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LOW-LYING ZEROS OF L-FUNCTIONS AND
RANDOM MATRIX THEORY

MICHAEL RUBINSTEIN

Abstract
By looking at the average behavior (n-level density) of the low-lying zeros of cer-
tain families of L-functions, we find evidence, as predicted by function field analogs,
in favor of a spectral interpretation of the nontrivial zeros in terms of the classical
compact groups.

1. Introduction
In this paper, a connection is made between the low-lying zeros ofL-functions and
the eigenvalues of large matrices from the classical compact groups. The Langlands
program (see [2], [10], [7]) predicts that allL-functions can be written as products of
ζ(s) andL-functions attached to automorphic cuspidal representations of GLM over
Q. Such anL-function is given intially (for<s sufficiently large) as an Euler product
of the form

L(s, π) =

∏
p

L(s, πp) =

∏
p

M∏
j =1

(1 − απ (p, j )p−s)−1. (1.1)

Basic properties of suchL-functions are described in [15]. The L-functions that arise
in the m = 1 case are the Riemann zeta-functionζ(s) and Dirichlet L-functions
L(s, χ), χ a primitive character. Form = 2, theL-functions in question are associated
to cusp forms or Maass forms of congruence subgroups of SL2(Z).

The Riemann hypothesis (RH) forL(s, π) asserts that the nontrivial zeros of
L(s, π), {1/2 + i γπ } all haveγπ ∈ R. (Our L-functions are always normalized so
that the critical line is through<s = 1/2.)

A vague suggestion of G. Pólya and D. Hilbert suggests an approach that one
might take in establishing RH. They hypothesized (forζ(s)) that one might be able to
associate the nontrivial zeros ofζ to the eigenvalues of some operator acting on some
Hilbert space, thus (depending on the properties of the operator) forcing the zeros to
lie on a line.
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The first evidence in favor of this approach was obtained by H. Montgomery [9],
who derived (under certain restrictions) the pair correlation of the zeros ofζ(s). To-
gether with an observation of Freeman Dyson, who pointed out that the Gaussian
Unitary Ensemble (GUE), consisting ofN × N random Hermitian matrices (see [8]
for a more precise definition), has the same pair correlation (asN → ∞), it seems
to suggest that the relevant operator, at least forζ(s), might be Hermitian. Extensive
computations of A. Odlyzko [11], [12] further seem to bolster the Hermitian nature of
the zeros ofζ(s), as might the work of Z. Rudnick and P. Sarnak [15], where, under
certain restrictions, then-level correlations ofζ(s) and L(s, π) are found to be the
same as those of the GUE.

However, recent developments suggest that, rather than being Hermitian, the rel-
evant operators forL-functions belong to the classical compact groups. (This is con-
sistent with the above work of Montgomery, Odlyzko, and Rudnick and Sarnak since
all the classical compact groups have the samen-level correlations as the GUE (as
N → ∞).) First, analogs with function field zeta-functions, where there is a spectral
interpretation of the zeros in terms of Frobenius on cohomology, point towards the
classical compact groups (see [6]). Second, even though all the mentioned families of
matrices have the samen-level correlations, there is another statistic, calledn-level
density, which is sensitive to the particular family. By looking at this statistic for zeros
of L-functions, one finds the fingerprints of the classical compact groups. Forn = 1
this was done, for quadratic twists ofζ(s), and with certain restrictions, by A.̈Ozlük
and C. Snyder [13]. A stronger result (which takes into account certain nondiagonal
contributions and allows one to choose test functions whose Fourier transform is sup-
ported in(−2/M, 2/M)) which applies forζ(s) as well as allL(s, π) was obtained
by N. Katz and Sarnak [6]. The general case,n ≥ 1, is worked out (again, with some
restrictions) in this paper.

2. n-level density
For an (N × N)-matrix A in one of the classical compact groups, write its eigenvalues
asλ j = ei θ j , with

0 ≤ θ1 ≤ · · · ≤ θN < 2π. (2.1)

Assume thatf : Rn
→ R is bounded, Borel measurable, and compactly sup-

ported. Then, letting

H (n)(A, f ) =

∑
1≤ j1,..., jn≤N

distinct

f
(
θ j1 N/(2π), . . . , θ jn N/(2π)

)
,

Katz and Sarnak [5, Appendix] obtain the following family dependent result:

lim
N→∞

∫
G(N)

H (n)(A, f ) d A =

∫
Rn

≥0

W(n)
G (x) f (x) dx (2.2)
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for the following families:

G W(n)
G

U(N),Uκ(N) det
(
K0(x j , xk)

)
1≤ j ≤n
1≤k≤n

USp(N) det
(
K−1(x j , xk)

)
1≤ j ≤n
1≤k≤n

SO(2N), O−(2N + 1) det
(
K1(x j , xk)

)
1≤ j ≤n
1≤k≤n

SO(2N + 1), O−(2N) det
(
K−1(x j , xk)

)
1≤ j ≤n
1≤k≤n

+
∑n

ν=1 δ(xν) det
(
K−1(x j , xk)

)
1≤ j 6=ν≤n
1≤k 6=ν≤n

with

Kε(x, y) =
sin(π(x − y))

π(x − y)
+ ε

sin(π(x + y))

π(x + y)
.

In the above,d A is the Haar measure onG(N) (normalized so that
∫

G(N)
d A = 1),

and

Uκ(N) =
{

A ∈ U(N) : detκ(A) = 1
}
,

SO(N) = {A ∈ O(N) : detA = 1} ,

O−(N) = {A ∈ O(N) : detA = −1} .

The delta functions in the SO(2N + 1), O−(2N) case are accounted for by the eigen-
valueλ1 = 1. (Notice, for O(N), thatλ = 1 is an eigenvalue ifN is even and detA =

−1 (i.e., A ∈ O−(2N)) or if N is odd and detA = 1 (i.e., if A ∈ SO(2N + 1).)
Removing this zero from (2.2) would yield the sameW(n)

G as for USp. For ease of

notation, we refer to the thirdW(n)
G above (i.e., det

(
K1(x j , xk)

)
) as the scaling den-

sity of O+ and the fourthW(n)
G as the scaling density of O−. (We use this notation

because the former comes from orthogonal matrices with even functional equations
p(z) = zN p(1/z), while the latter comes from orthogonal matrices with odd func-
tional equationsp(z) = −zN p(1/z).)

One could also form a similar statistic for the eigenvalues of the GUE (where we
would normalize the eigenvalues according to the Wigner semicircle law), and one
could obtain the same answer (asN → ∞) as for U(N).

The functionW(n)
G (x) is called then-level scaling density of the groupG(N),

and its nonuniversality can be used to detect which group lies behind which family of
L-functions.

Notice that the normalization byN/(2π) is such that the mean spacing is 1 and
that only the low-lying eigenvalues (those withθ ≤ c/N for some constantc) con-
tribute toH (n)(A, f ). So, (2.2) measures how the low-lying eigenvalues of matrices
in G(N) fall near the point 1 (asN → ∞).
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3. Results
In this section, we consider the analog of (2.2) for the zeros of families ofL-functions.
One looks at the average behavior of the low-lying nontrivial zeros (i.e., those close
to the real axis) of a family ofL-functions hoping to find evidence (as predicted by
functional field analogs (see [6])) in favor of a spectral interpretation in terms of the
classical compact groups.

Indeed, if we take quadratic twists ofζ(s), {L(s, χd)}, as our family of L-
functions, whereχd(n) =

(d
n

)
is Kronecker’s symbol and we restrict ourselves to

primitive χd, we find evidence of a USp(∞) symmetry. This is Theorem3.1.
More generally, we take a self-contragredient automorphic cuspidal representa-

tion of GLM over Q, π = π̃ , that is, one whoseL-function has real coefficients,
απ (p, j ) ∈ R, and we look at the family of quadratic twists,{L(s, π ⊗ χd)}. The
low-lying zeros of this family behave as if they are coming either from USp(∞)

or from O±(∞). (Here the± is to indicate that we need to consider separately the
L(s, π ⊗χd)’s with even (resp., odd) functional equations.) We describe this result in
Theorem3.2. It confirms the connection to the classical compact groups, and it gives
an answer that cannot be confused with the corresponding statistic for the GUE.

Numerical experiments that further support the connection to classical compact
groups are described in the author’s thesis [14] and in Katz and Sarnak [6].

3.1. Main theorem
Write the nontrivial zeros ofL(s, χd) as

1/2 + i γ ( j )
d , j = ±1, ±2, . . . ,

where
0 ≤ <γ

(1)
d ≤ <γ

(2)
d ≤ <γ

(3)
d . . .

and
γ

(− j )
d = −γ

( j )
d . (3.4)

Hereχd(n) =
(d

n

)
is Kronecker’s symbol, and we restrict ourselves to primitiveχd.

