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LOW-LYING ZEROS OF L-FUNCTIONS AND
RANDOM MATRIX THEORY

MICHAEL RUBINSTEIN

Abstract

By looking at the average behavior (n-level density) of the low-lying zeros of ce
tain families of L-functions, we find evidence, as predicted by function field analog
in favor of a spectral interpretation of the nontrivial zeros in terms of the classica
compact groups.

1. Introduction

In this paper, a connection is made between the low-lying zerdsfahctions and
the eigenvalues of large matrices from the classical compact groups. The Langlai
program (seed], [10], [7]) predicts that alL-functions can be written as products of
£(s) andL-functions attached to automorphic cuspidal representations gf Gler

Q. Such anL-function is given intially (for)ts sufficiently large) as an Euler product
of the form

M
Lem) =]t =][[@-axtp. PP " (1.1)
p

P j=1

Basic properties of such-functions are described ii}]. The L-functions that arise
in them = 1 case are the Riemann zeta-functipis) and Dirichlet L-functions

L (s, x), x aprimitive character. Fan = 2, theL-functions in question are associated
to cusp forms or Maass forms of congruence subgroups /5L

The Riemann hypothesis (RH) fdr(s, 7) asserts that the nontrivial zeros of
L(s, ), {1/2+ iy} all havey, € R. (Our L-functions are always normalized so
that the critical line is throughis = 1/2.)

A vague suggestion of G.G®%a and D. Hilbert suggests an approach that one
might take in establishing RH. They hypothesized (fts)) that one might be able to
associate the nontrivial zeros pto the eigenvalues of some operator acting on some
Hilbert space, thus (depending on the properties of the operator) forcing the zeros
lie on aline.
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The first evidence in favor of this approach was obtained by H. MontgorSgry [
who derived (under certain restrictions) the pair correlation of the zeroéspf To-
gether with an observation of Freeman Dyson, who pointed out that the Gauss
Unitary Ensemble (GUE), consisting df x N random Hermitian matrices (seé] [
for a more precise definition), has the same pair correlatioiN(as o0), it seems
to suggest that the relevant operator, at least tsy, might be Hermitian. Extensive
computations of A. Odlyzkol[1], [12] further seem to bolster the Hermitian nature of
the zeros of (s), as might the work of Z. Rudnick and P. Sarnak][ where, under
certain restrictions, tha-level correlations ot (s) andL (s, =) are found to be the
same as those of the GUE.

However, recent developments suggest that, rather than being Hermitian, the |
evant operators folc -functions belong to the classical compact groups. (This is con
sistent with the above work of Montgomery, Odlyzko, and Rudnick and Sarnak sin
all the classical compact groups have the sahevel correlations as the GUE (as
N — o00).) First, analogs with function field zeta-functions, where there is a spectr:
interpretation of the zeros in terms of Frobenius on cohomology, point towards tt
classical compact groups (sé#)[ Second, even though all the mentioned families of
matrices have the sammelevel correlations, there is another statistic, calelgvel
density, which is sensitive to the particular family. By looking at this statistic for zero
of L-functions, one finds the fingerprints of the classical compact groups Eot
this was done, for quadratic twists ofs), and with certain restrictions, by Azlik
and C. Snyder]3]. A stronger result (which takes into account certain nondiagona
contributions and allows one to choose test functions whose Fourier transform is si
ported in(—2/M, 2/M)) which applies for (s) as well as allL (s, =) was obtained
by N. Katz and Sarnalg]. The general cas@, > 1, is worked out (again, with some
restrictions) in this paper.

2.n-level density
Foran (N x N)-matrix A in one of the classical compact groups, write its eigenvalue:
asij = €%, with
0<f1<---<06N < 2m. (2.1)
Assume thatf : R" — R is bounded, Borel measurable, and compactly sup:
ported. Then, letting

HVA H= Y f(6,N/(21).....0,,N/@2m)).

1<j1,...,jn=N
distinct

Katz and Sarnakd, Appendix] obtain the following family dependent result:

N— o0

Iim/ H<”>(A,f)dA=/ W (x) f (x) dx (2.2)
G(N) R,
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for the following families:

G wg
U(N),Uc(N) det(Ko(Xj. Xk))1<j<n
1<k=<n
USP(N) det(K_1(Xj, Xk))1<j<n
1<k<n
SON), O~ (2N + 1) det(Ka(x}, X0)1=<n
1<k=<n
SO@N + 1), 0-(2N) det(K_1(x}. X0) 1<) <n
1<k<n
+‘§:B:15(Xu)det(K—i(Xj,NO)lgj#usn
1<k#v<n

with . .
_ sin((x —y)) 8sm(7r(x +v)

T(X—Y) T(X+Y)
In the aboved A is the Haar measure da(N) (normalized so thafG(N) dA=1),
and

Ke(X,y)

Uc(N) = {A € U(N) : det'(A) = 1},
SO(N) = {A € O(N) : detA = 1},
O (N) = {A e O(N) : detA = —1}.

