisfying > my, £ 1. We increase the sum by summing over all integers
satisfying these congruences. As each congruence clasq fhqdn,, has basically
the same sum, we can bound our sum over primes satisfying the congrééncess)

o

by [Ty (m) ™ 202 n ™t = Ty ()~ log m”.
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There is one slight problem with this argument. Before each prime was congruent to
1 mod each primen,,, hence the first prime occurred no earlier that &t [;_, mx,.

Now, however, some primes are congruent-tomodm,,, some to—1, and it is possi-
ble the first such prime occurs befdrg _, my,.

For example, say the prime is congruentitb mod 11, and—1 mod 3,5,17. We
want the prime to be greater than5-11-17, but3-5-17 — 1 is congruent te-1 mod
3,5,17 and+1 mod11. (Fortunately it equals 254, which is composite).

So, for each paifk(s), j(s)) we handle all but the possibly first prime as we did in
the First Sum case. We now need an estimate on the possible error for low primes.
Fortunately, there is at most one for each pair, and as our sum Z3;1,6\15/&';1can expect
cancellation if it is large.

Fix now a pair (remember there are at m8stpairs). As we never specified the
order of the primes;, without loss of generality (basically, for notational convenience)
we may assume that our primeis congruent to+1 mod my, - - - my,, and—1 mod

Mipgyyy = * M, -

The contribution to the second sum from the possible low prime in this pair is
11y

—— - —1). B.21

1, p 1L =1 (8.21)

How small carp be? Thet1 congruences imply that= 1(my, - - - my,), SOp is at least
my, - --my, + 1. Similarly the—1 congruences imply is at leastmy,,,, - - - my, — 1.
Since the product of these two lower bounds is greater ffian (m;, — 1), at least one

must be greater thaf{ [}_, (my, — 1))%. Therefore the contribution to the second sum
from the possible low prime in this pair is bounded by (remembgk/, < 37)

1
1 ® 2 m% 1
— Ilm.—l < — < 3'm” 2. B.22

Combining this with the estimate for the primes larger th§n, (m, — 1) yields

3
Sak(srit) € 3'mE + -~ logm?, (B.23)
yielding (as there arg’ pairs)
ZZZSM o <9Ime. (B.24)
5=0 k(s) j(s)
B.3. Density Function in the Square-free case.

Theorem B.1(Density Function for Square-free m.)et$ be an even Schwartz function
with supge) C (—2,2). Fixanr > 1. LetF,, = {x : x is primitive modn }, wherem
is a square-free odd integer. Then assuming GRH we have

LEE () o

M XEFm v:L( % +i7v,x)=0

m) . (B.25)

We note for future reference the following bounds on the First and Second sums:
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Lemma B.2. Let m be a square-free odd integer with= r(m) factors. Letm =
[I;_; m; and My = T]._,(m; — 2). Consider the familyF,,, of primitive characters
modm. There areM, such characters, and the First and Second sums satisfy the

following bounds:
S) <« —2'm3°

Sy < —3"ma. (B.26)

APPENDIXC. DIRICHLET CHARACTERS FROMSQUARE-FREE NUMBERS

We now generalize the results of the previous section to consider the famibyf all
primitive characters whose conductor is an odd square-free integ€r 2iV]. Some of
the bounds below can be improved, but as the improvements do not increase the range
of convergence, they will only be sketched.

First we calculate the number of primitive characters arising from odd square-free
numbersn € [N, 2N]. Letn = nyny - --n,.. Thenn contributegn; — 2) - -- (n, — 2)
characters. On average we might expect this to be (up to a conataat)d as a positive
percent of numbers are square-free, we might expect theredd beharacters.

Instead we prove there are at leaét/log® N primitive characters in the family.
There are at least/log? N + 1 primes in the interval. For each prime(except
possibly the first) we have— 2 > N. Hence there are at least- —— = N2?log™? N

log? N —
primitive characters. Let/ = |F|. Then

_ 1 log? N
M > N?log™® N — < = C.1
> N?log = 75w (C.1)

We recall the results from the previous section. Fix an odd square-free number
[N, 2N], and sayn hasr = r(m) factors. Before we divided the First and Second sums
by My = (m; — 2)--- (m, — 2), as this was the number of primitive characters in our
family. Now we divide by) . Hence the contribution to the First and Second sum from
thism is

1

1
Sl,m < _2r(m)m§cr

M
1
Som < M?f(m)m%. (C.2)
Note that2" ™ = 7(m), the number of divisors af.. While it is possible to prove
ZTl(n) < z(logz)* ! (C.3)

n<z
the crude bound
7(n) < c(en’ (C.4)



EXTENDING THE SUPPORT FOR FAMILIES OF DIRICHLET CHARACTERS 25

yields the same region of convergence. Ngit€” < 72(m). Therefore the contribu-
tions to the first sum is majorized by

2N

Sl == Z Sl,m

m=N
m square—free

< Z_Qrm
< ! 5ZN:
M

Ly
N1+6
< M 7c(e)
log? N
N2
< c(e)N27t 1 og? N. (C.5)

Foro < 2, choosinge < 1 — %a yields S; goes to zero a8’ tends to infinity. ForS;
we have

<

N2%¢(e) Nt

2N

S = > Sm

m=N
m squarefree

2N —
< ZM?’ m?

2N
< Vi
log2 N
N2
< c(e)N*21og? N, (C.6)
which converges to zero dé tends to infinity for allo. Hence we have proved

< cle) Nz N2

Theorem C.1 (Dirichlet Characters from Square-free Numbeisg@t 75 denote the
family of primitive Dirichlet characters arising from odd square-free numbersc
[N,2N]. Denote the conductor gof by c( ). ThenVo < 2

—Z 3 d)(vbg ) /¢ g+ O)- (©7)

XevaL( +i7,x)=0
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