Let D denote the set of suchd’s, and letD(X) = {d ∈ D : X/2 ≤ |d| < X}.
Notice that we arenot assuming the Riemann hypothesis forL(s, χd) since we

allow that theγ ( j )
d ’s be complex.

THEOREM 3.1
Let

f (x1, x2, . . . , xn) =

n∏
i =1

fi (xi ), (3.5)
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where each fi is even and in S(R) (i.e., smooth and rapidly decreasing). Assume
further that f̂ (u1, . . . , un) =

∏n
i =1 f̂i (ui ) is supported in

∑n
i =1 |ui | < 1, where

f̂ (u)
def
=

∫
Rn

f (x)e2π i x ·u dx. (3.6)

Then

lim
X→∞

1

|D(X)|

∑
d∈D(X)

∑
j1,..., jn

∗

f
(

Lγ
( j1)
d , Lγ

( j2)
d , . . . , Lγ

( jn)
d

)
=

∫
Rn

f (x)W(n)
USp(x) dx, (3.7)

where

L =
log X

2π
,

W(n)
USp(x1, . . . , xn) = det

(
K−1(x j , xk)

)
1≤ j ≤n
1≤k≤n

,

K−1(x, y) =
sin(π(x − y))

π(x − y)
−

sin(π(x + y))

π(x + y)
,

and where
∑

∗

j1,..., jn is over jk = ±1, ±2, . . ., with jk1 6= ± jk2 if k1 6= k2.

Plan.We first use the explicit formula to study the l.h.s. (left-hand side) of (3.7), and
we end up expressing it in terms of thêfi ’s. Parseval’s formula is then applied to the
r.h.s. (right-hand side) of (3.7), and terms are matched with the l.h.s.

Remark.The conditionfi even is not essential to the proof, nor is the assumption that
f be of the form

∏
fi . At the expense of more cumbersome writing, these can be

removed.

3.2. l.h.s.
By (3.4), (3.5), and sincefi (−x) = fi (x),

1

|D(X)|

∑
d∈D(X)

∑
j1,..., jn

∗

f
(

Lγ
( j1)
d , Lγ

( j2)
d , . . . , Lγ

( jn)
d

)
=

2n

|D(X)|

∑
d∈D(X)

∑
j1,..., jn
positive

and
distinct

f̃d( j1, . . . , jn), (3.8)

where

f̃d( j1, . . . , jn) =

n∏
i =1

fi
(

Lγ
( ji )
d

)
. (3.9)
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In order to apply the explicit formula to (3.8), we need to circumvent the fact that the
ji ’s are distinct. By combinatorial sieving, as in [15, p. 305], the r.h.s. of (3.8) is

2n

|D(X)|

∑
d∈D(X)

∑
F

(−1)n−ν(F)

ν(F)∏
`=1

(|F`| − 1)!

wF ,

where F ranges over all ways of decomposing{1, 2, . . . , n} into disjoint subsets
[F1, . . . , Fν ], and where

wF =

∑
j1,..., jν
positive

f̃d(`F ( j1, . . . , jν)).

Here`F : Rν
→ Rn, `F (x1, . . . , xν) = (y1, . . . , yn) with yi = x j if i ∈ F`.

For example, forn = 3, the possibleF ’s are[{1, 2, 3}], [{1, 2} , {3}], [{1, 3} , {2}],
[{2, 3} , {1}], [{1} , {2} , {3}], and`[{1,3},{2}](x1, x2) = (x1, x2, x1).

Thus, (3.8) is

2n

|D(X)|

∑
d∈D(X)

∑
F

(−1)n−ν(F)

ν(F)∏
`=1

(|F`| − 1)!

 ∑
j1,..., jν(F)

positive

f̃d(`F ( j1, . . . , jν(F))),

which, by (3.9), equals

2n

|D(X)|

∑
d∈D(X)

∑
F

(−1)n−ν(F)

2ν(F)

ν(F)∏
`=1

(|F`| − 1)!
∑
γd

∏
i ∈F`

fi (Lγd)

 . (3.10)

In the innermost sum, we are going over allγ
( j )
d (instead of j > 0) and hence the

presence of the 1/2ν(F). This is justified by (3.4) and because we are assuming that
the fi ’s are even.

Let
F`(x) =

∏
i ∈F`

fi (x). (3.11)

By the explicit formula (see [15, (2.16)], with, in the notation of that paper,h(r ) =

F`(Lr ), g(y) = (1/ log X)F̂`(−y/ log X)),∑
γd

F`

(
Lγ

( j )
d

)
=

∫
R

F`(x) dx + O(1/ log X)

−
2

log X

∞∑
m=1

3(m)

m1/2
χd(m)F̂`

(
logm

log X

)
. (3.12)
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(Note thatF̂`(x) is even since eachfi is even. We have also used the facts thatF`(x)

is rapidly decreasing and that0′(s)/0(s) = O(log |s|) to replace the0′/0-terms
in [15, (2.16)] by O(1/ log X). Note further thatF̂` is compactly supported (see
Claim 1).)

Plugging (3.12) into (3.10) (without theO(1/ log X)-term, a step that is justified
in Lemma2), we see, on multiplying out the product over` in (3.10), that (3.10) is

1

|D(X)|

∑
d∈D(X)

∑
F

(−2)n−ν(F)

ν(F)∏
`=1

(|F`| − 1)!(C` + D`),

where

C` =

∫
R

F`(x) dx,

D` = −
2

log X

∞∑
m=1

3(m)

m1/2
χd(m)F̂`

(
logm

log X

)
.

When we expand the product over`, we obtain 2ν(F) terms, each a product ofC`’s
andD`’s. A typical term can be written as∏

`∈Sc

C`

∏
`∈S

D`

for some subsetSof
{
1, 2, . . . , ν(F)

}
. (Empty products are taken to be 1.) The prod-

uct of theC`’s contributes to (3.10) a factor of∏
`∈Sc

∫
R

F`(x) dx.

The product of theD`’s equals(
−2

log X

)|S|∏
`∈S

∞∑
m=1

3(m)

m1/2
χd(m)F̂`

(
logm

log X

)
,

which, by Lemma1, contributes a factor of

∑
S2⊆S

|S2| even

(−1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du

∑
(A;B)

2|S2|/2
|S2|/2∏
j =1

∫
R

|u| F̂a j (u)F̂b j (u) du

 ,

from which we find that (3.10) (and hence (3.8)) tends, asX → ∞, to
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∑
F

(−2)n−ν(F)

ν(F)∏
`=1

(|F`| − 1)!

∑
S

(∏
`∈Sc

∫
R

F`(x) dx

)

·

∑
S2⊆S

|S2| even

(−1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du



·

∑
(A;B)

2|S2|/2
|S2|/2∏
j =1

∫
R

|u| F̂a j (u)F̂b j (u) du

 .

(3.13)

HereS ranges over all 2ν(F) subsets of
{
1, 2, . . . , ν(F)

}
, andSc denotes the comple-

ment ofS. The rest of the notation is as in Lemma1.

LEMMA 1
We have

lim
X→∞

1

|D(X)|

∑
d∈D(X)

(
−2

log X

)k k∏
j =1

·

∞∑
m=1

3(m)

m1/2
χd(m)F̂` j

(
logm

log X

)

=

∑
S2⊆S

|S2| even

(−1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du



·

∑
(A;B)

2|S2|/2
|S2|/2∏
j =1

∫
R

|u| F̂a j (u)F̂b j (u) du

 , (3.14)

where S= {l1, . . . , lk}.
∑

S2⊆S
|S2| even

is over all subsets S2 of S whose size is even.∑
(A;B) is over all ways of pairing up the elements of S2. F`(x) is defined in (3.11).

For example, ifS = {1, 2, 5, 7}, the possibleS2’s are∅, {1, 2}, {1, 5}, {1, 7}, {2, 5},
{2, 7}, {5, 7}, {1, 2, 5, 7}.

And if S2 = {1, 2, 5, 7}, then the possible(A; B)’s are(1, 2; 5, 7), (1, 2; 7, 5),
(1, 5; 2, 7). These correspond, respectively, to matching 1 with 5 and 2 with 7, 1 with
7 and 2 with 5, 1 with 2 and 5 with 7. Note that our notation is not unique. For
example,(1, 2; 5, 7) ≡ (7, 1; 2, 5).

Proof
Lemma1 is obtained in a sequence of claims.
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CLAIM 1
Suppose that

∏n
i =1 f̂i (ui ) is supported in

∑n
i =1 |ui | ≤ α. Then

∏k
j =1 F̂` j (u j ) is sup-

ported in
∑k

j =1

∣∣u j
∣∣ ≤ α.