The delta functions in the S@N + 1), O~ (2N) case are accounted for by the eigen-
valuer1 = 1. (Notice, for GN), thati = 1 is an eigenvalue iN is even and deA =

—1 (i.,e., Ae O (2N)) orif N is odd and de® = 1 (i.e., if A € SO2N + 1).)
Removing this zero from2Z(2) would yield the sameWén) as for USp. For ease of
notation, we refer to the thirwg‘) above (i.e., de([Kl(xj , xk))) as the scaling den-
sity of O™ and the fourth\N((;”) as the scaling density of O (We use this notation
because the former comes from orthogonal matrices with even functional equatic
p(z) = zNp(1/z), while the latter comes from orthogonal matrices with odd func-
tional equationg(z) = —zN p(1/2).)

One could also form a similar statistic for the eigenvalues of the GUE (where w
would normalize the eigenvalues according to the Wigner semicircle law), and ol
could obtain the same answer (ds— oo) as for UN).

The functionWé”)(x) is called then-level scaling density of the groug(N),
and its nonuniversality can be used to detect which group lies behind which family
L-functions.

Notice that the normalization b /(2) is such that the mean spacing is 1 and
that only the low-lying eigenvalues (those with< c¢/N for some constant) con-
tribute toH ™ (A, f). So, €.2) measures how the low-lying eigenvalues of matrices
in G(N) fall near the point 1 (adl — o0).
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3. Results

In this section, we consider the analog #f4) for the zeros of families df -functions.
One looks at the average behavior of the low-lying nontrivial zeros (i.e., those clo.
to the real axis) of a family oE-functions hoping to find evidence (as predicted by
functional field analogs (se€])) in favor of a spectral interpretation in terms of the
classical compact groups.

Indeed, if we take quadratic twists @f(s), {L(s, xq)}, as our family ofL-
functions, whereyg(n) = (%) is Kronecker’'s symbol and we restrict ourselves to
primitive x4, we find evidence of a USpo) symmetry. This is Theorerd. L.

More generally, we take a self-contragredient automorphic cuspidal represen
tion of GLy overQ, = = 7, that is, one whosé -function has real coefficients,
arz(p, j) € R, and we look at the family of quadratic twistd, (s, 7 ® xq)}. The
low-lying zeros of this family behave as if they are coming either from WSp
or from Oy (c0). (Here the+ is to indicate that we need to consider separately the
L(s, # ® xq)'s with even (resp., odd) functional equations.) We describe this result i
Theorem3.2. It confirms the connection to the classical compact groups, and it give
an answer that cannot be confused with the corresponding statistic for the GUE.

Numerical experiments that further support the connection to classical comps
groups are described in the author’s thesi§ fnd in Katz and Sarnal6].

3.1. Main theorem
Write the nontrivial zeros ok (s, xq) as

124y, j=+142,...,

where

2

0 < Ry Y < %y 2

<Ryy ...

and _ _
yé_J) = —yd(”. (3.4)

Here xq(n) = (%') is Kronecker's symbol, and we restrict ourselves to primigve
Let D denote the set of sualis, and letD(X) = {d € D : X/2 < |[d| < X}.

Notice that we ar@ot assuming the Riemann hypothesis fqis, xq) since we
allow that they!’’s be complex.
THEOREM 3.1
Let

n
f (X1, X2,...,Xn) = 1_[ fi (%), (3.5)
i=1
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where each ifis even and in &) (i.e., smooth and rapidly decreasing). Assume
further that f (uy, ..., un) = [ fi(ui) is supported iy_[_; |ui| < 1, where

f(uy &' / f (x)€¥7 XY dx. (3.6)
Rn
Then
lim f(L (jv L (JZ) o L (Jn)
x—>oo|D(X)| W Xj: ( Yoo o -Vd )
— /R ) f(x)WS‘S)p(x)dx, (3.7)
where
_logX
27
Wl(JnS>p(X1, sy Xp) = det(K_l(xj , Xk))iiljéﬂ ,
sin(mw (X — sin(zw (X +
K_yx,y) = SO =Y) _ sinGr(x+ y)).
T(X—Y) T(X+Y)
and WhereZJ _____ ; |s over = =£1,+2, ..., with ji, # %]k, if kK1 # ko.