Proof
By (3.11),

F̂`(u) =

∫
R

∏
i ∈F`

fi (x)e2π iux dx

=

∫
R|F`|

∏
i ∈F`

dxi fi (xi )

e
2π iu

∑
i ∈F`

xi /|F`|
|F`|∏
m=2

δ(xim − xi1)

=

∫
R|F`|

∏
i ∈F`

dvi f̂i (vi )

 δ

u −

∑
i ∈F`

vi

 , (3.15)

the last step following from Parseval’s formula. (Note: If|F`| = 1, then the product
overm is taken to be 1.) Hence,

k∏
j =1

F̂` j (u j ) =

∫
R
∑k

1

∣∣∣∣F` j

∣∣∣∣

 ∏
i ∈
⋃

F` j

dvi f̂i (vi )

 k∏
j =1

δ

u j −

∑
i ∈F` j

vi

 . (3.16)

In the integrand, theδ’s restrict us to

k∑
j =1

∣∣u j
∣∣ =

k∑
j =1

∣∣∣∣∣∣∣
∑

i ∈F` j

vi

∣∣∣∣∣∣∣ ≤

∑
i ∈
⋃

F` j

|vi | .

So, if
∑k

j =1

∣∣u j
∣∣ > α, then

∑
i ∈∪F` j

|vi | > α. But, by the support condition on∏n
i =1 f̂i (vi ),

∏
i ∈∪F` j

f̂i (vi ) = 0 if
∑

i ∈∪F` j
|vi | > α. Hence (3.16) is zero if∑k

j =1

∣∣u j
∣∣ > α; thus the claim is proved.
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CLAIM 2
Suppose that

∏n
i =1 f̂i (ui ) is supported in

∑n
i =1 |ui | ≤ α < 1. Then

lim
X→∞

1

|D(X)|

∑
d∈D(X)

(
−2

log X

)k ∑
mi ≥1

i =1,...,k
m1·...·mk 6=�

 k∏
j =1

3(m j )

m1/2
j

χd(m j )F̂` j

(
logm j

log X

)
= 0. (3.17)

Here we are summing over all k-tuples(m1, . . . , mk) of positive integers with∏k
1 mi /∈ {1, 4, 9, 16, . . .}, and S= {l1, . . . , lk}.

Remark.This claim tells us that the only contributions to (3.14) come from perfect
squares. (This is dealt with in Claim3.)

Proof
Changing the order of summation and applying Claim1 and the Cauchy-Schwarz
inequality, we find that the l.h.s. of (3.17) is

� lim
X→∞

1

|D(X)|

1

logk X


∑
mi ≥1∑

logmi ≤α log X
m1·...·mk 6=�

32(m1) · . . . · 32(mk)

m1 · . . . · mk


1/2

·


∑
mi ≥1∑

logmi ≤α log X
m1·...·mk 6=�

∣∣∣∣∣∣
∑

d∈D(X)

χd(m1 · . . . · mk)

∣∣∣∣∣∣
2


1/2

. (3.18)

The first bracketed term is less than ∑
m≤Xα

32(m)

m

k/2

� logk X. (3.19)

Next, the number of times we may writem = m1 · . . . ·mk, mi ≥ 1, is O
(
σ k−1

0 (m)
)

=

Oε (mε) for anyε > 0 (σ0(m) being the number of divisors ofm), so that the second
bracketed term is

�ε

Xε
∑

m≤Xα

∣∣∣∣∣∣
∑

d∈D(X)

χd(m)

∣∣∣∣∣∣
2


1/2

. (3.20)
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Applying the methods of M. Jutila [4], we find that the above is

�ε

(
Xε+1+α logA X

)1/2
for some constantA (A = 10 is admissable),

which, combined with (3.19), shows that (3.18) is

�ε lim
X→∞

1

|D(X)|
Xε+(1+α)/2,

But, for ε small enough, this limit equals zero (because|D(X)| ∼ cX for some
constantc, and we are assumingα < 1).

CLAIM 3
We have

lim
X→∞

1

|D(X)|

∑
d∈D(X)

(
−2

log X

)k ∑
mi ≥1

m1·...·mk=�

 k∏
j =1

3(m j )

m1/2
j

χd(m j )F̂` j

(
logm j

log X

)

=

∑
S2⊆S

|S2| even

(−1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du



·

∑
(A;B)

2|S2|/2
|S2|/2∏
j =1

∫
R

|u| F̂a j (u)F̂b j (u) du

 . (3.21)

Here we are summing over all k-tuples(m1, . . . , mk) of positive integers with∏k
1 mi ∈ {1, 4, 9, 16, . . .}.

Proof
First, the3(mi )’s restrict us to prime powers,mi = pei

i , so the only way that
∏k

1 mi

can equal a perfect square is if some of theei ’s are even, and the rest of thepei
i ’s

match up to produce squares.
We can focus our attention onei = 1 or 2 since the sum overei ≥ 3 contributes

zero asX → ∞.
Also, note, in (3.21), thatχd(

∏k
1 mi ) = 1 since

∏k
1 mi is restricted to perfect
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squares. Hence the l.h.s. of (3.21) is

lim
X→∞

∑
S2⊆S

|S2| even

∑
p`

`∈S2∏
`∈S2

p`=�

(
−2

log X

)|S2| ∏
i ∈S2

log(pi )

p1/2
i

F̂i

(
log pi

log X

)

·

∑
p`

`∈Sc
2

(
−2

log X

)|Sc
2| ∏

i ∈Sc
2

log(pi )

pi
F̂i

(
2 log pi

log X

)
.

(We have dropped the(1/ |D(X)|)
∑

d∈D(X) since the terms in the sum do not depend
on d.) The sum over̀ ∈ S2 corresponds to theè ’s that are equal to 1 (and that pair
up to produce squares), while the sum over` ∈ Sc

2 corresponds to theè ’s that are
equal to 2. To complete the proof of this claim and hence of Lemma1, we establish
the two subclaims below.

SUBCLAIM 3.1
We have

lim
X→∞

∑
p`

`∈Sc
2

(
−2

log X

)|Sc
2| ∏

i ∈Sc
2

log(pi )

pi
F̂i

(
2 log pi

log X

)

=

(
−1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du. (3.22)

Proof
The l.h.s. of (3.22) factors

∏
`∈Sc

2

(
−2

log X

∑
p

log(p)

p
F̂`

(
2 log p

log X

))
,

which, summing by parts, equals

∏
`∈Sc

2

2

log X

∫
∞

1

∑
p≤t

log(p)

p

(
F̂`

(
2 logt

log X

))′

dt.

The sum
∑

p≤t log(p)/p can be evaluated elementarily (see [3, p. 22]), and the above
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becomes ∏
`∈Sc

2

2

log X

∫
∞

1
(log t + O(1))

(
F̂`

(
2 logt

log X

))′

dt

=

∏
`∈Sc

2

(
−2

log X

∫
∞

1
F̂`

(
2 logt

log X

)
dt

t
+ O

(
1

log X

))
, (3.23)

the last step from integration by parts, and using the fact thatF̂ (1)
` (u) is supported in

|u| ≤ α. Changing variablesu = 2 logt/ log X and noting that all thêF`’s are even
(since all thefi ’s are), we thus find that the limit in (3.22) is(

−1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du.

SUBCLAIM 3.2
We have

lim
X→∞

∑
p`

`∈S2∏
`∈S2

p`=�

(
−2

log X

)|S2| ∏
i ∈S2

log(pi )

p1/2
i

F̂i

(
log pi

log X

)

=

∑
(A;B)

2|S2|/2
|S2|/2∏
j =1

∫
R

|u| F̂a j (u)F̂b j (u) du. (3.24)

Proof
In (3.24),

∏
`∈S2

p` = � implies that thep`’s pair up to produce squares. So, the l.h.s.
of (3.24) equals

lim
X→∞

∑
(A;B)

∑
pi

i =1,...,|S2|/2

|S2|/2∏
j =1

4

log2(X)

log2(p j )

p j
F̂a j

(
log p j

log X

)
F̂b j

(
log p j

log X

)
. (3.25)

The sum over(A; B) accounts for all ways of pairing up primes in (3.24). Note that
there is a bit of overlap produced in (3.25), but this overlap contributes zero asX →

∞. For example, ifS2 = {1, 2, 5, 7}, then the three ways of pairing upp1, p2, p5, p7

are:p1 = p5 andp2 = p7, p1 = p7 andp2 = p5, p1 = p2 andp5 = p7. So the sum
over p1 = p2 = p5 = p7 is counted three times in (3.25), whereas it is counted only
once in the l.h.s. of (3.24). Such diagonal sums do not bother us since there areOk(1)
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such sums, and a typicalp j1 = p j2 = · · · = p j2r , r ≥ 2, contributes to (3.25) a term
with a factor that is

� lim
X→∞

1

log2r X

∑
p

log2r p

pr
� lim

X→∞

1

log2r X
= 0.