Plan. We first use the explicit formula to study the I.h.s. (left-hand sideBaoi)(and
we end up expressing it in terms of tligs. Parseval’s formula is then applied to the
r.h.s. (right-hand side) o3(7), and terms are matched with the |.h.s.

RemarkThe conditionf; even is not essential to the proof, nor is the assumption the
f be of the form[] f;. At the expense of more cumbersome writing, these can b
removed.

3.2. l.h.s.
By (3.4), (3.5, and sincef-(—x) = fi(x),

Z Z f (Ly(”) Ly(Jz) L (Jn)>

ID( )| deD(X)J
|D( e e
posmve
and
distinct

where

n .
fadis, .o im =i (Lrg"). (3.9)
i=1
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In order to apply the explicit formula t&(8), we need to circumvent the fact that the
ji's are distinct. By combinatorial sieving, as it p. 305], the r.h.s. ofy.8) is

v(B)
> Y y® (l_[(lel—l)') wE,

|D(X)| deD(X) F
where F ranges over all ways of decomposifg, 2, ..., n} into disjoint subsets
[Fq,..., F)], and where

posmve
Herelg : RV — R", Lp(X1, ..., %) = (Y1, ..., Y) With yi = xj if i € F,.

For example, fon = 3, the possiblé&'s are[{1, 2, 3}], [{1, 2}, {3}],[{1, 3}, {2}],

[{2, 3}, {1}], [{1}, {2}, {3}], and{[(1 3y, (2 (X1, X2) = (X1, X2, X1).
Thus, 3.9) is

v(F)
n—v(F) (l‘[ (IF| — 1)!) > fatleln - ),
J1

13- Jv(E)
positive

d D(X) E

which, by 3.9), equals

D e 2u(F) I

deD(X) E =1

e O
|D<X>|

(Rl =D T (L)/d)) . (310

vd ieFy

In the innermost sum, we are going over)aJI') (instead of] > 0) and hence the
presence of the/R"®). This is justified by 8.4) and because we are assuming that
the fi’s are even.

Let

Fooo =] fix. (3.11)

iEF[
By the explicit formula (seells, (2.16)], with, in the notation of that papdr(r) =
Fe(Lr), g(y) = (1/log X) Fe(—y/ log X)),

ZFZ(L (”) /Fl(x)der 0(1/ log X)

2 A(m) log
B IogX Z mi/2 X () e(logX) (3.12)
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(Note thatF, (x) is even since each is even. We have also used the facts tRai)
is rapidly decreasing and th&t(s)/I'(s) = O(log|s|) to replace thd™’/I'-terms
in [15, (2.16)] by O(1/log X). Note further thatF, is compactly supported (see
Claim1).)

Plugging @.12) into (3.10 (without theO(1/ log X)-term, a step that is justified
in Lemma2), we see, on multiplying out the product ovein (3.10), that 3.10) is

|
(2" V& (|Fel = DUC, + Dy),
|D(X)| deD(X) F (=1

where

C@:/ Fo(x) dx,
R

2 < A(m) . (logm
D= —— F — .
¢ log X Z ml/2 xa(m) Z(IogX)

m=1

When we expand the product ov&rwe obtain 2(5) terms, each a product 6f,’s
andD,’s. A typical term can be written as

[TcITo
LeSt LeS

for some subseBof {1, 2, ..., v(F)}. (Empty products are taken to be 1.) The prod-
uct of theC,’s contributes to .10 a factor of

l_[/Fg(X)dX.
LeSE R
The product of théD,’s equals

—2\¥ & Am) . (logm
(Iogx) HZ m1/2 xd(mFe (Iogx)’
teSm=1

which, by Lemmal, contributes a factor of

1\ ISl . |52|/2|SZ|/2 ) A
i | i
2 (( 2 ) (l;ljz/f““”“) (Z 2 ,Ul /RIUI Fa, (WFp, () du | |