Now, (3.25) can be written as

lim
X→∞

∑
(A;B)

|S2|/2∏
j =1

(
4

log2(X)

∑
p

log2(p)

p
F̂a j

(
log p

log X

)
F̂b j

(
log p

log X

))
.

Summing by parts, we find that the bracketed term is

4
∫

∞

0
uF̂a j (u)F̂b j (u) du + O (1/ log X) .

Recalling that theF̂ ’s are even, we obtain the subclaim.

We thus obtain Claim3 and Lemma1.

LEMMA 2
Let

a`(d) =

∑
γd

F`

(
Lγ

( j )
d

)
,

where F̀(x) =
∏

i ∈F`
fi (x), and fi is as in Theorem3.1. Then

lim
X→∞

1

|D(X)|

∑
d∈D(X)

ν(F)∏
`=1

a`(d)

= lim
X→∞

1

|D(X)|

∑
d∈D(X)

ν(F)∏
`=1

(a`(d) + O(1/ log X)) .

Remark.This lemma justifies dropping theO(1/ log X) when plugging
(3.12) into (3.10).

Proof
The proof is by induction. We consider

lim
X→∞

1

|D(X)|

∑
d∈D(X)

k∏
`=1

(a`(d) + O(1/ log X)) (3.26)
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for k = 1, 2, . . . , ν(F). Whenk = 1, this clearly equals

lim
X→∞

1

|D(X)|

∑
d∈D(X)

a`(d).

Now, consider the general case. Multiplying out the product in (3.26), we get

lim
X→∞

1

|D(X)|

∑
d∈D(X)

k∏
`=1

a`(d) + remainder,

where the remainder consists of 2k
− 1 terms, each of which is of the form

O

 1

logr (X)

1

|D(X)|

∑
d∈D(X)

k2∏
j =1

∣∣a` j (d)
∣∣ (3.27)

with r ≥ 1, k2 < k. Now, if F`(x) ≥ 0 for all x, then
∣∣a` j (d)

∣∣ = a` j (d), and, by
our inductive hypothesis combined with Lemma1, theO-term above tends to zero as
X → ∞.

If F`(x) is not greater than or equal to zero for allx, we can show that theO-
term in (3.27) tends to zero asX → ∞ by replacing eachfi (x) (i = 1, . . . , n) with a
functiongi (x), which is positive and bigger in absolute value thanfi (x), and which
satisfies the conditions of Theorem3.1; that is, we require that
• gi (x) ≥ | fi (x)|,
• gi (x) be even and inS(R),
•

∏n
i =1 ĝi (ui ) be supported in

∑n
i =1 |ui | < 1.

That there existgi ’s satisfying the required conditions can be seen as follows. Let

h(t) =

{
K exp(−1/(1 − t2)), |t | < 1,

0, |t | ≥ 1,

whereK is chosen so that ∫ 1

−1
h(t) dt = 1,

let

θβ(t) =
1

β
h(t/β) (3.28)

(so thatθβ approximates theδ-function whenβ is small), and consider

9β(x) = (θβ ∗ θβ)ˆ(x) = (θ̂β(x))2. (3.29)
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Now

θ̂β(x) =
1

β

∫ β

−β

h(t/β) cos(2πxt) dt

=

∫ 1

−1
h(u) cos(2πβux) du. (3.30)

But when|x| ≤ 1/(8β), we have

θ̂β(x) >

√
2

2

∫ 1

−1
h(u) du =

√
2

2

(since, when|x| ≤ 1/(8β), |u| ≤ 1, we get,|2πβux| ≤ π/4). Hence

9β(x) > 1/2 when|x| ≤ 1/(8β)

(so 9β is bounded away from zero for long stretches whenβ is small), and,
from (3.29),

9β(x) ≥ 0 for all x.

Also, note that9β is even and inS(R) (sinceh(t) enjoys these properties), and note
that 9̂β(t) = (θβ ∗ θβ)(t) is supported in[−2β, 2β]. We use9β(x)’s to construct a
gi (x) satisfying the three required properties.

Let
M f (c, d) = max

c≤|x|≤d
| f (x)| ,

and let

β−1
j =

{
2n + j, j ≥ 1,

0, j = 0.

(The j = 0 case is only for notational convenience.) Then

gi (x) = 2
∞∑
j =0

M fi

(
(8β j )

−1, (8β j +1)
−1
)

9β j +1(x)

has the required properties.

3.3. r.h.s.
Our goal is to express ∫

Rn
f (x)W(n)

USp(x) dx

in a manner that allows us to easily see how to match terms with (3.13).
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We consider the more general∫
Rn

f (x)Wε(x) dx, (3.31)

whereε ∈ {−1, 1} and

Wε(x1, . . . , xn) = det
(
Kε(x j , xk)

)
1≤ j ≤n
1≤k≤n

,

Kε(x, y) =
sin(π(x − y))

π(x − y)
+ ε

sin(π(x + y))

π(x + y)

because it is needed when we study analogous questions for GLM /Q.
Write

Wε(x1, . . . , xn) =

∑
σ

sgn(σ )

n∏
j =1

Kε(x j , xσ( j )).

Here,σ is over all permutations ofn elements. Expressσ as a product of disjoint
cycles

σ ∈

⊔
F

S∗(F1) × · · · × S∗(Fν(F)), (3.32)

whereF is over set partitions of{1, . . . , n} (as in Section3.2) andS∗(F`) denotes the
set of all(|F`| − 1)! cyclic permutations of the elements ofF`. Notice that sgn(σ ) =∏ν(F)

`=1 (−1)|F`|−1.
For example, ifn = 7 andF = [{1, 3, 4, 6} , {2, 5, 7}], thenS∗({1, 3, 4, 6}) ×

S∗({2, 5, 7}) is the set of 12 permutations:

{(1 3 4 6)(2 5 7), (1 3 6 4)(2 5 7), (1 4 3 6)(2 5 7), (1 4 6 3)(2 5 7),

(1 6 3 4)(2 5 7), (1 6 4 3)(2 5 7), (1 3 4 6)(2 7 5), (1 3 6 4)(2 7 5),

(1 4 3 6)(2 7 5), (1 4 6 3)(2 7 5), (1 6 3 4)(2 7 5), (1 6 4 3)(2 7 5)}.

We are applying Parseval’s formula to (3.31), and thus we need to determine
Ŵε(u). So, for each cycle(i1, . . . , im), we evaluate the Fourier transform∫

Rm
Kε(xi1, xi2)Kε(xi2, xi3) · . . . · Kε(xim, xi1)e

2π i
∑m

j =1 ui j xi j dxi1 · · · dxim. (3.33)

Expanding the product ofKε ’s, we obtain 2m terms∫
Rm

∑
a

εβ(a) sin(π(xi1 − a1xi2))

π(xi1 − a1xi2)
· · ·

sin(π(xim − amxi1))

π(xim − amxi1)

· e2π i
∑m

j =1 ui j xi j dxi1 · · · dxim. (3.34)
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Here a ranges over all 2m m-tuples(a1, . . . , am) with a j ∈ {1, −1}, andβ(a) =

#
{

j | a j = −1
}
.

According to Lemma3, if
∑∣∣ui j

∣∣ < 1, then (3.34) is

2m−2ε +

∑
c

δ

 m∑
j =1

c j ui j

(1 − V
(
c1ui1, . . . , cmuim

))
, (3.35)

wherec is over all 2m−1 m-tuples(c1, . . . , cm) with c j ∈ {1, −1}, cm = 1, and where

V(y) = M(y) − m(y), (3.36)

M(y) = max{sk(y), k = 1, . . . , n} ,

m(y) = min {sk(y), k = 1, . . . , n} ,

sj (y) =

k∑
j =1

y j .

Applying Parseval’s formula to (3.31) and recalling the assumption that the support
of
∏n

i =1 f̂i (ui ) is in
∑n

i =1 |ui | < 1 (so in the integral below, we are restricted to the
region where Lemma3 applies), we find that (3.31) equals

∫
Rn

(
n∏

i =1

dui f̂i (ui )

)∑
F

ν(F)∏
`=1

(−1)|F`|−1

·

∑
{i |i ∈F`}

′

2|F`|−2ε +

∑
c

δ

 |F`|∑
j =1

c j ui j

(1 − V
(
c1ui1, . . . , c|F`|ui |F`|

)) ,

(3.37)

where
∑

{i |i ∈F`}

′ is over all(|F`| − 1)! cyclic permutations of the elements ofF`.