$CS (A;B)
|S| even

from which we find that.10 (and henced.9) tends, asX — oo, to
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v(EB)
> "B T (Rl — D! Z(]‘[/Fm)dx)
E =1 s \tes /R
_1\ IS .
> — [] ] Fewdu
2 R
SCS eSS
|S| even
|S1/2 . .
DS 2= H/|U|Faj(u)Fbj(u)du :
(A'B) j=1 '
(3.13)
HereSranges over all'2®) subsets o{ 12..., u(E)}, andS® denotes the comple-
ment ofS. The rest of the notation is as in Lemrha
LEMMA 1
We have
1 _2 \k.X . A(M) ~ (logm
im 5501 2 (ax) T1 2 i remfs (o)
X»oo|D(X)|d€D(X) log X i1 m=1m/ log X
1\ /S .
- Z (<_) l_[/Fg(u)du)
2 R
$CS eSS
|S| even
1S1/2 ) R
D 2= T / lul Fa; (u)Fy, (wydu | (3.14)
: R
(A;B) =1

where S= {l1,...,lk}. > scs is over all subsets sSof S whose size is even.

|S| even
Z(A; g, is over all ways of pairing up the elements of &(x) is defined in§.11).

For example, ifS = {1, 2, 5, 7}, the possibles’s are @, {1, 2}, {1, 5}, {1, 7}, {2, 5},
{2,7},{5,7},{1, 2,5, 7}.

And if & = {1, 2,5, 7}, then the possibléA; B)'s are(1,2;5,7), (1, 2;7,5),
(1, 5; 2, 7). These correspond, respectively, to matching 1 with 5 and 2 with 7, 1 wit|
7 and 2 with 5, 1 with 2 and 5 with 7. Note that our notation is not unique. Fo
example(1,2;5,7) = (7, 1; 2, 5).

Proof
Lemmal is obtained in a sequence of claims.
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CLAIM 1
Suppose thaf]_; fi(uj) is supported i, ui| < a. Then]‘['j‘=1 Fe, (uj) is sup-
ported inY"%_ |uj| < a.

Proof
By (3.11),
Fe(u) = /]_[ fi (x)e¥1UX dx
IEF@
27iu Y % /|Fe| |Fel
/F ]_[dx| fi (%) o T 80, — i)
RIFel me2
_/F [Tdufiw)|s{u=>ul. (3.15)
IFel ieFy ieFy

the last step following from Parseval’s formula. (Note|Fy| = 1, then the product
overm is taken to be 1.) Hence,

k k
HF@,-(Uj):/ZEF[j .]_[ du; fi (vp) 1‘[5 uj—_z vil. (3.16)
=1 L2 ieUr,. =1 ieFy;
J
In the integrand, thé's restrict us to
k k
Z Z Z vi| = Z lvi .
=1 j=1 iGF@J- iEUF[
J

So, if Z'j‘zl luj| > «, then ZiEUFeJ. lvi] > «. But, by the support condition on
T, fiw), nieu% fiwi) = 0 if zieu% lvil > a. Hence 8.16) is zero if

Y§_1 |uj| > o; thus the claim is proved. O
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CLAIM 2
Suppose thaff[{_; f; (uj) is supported iD I, |ui| <a <1 Then

—2\K K AM) ~ (logm;
> (ox) X (n—ml/; ramF (PO

lim 50X
X0 [ D(X)| deD(X) m;>1 j=1 j
i=1,..k
my-....-mg#C
=0. (3.17)
Here we are summing over all k-tuplégsny, ..., my) of positive integers with

TT¥mi ¢{1,4,9,16,...},and S={l1, ..., Ik}.

Remark:This claim tells us that the only contributions t6.14) come from perfect
squares. (This is dealt with in Claifa)

Proof
Changing the order of summation and applying Cldirand the Cauchy-Schwarz
inequality, we find that the L.h.s. 08(17) is

12
. 1 A2(my) - ...- A%(m
< iim k > (my) (o)
X—=o00 |D(X)| log® X ] my-... Mg
3" logm; <a log X
my-...me#0
1/2
2
> > xamp-..omo (3.18)
m>1 deD(X)
> logm; <« log X
my-....-mg£0

The first bracketed term is less than

k/2
2
( > A n(qm)) < logt X. (3.19)

m< X«

Next, the number of times we may write = my-...-mg, m; > 1, isO(a(')“l(m)) =
O, (M) for anye > 0 (oo(m) being the number of divisors ofi), so that the second

bracketed term is
o\ 1/2

< [ X

m< X«

> xam

deD(X)

(3.20)
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Applying the methods of M. Jutilad], we find that the above is