Next, in the inner sum, change variableswi j = c j ui j . Recalling that thef̂ ’s are
assumed to be even functions, we find that the above becomes∫

Rn

(
n∏

i =1

dwi f̂i (wi )

)∑
F

ν(F)∏
`=1

(−2)|F`|−1

·

∑
{i |i ∈F`}

′

ε

2
+ δ

 |F`|∑
j =1

wi j

(1 − V
(
wi1, . . . , wi |F`|

)) .
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Applying the combinatorial identity [15, (4.35)], we get∫
Rn

(
n∏

i =1

dwi f̂i (wi )

)∑
F

ν(F)∏
`=1

(−2)|F`|−1
·

(|F`| − 1)!
ε

2
+ δ

∑
i ∈F`

wi


·

(|F`| − 1)! −
∑

[H,Hc]

(|H | − 1)! (|F`| − 1 − |H |)!

∣∣∣∣∣∑
k∈H

wk

∣∣∣∣∣
 .

Here,
[
H, Hc

]
runs over all

(
2|F`| − 2

)
/2 ways of decomposingF` into two disjoint

proper subsets:H ∪ Hc
= F`, H ∩ Hc

= ∅, with H 6= ∅, F`. Since
∑

|F`| = n, we
can rewrite the above as∫

Rn

(
n∏

i =1

dui f̂i (ui )

)∑
F

(−2)n−ν(F)

ν(F)∏
`=1

(|F`| − 1)!
ε

2
+ δ

∑
i ∈F`

ui


(|F`| − 1)! −

∑
[H,Hc]

(|H | − 1)!(|F`| − 1 − |H |)!

∣∣∣∣∣∑
k∈H

uk

∣∣∣∣∣
 .

(3.38)

We now prove the lemma that was required in deriving the above.

LEMMA 3
Let

∑m
j =1

∣∣u j
∣∣ < 1. Then∫

Rm

∑
a

εβ(a) sin(π(x1 − a1x2))

π(x1 − a1x2)
· · ·

sin(π(xm − amx1))

π(xm − amx1)
e2π iu·x dx

= 2m−2ε +

∑
c

δ

 m∑
j =1

c j u j

 (1 − V (c1u1, . . . , cmum)) . (3.39)

The notation here is defined between (3.34) and (3.36). Note: In the degenerate case
m = 1, the above should be read as∫

R

(
1 + ε

sin(2πx)

2πx

)
e2π iux dx =

1

2
ε + δ(u), |u| < 1.

Proof
The m = 1 case is easy to check and follows from the fact that(1/2)χ[−1,1](u) =∫

R(sin(2πx)/(2πx))e2π iux dx. So, assume thatm ≥ 2, and consider a typical∫
Rm

sin(π(x1 − a1x2))

π(x1 − a1x2)
· · ·

sin(π(xm − amx1))

π(xm − amx1)
e2π iu·x dx. (3.40)
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Let

ti = xi − ai xi +1, i = 1, . . . , m − 1,

tm = xm, (3.41)

so that

x1
...

xm

 =



1 a1 a1a2 a1a2a3 . . . a1 · . . . · am−1

0 1 a2 a2a3 . . . a2 · . . . · am−1

0 0 1 a3 . . . a3 · . . . · am−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . 0 1 am−1

0 . . . . . . . . . . . . . . . . . 0 1


 t1

...

tm

 .

Let
K (y)

def
= sin(πy)/(πy).

Changing variables, (3.40) is∫
Rm

K (t1) · · · K (tm−1)K (tm − am(t1 + a1t2 + a1a2t3 + · · · + a1 · . . . · am−1tm))

·e2π i (t1s1+···+tmsm) dt1 · · · dtm,

(3.42)

where

s1 = u1,

s2 = a1u1 + u2,

s3 = a1a2u1 + a2u2 + u3,

...

sk = a1 · . . . · ak−1u1 + a2 · . . . · ak−1u2 + · · · + ak−1uk−1 + uk,

... (3.43)

Now, K (y) = K (−y), so, becauseam ∈ {1, −1}, we find that (3.42) equals∫
Rm

K (t1) · · · K (tm−1)K (amtm − t1 − a1t2 − a1a2t3 − · · · − a1 · . . . · am−1tm))

·e2π i (t1s1+···+tmsm) dt1 · · · dtm.

Applying [15, (4.28)] (to the variablet1 with τ = −amtm + a1t2 + a1a2t3 + · · · + a1 ·

. . . · am−1tm), the above becomes∫
Rm

χ[−1/2,1/2] (v) χ[−1/2,1/2] (v + s1) e2π i v(−amtm+a1t2+a1a2t3+···+a1·...·am−1tm)

·K (t2) · · · K (tm−1)e
2π i (t2s2+···+tmsm) dv dt2 · · · dtm.
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Integrating overt2, . . . , tm−1, we get∫
R2

χ[−1/2,1/2] (v) χ[−1/2,1/2] (v + s1) χ[−1/2,1/2] (a1v + s2)

· χ[−1/2,1/2] (a1a2v + s3) · . . . · χ[−1/2,1/2] (a1 · . . . · am−2v + sm−1)

· e2π i tm(sm+v(a1·...·am−1−am)) dv dtm.

(3.44)

Now, if β(a) = #{i | ai = −1} is even, thena1 · . . . · am = 1, soa1 · . . . · am−1 = am

and thusa1 · . . . · am−1 − am = 0. Hence the integral overtm pulls out aδ(sm) from
the integral.

Next, if β(a) is odd, thena1 · . . . · am = −1, soa1 · . . . · am−1 = −am and thus
a1 · . . . · am−1 − am = −2am. Hence the integral overtm gives us aδ(sm − 2amv),
which, when integrated overv, pulls out a product of characteristic functions.

Hence, we find that (3.44) (and hence that (3.40)) is

δ(sm)

∫
R

χ[−1/2,1/2] (v) χ[−1/2,1/2] (v + s1) χ[−1/2,1/2] (a1v + s2) · . . .

· χ[−1/2,1/2] (a1 · . . . · am−2v + sm−1) dv if β(a) is even, (3.45)

1

2
χ[−1/2,1/2]

(
sm

2am

)
χ[−1/2,1/2]

(
sm

2am
+ s1

)
χ[−1/2,1/2]

(
a1

sm

2am
+ s2

)
· . . .

· χ[−1/2,1/2]

(
a1 · . . . · am−2

sm

2am
+ sm−1

)
if β(a) is odd. (3.46)

We require the following two claims.

CLAIM 4
Letβ(a) be odd, and assume that

∑m
i =1 |ui | < 1. Then

χ[−1/2,1/2]

(
a1 · . . . · ak−1

sm

2am
+ sk

)
= 1, k = 1, . . . , m − 1. (3.47)

Thus, (3.46) equals1/2.

Proof
Becauseak ∈ {1, −1}, we have, from (3.43),

sk = a1 · . . . · ak−1 (u1 + a1u2 + a1a2u3 + · · · + a1 · . . . · ak−1uk) . (3.48)

So the coefficient ofu j in (3.47) is

(a1 · . . . · ak−1) (a1 · . . . · am−1)
(
a1 · . . . · a j −1

)
2am

+ (a1 · . . . · ak−1)
(
a1 · . . . · a j −1

)
.

(3.49)
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Whenβ(a) is odd,
∏m

i =1 ai = −1; hence (3.49) equals

(a1 · . . . · ak−1)
(
a1 · . . . · a j −1

)
2

∈

{
1

2
, −

1

2

}
.

So ∣∣∣∣a1 · . . . · ak−1
sm

2am
+ sk

∣∣∣∣ < 1/2

(since we are assuming
∑m

i =1 |ui | < 1), and hence the claim is proved.

CLAIM 5
Letβ(a) be even, and assume that

∑m
i =1 |ui | < 1. Then (3.45) equals

δ(sm) (1 − V(u1, a1u2, . . . , a1 · . . . · am−1um))

with V(y) defined in (3.36).

Proof
In (3.45), we have, by (3.48),

χ[−1/2,1/2] (a1 · . . . · ak−1v + sk)

= χ[−1/2,1/2] (a1 · . . . · ak−1 (v + u1 + a1u2 + a1a2u3 + · · · + a1 · . . . · ak−1uk)) ,

and we can drop thea1·. . .·ak−1 ∈ {1, −1} sinceχ[−1/2,1/2] (y) is even. Furthermore,
theδ(sm) restricts us tou1+a1u2+a1a2u3+· · ·+a1 · . . . ·am−1um = 0. And because
we are assuming

∑m
i =1 |ui | < 1 < 2, we may apply [15, Lemma 4.3], obtaining the

claim. Note: In [15, (4.32)], n could read n− 1 without affecting the truth of the
equation since, in the notation of that paper, f2(v) f2(v + u1 +· · ·+ un) = f2(v).

We are now ready to complete the proof of this lemma. By Claim4, the contribution
to (3.39) from a with β(a) odd is ∑

a
β(a) odd

1

2
εβ(a).

But we are assumingε ∈ {1, −1}, so the above is

2m−2ε. (3.50)

The contribution to (3.39) from a with β(a) even is, by Claim5,∑
a

β(a) even

δ(sm) (1 − V(u1, a1u2, . . . , a1 · . . . · am−1um)) . (3.51)
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Now,

sm = a1 · . . . · am−1 (u1 + a1u2 + a1a2u3 + · · · + a1 · . . . · am−1um)

= amu1 + ama1u2 + ama1a2u3 + · · · + ama1 · . . . · am−1um

because
∏m

i =1 ai = 1 whenβ(a) is even. Let

c = (c1, . . . , cm) = (am, ama1, ama1a2, . . . , ama1 · . . . · am−1).

Now, because
∏m

i =1 ai = 1, c ranges over allm-tuples withc j ∈ {1, −1} andcm = 1.
So, summing over suchc, we find that (3.51) equals

∑
c

δ

 m∑
j =1

c j u j

 (1 − V (amc1u1, . . . , amcmum)) . (3.52)

But, becauseV(−y) = V(y), the above is (regardless of the value ofam = ±1)

∑
c

δ

 m∑
j =1

c j u j

 (1 − V (c1u1, . . . , cmum)) . (3.53)

This, in combination with (3.50), establishes the lemma.

3.4. l.h.s.= r.h.s.
LEMMA 4
We have ∫

R|F`|

∏
i ∈F`

dui f̂i (ui ) =

∫
R

F̂`(u) du.

Proof
Both are equal, by Fourier inversion, to

∏
i ∈F`

fi (0).

LEMMA 5
We have ∫

R|F`|

∏
i ∈F`

dui f̂i (ui )

 δ

∑
i ∈F`

ui

 =

∫
R

F`(x) dx.

Proof
We obtain the lemma by Parseval’s formula.
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LEMMA 6
Let H ⊂ F`, H 6= ∅. Then∫

R|F`|

∏
i ∈F`

dui f̂i (ui )

 δ

∑
i ∈F`

ui

∣∣∣∣∣∑
k∈H

uk

∣∣∣∣∣
=

∫
R

̂(∏
i ∈H

fi

)
(u)

̂(∏
i ∈Hc

fi

)
(u) |u| du.

Proof
We obtain the lemma by Parseval’s formula.

Now, W(n)
USp = W−1, so we need to compare (3.38), with ε = −1, to (3.13). By

Lemmas4–6, write (3.38) as∑
F

(−2)n−ν(F)

ν(F)∏
`=1

(P̀ + Q` + R`) (3.54)

with

P̀ = (|F`| − 1)!

(
−1

2

)∫
R

F̂`(u) du,

Q` = (|F`| − 1)!

∫
R

F`(x) dx,

R` = −

∑
[H,Hc]

(|H | − 1)! (|F`| − 1 − |H |)!

∫
R

̂(∏
i ∈H

fi

)
(u)

̂(∏
i ∈Hc

fi

)
(u) |u| du.

(3.55)

Expanding the product over`, we get∑
F

(−2)n−ν(F)
∑

S

(∏
`∈Sc

Q`

)∑
T⊆S

(∏
`∈Tc

P̀

)(∏
`∈T

R`

)
, (3.56)

whereS ranges over all subsets of
{
1, . . . , ν(F)

}
. (We take empty products to be 1.)

Expanding the product
∏

`∈T R`, we find that (3.56) is

∑
F

(−2)n−ν(F)
∑

S

(∏
`∈Sc

Q`

)∑
T⊆S

(∏
`∈Tc

P̀

)
·

(
(−1)|T |

∑
H

|T |∏
j =1

(∣∣H j
∣∣− 1

)
!

·
(∣∣F` j

∣∣− 1 −
∣∣H j

∣∣)! ∫
R

̂∏
i ∈H j

fi

(u)

̂∏
i ∈Hc

j

fi

(u)|u| du

)
, (3.57)



LOW-LYING ZEROS 171

where
∑

H is over all |T |-tuples
([

H1, Hc
1

]
, . . . ,

[
H|T |, Hc

|T |

])
and whereT ={

`1, . . . , `|T |

}
. (If T = ∅, we take the large bracketed factor to be 1. And ifT 6= ∅,

but
∑

H contains no terms, we take it to be zero.) We have thus expressed, in (3.57),
the r.h.s. of (3.7) in a form that can easily be compared with the l.h.s., as expressed
in (3.13).

More precisely, a typical term in (3.13) is specified byF l.h.s., Sl.h.s., S2,
(A; B). The sum overF arises from combinatorial sieving, and the sum overS ⊆{
1, . . . , ν(F)

}
arises from multiplying out the explicit formula (3.12). The sum over

S2 ⊆ S comes from deciding which prime powers are paired up to produce squares
and which are already squares (Sc

2). (A; B) accounts for all ways of pairing upS2.
The contribution to (3.13) from a typical term is

(−2)n−ν(F l.h.s.)

 ∏
`∈Sc

l.h.s.

(|F`| − 1)!

∫
R

F`(x) dx


·

∏
`∈Sc

2

(|F`| − 1)!

(
−1

2

)∫
R

F̂`(u) du


·

2|S2|/2
|S2|/2∏
j =1

(∣∣Fa j

∣∣− 1
)
!
(∣∣Fb j

∣∣− 1
)
!

∫
R

F̂a j (u)F̂b j (u) |u| du


= (−2)n−ν(F l.h.s.)

 ∏
`∈Sc

l.h.s.

Q`

∏
`∈Sc

2

P̀


·

2|S2|/2
|S2|/2∏
j =1

(∣∣Fa j

∣∣− 1
)
!
(∣∣Fb j

∣∣− 1
)
!

∫
R

F̂a j (u)F̂b j (u) |u| du

 . (3.58)

On the other hand, in (3.57), a typical term is specified byF r.h.s., Sr.h.s., T ,([
H1, Hc

1

]
, . . . ,

[
H|T |, Hc

|T |

])
. Set

F r.h.s.=
{
F` | ` ∈ Sc

l.h.s.

}⋃{
F` | ` ∈ Sc

2

}⋃{
Fa j ∪ Fb j | j = 1, . . . , |S2| /2

}
,

H1 = Fa1, Hc
1 = Fb1,

...
...

H|S2|/2 = Fa|S2|/2
, Hc

|S2|/2 = Fb|S2|/2
.

(3.59)

Sr.h.s. and T are chosen in the obvious way (so that both products ofQ’s match,
and both products ofP’s match). Notice that|T | = |S2| /2 and thatν(F l.h.s.) =

ν(F r.h.s.) + |S2| /2.
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The contribution to (3.57) from this term is thus

(−2)n−ν(F l.h.s.)+|S2|/2

 ∏
`∈Sc

l.h.s.

Q`

∏
`∈Sc

2

P̀


·

(−1)|S2|/2
|S2|/2∏
j =1

(∣∣Fa j

∣∣− 1
)
!
(∣∣Fb j

∣∣− 1
)
!

∫
R

F̂a j (u)F̂b j (u) |u| du

 ,

(3.60)

which is equal, because|S2| is even, to (3.58).
So every term on the l.h.s. has a corresponding term on the r.h.s.
Conversely, this method of matching (i.e., (3.59)) produces for every term on the

r.h.s. its corresponding term on the l.h.s. (with the convention that we disregard, on
the r.h.s., any term with|T | ≥ 1 but

∑
H empty; we can do so since these terms

contribute nothing to (3.57)).
Thus (3.13) = (3.38) and Theorem 3.1 is proved. 2

3.5. Examples

One term for n= 17
Let n = 17, and let

F l.h.s. = [F1, F2, F3, F4, F5, F6, F7]

= [{1, 2, 13} , {4} , {3, 6, 7, 9, 17} , {8, 10, 11} , {5, 12} , {14} , {15, 16}] ,

Sl.h.s. = {1, 2, 3, 5, 6} , Sc
l.h.s. = {4, 7} ,

S2 = {1, 2, 5, 6} , Sc
2 = {3} ,

(A; B) = (1, 5; 2, 6). (3.61)

This corresponds on the r.h.s. to

F r.h.s.= [F1, F2, F3, F4, F5] ,

F1 = F4, F2 = F7, F3 = F3,

F4 = F1 ∪ F2, F5 = F5 ∪ F6,

Sr.h.s.= {3, 4, 5} , Sc
r.h.s.= {1, 2} ,

T = {4, 5} , Tc
= {3} ,

H1 = F1, Hc
1 = F2,

H2 = F5, Hc
2 = F6. (3.62)
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Tables3.1 and3.2 show the correspondence between terms on the l.h.s. (as ex-
pressed in (3.58)) and the r.h.s. (as expressed in (3.60)).