12 _ .
< (X”l*“ log” X) for some constané (A = 10 is admissable)

which, combined with.19, shows that$.19) is

e+(14a)/2

’

lim ————
7 X—o00 |D(X)|

But, for ¢ small enough, this limit equals zero (becauBgX)| ~ cX for some

constant, and we are assuming < 1). O
CLAIM 3
We have
1 —2 \k K Amy) logm;
im 5o 2 (pax) X ([T g rsmpfe, (ot )
X_’°°|D(x)|deD(X) log X e i mj/ log X
my-....mg=0
NG )
= Z (<_) ]‘[ / Fg(u)du)
2 R
$CS eSS
|S| even
1S1/2 ) A
DD 2= T f |ul Fay (u)Fp, () du | . (3.21)
(A:B) j=1 °R
Here we are summing over all k-tuplégsny, ..., my) of positive integers with

[Tkmi e {1,4,9,16,...}.

Proof
First, theA(m;)’s restrict us to prime powers);, = pia , SO the only way thaﬂ'; m
can equal a perfect square is if some of &'s are even, and the rest of tfpé 's
match up to produce squares.

We can focus our attention @y = 1 or 2 since the sum over > 3 contributes
zero asX — oo.

Also, note, in 8.21), thath(]_['{ m) =1 since]‘['{ m; is restricted to perfect
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squares. Hence the L.h.s. 6f21) is

. -2 \'# — log(p) » (log pi

X—00

3 !
|S§T§e§en KEKSz &2
[T pe=0
LeSy
. Z —2\ /= 1—[ log(pi) £ 2log pi
—~ \log X i pi \logX /-
LeSS €%

(We have dropped th@/ |D(X)|) ZdeD(X) since the terms in the sum do not depend
ond.) The sum over € S corresponds to they's that are equal to 1 (and that pair
up to produce squares), while the sum ovee S corresponds to the,’s that are
equal to 2. To complete the proof of this claim and hence of Leriywee establish
the two subclaims below.

SUBCLAIM 3.1

We have
. —2\!®l — log(p) » (2logp
Xlinoo%: (Iogx) 1_[ pi i ( log X )
oo ies
_1\ISI R
_ <_1> 1/ Fwdu (3.22)
2 R
LeS
Proof

The L.h.s. of 8.22) factors
—2  log(p) - <2log p))
H Z Fe ;
ress <Iog X 5 p log X
which, summing by parts, equals

2 /wzlog(p) < <2Iogt>>’
1_[ - Fe dt.
ress log X J1 p log X

p=t

The sum)_ p=<t log(p)/ p can be evaluated elementarily (s8ed. 22]), and the above
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becomes

~ (2logt\)’
}e_élogx/l (Iogt+O(1))<F <Iogx)> dt

=11 (Iogx/m ; (Izc:;% $+°(Ioglx»’ )

the last step from integration by parts, and using the factl%ﬂé(u) is supported in
lul < «. Changing variables = 2logt/log X and noting that all thé;’s are even
(since all thef;’s are), we thus find that the limit irB(22) is

( )|%| l_[/ Fo(uydu.

eSS
O
SUBCLAIM 3.2
We have
—2 \'® —log(pi) » (logpi
im " ( ) [] =% Fi< )
X—00 ngz log X 5 pi/ log X
[T pe=0O
teSy
[1S1/2
= 2=l ]‘[ / |ul Fa (u) Fy; (u) du. (3.24)
(A;B)
Proof

In (3.29, [ {45, Pe = Uimplies that thep,'s pair up to produce squares. So, the |.h.s.
of (3.24) equals

1S1/2 2
i 4 log“(pj) - (Iog pj> . (Iog pj>
lim E E Fa. Fo; . (8.25
i=1,...,|S/2

The sum oveK A; B) accounts for all ways of pairing up primes i&.24). Note that
there is a bit of overlap produced i.25), but this overlap contributes zero As—
oo. For example, it = {1, 2, 5, 7}, then the three ways of pairing yp, p2, ps, p7
are:pr = psandpz = p7, p1 = prandpz = ps, p1 = pz andps = prz. So the sum
over p1 = p2 = ps = py is counted three times B (25, whereas it is counted only
once in the |.h.s. off.24). Such diagonal sums do not bother us since ther©p(#)
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such sums, and a typical, = pj, = --- = Pj,, I = 2, contributes to.25 a term
with a factor that is
] lo 2r
< Jim 2r gr i o X
X—o0 logT X 5 p X—o0 log” X

Now, (3.25 can be written as

1S1/2 2
| 4 log’(p) » (logp) » (logp
2 1 <|092(X)Z p <I09X> o <I09X>)'