3.6. Analogous results forGLM /Q
Let L(s, π) be theL-function attached to a self-contragredient (π = π̃ ) automorphic
cuspidal representation of GLM overQ. Such anL-function is given initially (for<s
sufficiently large) as an Euler product of the form

L(s, π) =

∏
p

L(s, πp) =

∏
p

M∏
j =1

(1 − απ (p, j )p−s)−1.

The conditionπ = π̃ implies thatαπ (p, j ) ∈ R. The Rankin-SelbergL-function
L(s, π ⊗ π̃) factors as the product of the symmetric and exterior squareL-
functions (see [1]):

L(s, π ⊗ π̃) = L(s, π ⊗ π) = L(s, π,∨2)L(s, π,∧2)

and has a simple pole ats = 1 which is carried by one of the two factors. Write the
order of the pole ofL(s, π,∧2) as(δ(π) + 1)/2 (so thatδ(π) = ±1).

We desire to generalize Theorem3.1 to the zeros ofL(s, π ⊗ χd) whose Euler
product is given by

L(s, π ⊗ χd) =

∏
p

M∏
j =1

(1 − χd(p)απ (p, j )p−s)−1.

Now, whenπ = π̃ , L(s, π ⊗ χd) has a functional equation of the form

8(s, π ⊗ χd) := π−Ms/2
M∏

j =1

0
(
(s + µπ⊗χd( j ))/2

)
L(s, π ⊗ χd)

= ε(s, π ⊗ χd)8(1 − s, π ⊗ χd),

where theµπ⊗χd( j )’s are complex numbers that are known to satisfy

<
(
µπ⊗χd( j )

)
> −1/2

(and are conjectured to satisfy<
(
µπ⊗χd( j )

)
≥ 0). We also have

ε(s, π ⊗ χd) = ε(π ⊗ χd)Q−s+1/2
π⊗χd

= ±Q−s+1/2
π⊗χd

with ε(π ⊗ χd) = χ ′(d), whereχ ′ is a quadratic character that depends only on
π . Whenδ(π) = −1, all twists haveε(π ⊗ χd) = 1. If δ(π) = 1, then half the
L(s, π ⊗ χd)’s haveε(π ⊗ χd) = 1 and the other half haveε(π ⊗ χd) = −1 (with
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Table 3.1. Matching the l.h.s. with the r.h.s. forn = 1, 2, 3. Here
Sl.h.s. ⊆

{
1, . . . , ν(F l.h.s.)

}
, S2 ⊆ Sl.h.s., with |S2| even.(A; B)

accounts for all ways of pairing upS2. Further,
Sr.h.s.⊆

{
1, . . . , ν(F r.h.s.)

}
, T ⊆ Sr.h.s., andH is over all

|T |-tuples
([

H1, Hc
1

]
, . . . ,

[
H|T |, H|T |

c
])

. The matching is as
described in (3.59).

n F l.h.s. Sl.h.s. S2 (A; B) F r.h.s. Sr.h.s. T H

1 [{1}] ∅ ∅ — [{1}] ∅ ∅ —
{1} ∅ — {1} ∅ —

2 [{1, 2}] ∅ ∅ — [{1, 2}] ∅ ∅ —
{1} ∅ — {1} ∅ —

[{1} , {2}] ∅ ∅ — [{1} , {2}] ∅ ∅ —
{1} ∅ — {1} ∅ —
{2} ∅ — {2} ∅ —

{1, 2} ∅ — {1, 2} ∅ —
{1, 2} (1; 2) [{1, 2}] {1} {1} [{1} , {2}]

3 [{1, 2, 3}] ∅ ∅ — [{1, 2, 3}] ∅ ∅ —
{1} ∅ — {1} ∅ —

[{1, 2} , {3}] ∅ ∅ — [{1, 2} , {3}] ∅ ∅ —
{1} ∅ — {1} ∅ —
{2} ∅ — {2} ∅ —

{1, 2} ∅ — {1, 2} ∅ —
{1, 2} (1; 2) [{1, 2, 3}] {1} {1} [{1, 2} , {3}]

[{1, 3} , {2}] ∅ ∅ — [{1, 3} , {2}] ∅ ∅ —
{1} ∅ — {1} ∅ —
{2} ∅ — {2} ∅ —

{1, 2} ∅ — {1, 2} ∅ —
{1, 2} (1; 2) [{1, 2, 3}] {1} {1} [{1, 3} , {2}]

[{2, 3} , {1}] ∅ ∅ — [{2, 3} , {1}] ∅ ∅ —
{1} ∅ — {1} ∅ —
{2} ∅ — {2} ∅ —

{1, 2} ∅ — {1, 2} ∅ —
{1, 2} (1; 2) [{1, 2, 3}] {1} {1} [{2, 3} , {1}]

[{1} , {2} , {3}] ∅ ∅ — [{1} , {2} , {3}] ∅ ∅ —
{1} ∅ — {1} ∅ —
{2} ∅ — {2} ∅ —
{3} ∅ — {3} ∅ —

{1, 2} ∅ — {1, 2} ∅ —
{1, 2} (1; 2) [{1, 2} , {3}] {1} {1} [{1} , {2}]

{1, 3} ∅ — [{1} , {2} , {3}] {1, 3} ∅ —
{1, 3} (1; 3) [{1, 3} , {2}] {1} {1} [{1} , {3}]

{2, 3} ∅ — [{1} , {2} , {3}] {2, 3} ∅ —
{2, 3} (2; 3) [{2, 3} , {1}] {1} {1} [{2} , {3}]

{1, 2, 3} ∅ — [{1} , {2} , {3}] {1, 2, 3} ∅ —
{1, 2} (1; 2) [{1, 2} , {3}] {1, 2} {1} [{1} , {2}]
{1, 3} (1; 3) [{1, 3} , {2}] {1, 2} {1} [{1} , {3}]
{2, 3} (2; 3) [{2, 3} , {1}] {1, 2} {1} [{2} , {3}]
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Table 3.2. Terms on the r.h.s. that are discarded since they
contribute nothing to (3.57).

n F r.h.s. Sr.h.s. T H

1 [{1}] {1} {1} none

2 [{1} , {2}] {1} {1} none
[{1} , {2}] {2} {2} none
[{1} , {2}] {1, 2} {1, 2} none

3 [{1, 2} , {3}] {2} {2} none
[{1, 2} , {3}] {1, 2} {2} none
[{1, 2} , {3}] {1, 2} {1, 2} none
[{1, 3} , {2}] {2} {2} none
[{1, 3} , {2}] {1, 2} {2} none
[{1, 3} , {2}] {1, 2} {1, 2} none
[{2, 3} , {1}] {2} {2} none
[{2, 3} , {1}] {1, 2} {2} none
[{2, 3} , {1}] {1, 2} {1, 2} none

[{1} , {2} , {3}] {1} {1} none
[{1} , {2} , {3}] {2} {2} none
[{1} , {2} , {3}] {3} {3} none
[{1} , {2} , {3}] {1, 2} {1} none
[{1} , {2} , {3}] {1, 2} {2} none
[{1} , {2} , {3}] {1, 2} {1, 2} none
[{1} , {2} , {3}] {1, 3} {1} none
[{1} , {2} , {3}] {1, 3} {3} none
[{1} , {2} , {3}] {1, 3} {1, 3} none
[{1} , {2} , {3}] {2, 3} {2} none
[{1} , {2} , {3}] {2, 3} {3} none
[{1} , {2} , {3}] {2, 3} {2, 3} none
[{1} , {2} , {3}] {1, 2, 3} {1} none
[{1} , {2} , {3}] {1, 2, 3} {2} none
[{1} , {2} , {3}] {1, 2, 3} {3} none
[{1} , {2} , {3}] {1, 2, 3} {1, 2} none
[{1} , {2} , {3}] {1, 2, 3} {1, 3} none
[{1} , {2} , {3}] {1, 2, 3} {2, 3} none
[{1} , {2} , {3}] {1, 2, 3} {1, 2, 3} none
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the correspondingd’s lying in fixed arithmetic progressions to the modulus of the
characterχ ′). Whenε(π ⊗ χd) = 1, we write the nontrivial zeros ofL(s, π ⊗ χd) as

1/2 + i γ ( j )
π⊗χd

, j = ±1, ±2, ±3, . . . ,

with
. . . <γ

(−2)
π⊗χd

≤ <γ
(−1)
π⊗χd

≤ 0 ≤ <γ
(1)
π⊗χd

≤ <γ
(2)
π⊗χd

≤ . . .

and
γ

(−k)
π⊗χd

= −γ
(k)
π⊗χd

.

Whenε(π ⊗ χd) = −1, γ = 0 is a zero ofL(s, π ⊗ χd), and we index the zeros as

1/2 + i γ ( j )
π⊗χd

, j ∈ Z,

with

. . . <γ
(−2)
π⊗χd

≤ <γ
(−1)
π⊗χd

≤ γ
(0)
π⊗χd

= 0 ≤ <γ
(1)
π⊗χd

≤ <γ
(2)
π⊗χd

≤ . . .

and
γ

(−k)
π⊗χd

= −γ
(k)
π⊗χd

.

Next, letD(X) be as in (3.4), and let

Dπ,+(X) = {d ∈ D(X) : ε(π ⊗ χd) = 1} ,

Dπ,−(X) = {d ∈ D(X) : ε(π ⊗ χd) = −1} .

Then, assuming, forM ≥ 4, the Ramanujan conjecture

|απ (p, j )| ≤ 1,

we have the following theorem.

THEOREM 3.2
Let f(x1, . . . , xn) =

∏n
i =1 fi (xi ) be even in all its variables with each fi in S(R).

Assume further that̂f (u1, . . . , un) is supported in
∑n

i =1 |ui | < 1/M. Then ifδ(π) =

1,

lim
X→∞

1∣∣Dπ,±(X)
∣∣ ∑

d∈Dπ,±(X)

∑
j1,..., jn

∗

f
(

L Mγ
( j1)
π⊗χd

, L Mγ
( j2)
π⊗χd

, . . . , L Mγ
( jn)
π⊗χd

)
=

∫
Rn

f (x)W(n)
±,O(x) dx, (3.63)
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and if δ(π) = −1 (so that all twists haveε(π ⊗ χd) = 1),

lim
X→∞

1

|D(X)|

∑
d∈D(X)

∑
j1,..., jn

∗

f
(

L Mγ
( j1)
π⊗χd

, L Mγ
( j2)
π⊗χd

, . . . , L Mγ
( jn)
π⊗χd

)
=

∫
Rn

f (x)W(n)
USp(x) dx, (3.64)

where

L M =
M log X

2π
,

W(n)
USp(x1, . . . , xn) = det

(
K−1(x j , xk)

)
1≤ j ≤n
1≤k≤n

,

W(n)
+,O(x1, . . . , xn) = det

(
K1(x j , xk)

)
1≤ j ≤n
1≤k≤n

,

W(n)
−,O(x1, . . . , xn) = det

(
K−1(x j , xk)

)
1≤ j ≤n
1≤k≤n

+

n∑
ν=1

δ(xν) det
(
K−1(x j , xk)

)
1≤ j 6=ν≤n
1≤k 6=ν≤n

,

Kε(x, y) =
sin(π(x − y))

π(x − y)
+ ε

sin(π(x + y))

π(x + y)

(W(1)
−,O(x) = 1 − sin(2πx)/(2πx) + δ(x)) and where

∑
∗

j1,..., jn is over jk =

(0), ±1, ±2, . . ., with jk1 6= ± jk2 if k1 6= k2.

Remark.Again, as in Theorem3.1, the assumptionsfi even andf of the form
∏

fi
can be removed.

Proof
The proof is similar to that of Theorem3.1. The main difference is in the explicit
formula that, forL(s, π ⊗ χd), reads∑

γπ⊗χd

F`

(
L Mγπ⊗χd

)
=

∫
R

F`(x) dx + O(1/ log X)

−
2

M log X

∞∑
m=1

3(m)aπ (m)

m1/2
χd(m)F̂`

(
logm

M log X

)
(3.65)

where

aπ (pk) =

M∑
j =1

αk
π (p, j ).

We consider the two cases,δ(π) = −1 andδ(π) = 1, separately.
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For both cases we require the estimates∑
m≤T

|aπ (m)3(m)|2 /m ∼ log2(T)/2,

∑
p≤T

aπ (p2) log p ∼ −δ(π)T, (3.66)

∑
p≤T

|aπ (p) log p|
2 /p ∼ log2(T)/2

(see [15] and [6]). For these estimates, andM ≥ 4, the Ramanujan conjecture is
assumed; these three are needed in the analogs of Claim2, Subclaim3.22, and Sub-
claim3.24.

Whenδ(π) = −1, all twists haveε(π ⊗ χd) = 1. The combinatorics work out
exactly the same. The smaller support off̂ compensates for the presence of theM in
the explicit formula.

When δ(π) = 1, we need to examine the two subcases,ε(π ⊗ χd) = 1 and
ε(π ⊗ χd) = −1, separately.

As the analog of Lemma1, we have the following lemma.

LEMMA 7
Whenδ(π) = 1,

lim
X→∞

1∣∣Dπ,+(X)
∣∣ ∑

d∈Dπ,+(X)

(
−2

M log X

)k k∏
j =1

∞∑
m=1

3(m)aπ (m)

m1/2
χd(m)

· F̂` j

(
logm

M log X

)
=

∑
S2⊆S

|S2| even

1

2

|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du



·

∑
(A;B)

2|S2|/2
|S2|/2∏
j =1

∫
R

|u|F̂a j (u)F̂b j (u) du

 , (3.67)

where S= {l1, . . . , lk}.
∑

S2⊆S
|S2| even

is over all subsets S2 of S whose size is even.∑
(A;B) is over all ways of pairing up the elements of S2. F`(x) is defined in (3.11).

Proof
Notice that the only difference in the r.h.s. of this lemma as compared to Lemma1 is
in the factor (

1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du.

The difference in sign is accounted for by the opposite sign in (3.66).
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So, we have that the l.h.s. of (3.63), for Dπ,+, tends, asX → ∞, to

∑
F

(−2)n−ν(F)

ν(F)∏
`=1

(|F`| − 1)!

∑
S

(∏
`∈Sc

∫
R

F`(x) dx

)

·

∑
S2⊆S

|S2| even

(1

2

)|Sc
2| ∏

`∈Sc
2

∫
R

F̂`(u) du



·

∑
(A;B)

2|S2|/2
|S2|/2∏
j =1

∫
R

|u| F̂a j (u)F̂b j (u) du

 .

This expression matches (3.38) with ε = 1; that is, this equals (in the notation of
Section3.3) ∫

Rn
f (x)W+(x) dx =

∫
Rn

f (x)W(n)
+,O(x) dx.

For theε(π ⊗ χd) = −1 case, there is always a zero ats = 1/2,

γ
(0)
π⊗χd

= 0,

and, before applying the combinatorial sieving of Section3.2, we need to isolate this
zero. Now∑

j1,..., jn

∗

f
(

L Mγ
( j1)
π⊗χd

, L Mγ
( j2)
π⊗χd

, . . . , L Mγ
( jn)
π⊗χd

)
=

∑
j1 6=0,..., jn 6=0

∗

f
(

L Mγ
( j1)
π⊗χd

, L Mγ
( j2)
π⊗χd

, . . . , L Mγ
( jn)
π⊗χd

)

+

n∑
ν=1

∑
jν=0

jk 6=0,k 6=ν

∗

f
(

L Mγ
( j1)
π⊗χd

, . . . , L Mγ
( jν−1)
π⊗χd

, 0, L Mγ
( jν+1)
π⊗χd

, . . . , L Mγ
( jn)
π⊗χd

)
.

We only focus on the first sum on the r.h.s. above. The same technique applies to
the remaining sums.
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By combinatorial sieving and the explicit formula, we find that∑
j1 6=0,..., jn 6=0

∗

f
(

L Mγ
( j1)
π⊗χd

, L Mγ
( j2)
π⊗χd

, . . . , L Mγ
( jn)
π⊗χd

)

=

∑
F

(−2)n−ν(F)

ν(F)∏
`=1

(|F`| − 1)!

·

(∫
R

F`(x) dx −
2

M log X

∞∑
m=1

3(m)aπ (m)

m1/2
χd(m)

· F̂`

(
logm

M log X

)
− F`(0) + O(1/ log X)

)
. (3.68)

But, by (3.66),

−F`(0) = lim
X→∞

4

M log X

∑
p

3(p2)aπ (p2)

p
F̂`

(
2 log p

M log X

)
,

and this has the effect, in (3.68), of changing the sign of the contribution from the
squares of primes.
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