(AB) j=1 p

Summing by parts, we find that the bracketed term is

4/oou|faj (u)Fp; (W) du+ O (1/log X).
0

Recalling that thé='s are even, we obtain the subclaim. O
We thus obtain Clain3 and Lemmal. ]
LEMMA 2

Let

ac(d) =Y Fe(Lyg”).
vd

where R (X) = ]_[ie,:( fi (x), and f is asin Theoren3.1. Then

1 v(E)
lim ———— ag(d)
x—>oo|D(X)|de%(:x)}:[l
v(E)

> ] @d + 0@/log X))

deD(X) ¢=1

= lim
X—=o0 |D(X)]
RemarkThis lemma justifies dropping th@(1/ log X) when plugging
(3.12 into (3.10.

Proof
The proof is by induction. We consider

k
> @) + 0@/log X)) (3.26)

lim 50X
e (I deD(X) ¢=1
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fork =1,2,...,v(F). Whenk = 1, this clearly equals

> ad).

deD(X)

|'
X ID(X)]

Now, consider the general case. Multiplying out the producBifif), we get

K
Z l_[ as(d) + remainder

lim
o DRI deD(X) £=1

where the remainder consists &f2 1 terms, each of which is of the form

k2
1 1
° (Iogr(X) ID(X)| Z 1_[ |2 (d)}) (3.27)

deD(X) j=1

with r > 1, k2 < k. Now, if Fy(x) > O for all x, then|a, (d)| = a, (d), and, by
our inductive hypothesis combined with Lemrmahe O-term above tends to zero as
X — o0.

If F¢(x) is not greater than or equal to zero for &jJlwe can show that th®-
termin (3.27) tends to zero a¥X — oo by replacing eachi(x) (i = 1,...,n)witha
function g; (x), which is positive and bigger in absolute value thiafx), and which
satisfies the conditions of Theoreii; that is, we require that
& gi (x) > [fi(x)l,

. gi (X) be even and ir8(R),
. [T, Gi (ui) be supported i3 ", |ui| < 1.
That there existj;'s satisfying the required conditions can be seen as follows. Le

_ 12
. {K exp(—1/(1—12)), |t| <1,
0, It > 1,

whereK is chosen so that L
/ h(t)dt = 1,
-1

let 1
0(®) = Zh(t/p) (3.28)

(so thatvg approximates thé-function wheng is small), and consider

Ws(x) = (0 % 05)"(X) = (Bp(x))°. (3.29)
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Now
. 1 (#
Op(X) = E/ h(t/B) cog 2 xt) dt
-8

1
= / h(u) cog 2 Bux) du. (3.30)
1

But when|x| < 1/(88), we have

1
éﬂ(x)>£2/ h(u)du:£2
2 J4 2

(since, whenx| < 1/(88), |u] < 1, we get|2rBux| < n/4). Hence
Wg(x) > 1/2 when|x| < 1/(8B)

(so Wg is bounded away from zero for long stretches wheris small), and,
from (3.29,
Wg(x) >0 forallx.

Also, note thatdg is even and irS(R) (sinceh(t) enjoys these properties), and note
thatlilﬂ (t) = (Bp * 6p)(1) is supported if—28, 28]. We useWg(x)’s to construct a
g (x) satisfying the three required properties.
Let
Ms(c,d) = max |f(X)],
c<|x|=d

and let
—l_ 2n+J’ J 211
Bt = _
0, j =0.

(The j = 0 case is only for notational convenience.) Then
o0
600 =2 M, (@)% 88110 Wpy.a (0
j=0

has the required properties. O

3.3.rhs.
Our goal is to express

/ f (x)wggp(x) dx
Rn

in a manner that allows us to easily see how to match terms @iff3)(
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We consider the more general
/ f (X)W (X) dx, (3.31)
Rn

wheree € {—1, 1} and

We (X1, ..., Xn) = det(Ka(Xj ) Xk))lgjgn )

1<k<n
R0 ) = sin(z (X —Y)) gsin(n(X+y))
) = T(X—Y) T(X+Y)

because it is needed when we study analogous questions fpr/GL
Write

n
We(xa, .., %) = D sgo) [ | Ke(Xj, %o (j))-
o j=1
Here,o is over all permutations ofi elements. Express as a product of disjoint

cycles
oe| |S'(F) x - x S"(FuE), (3.32)
E

whereF is over set partitions ofl, . . ., n} (as in Sectior8.2) andS*(F;) denotes the
set of all(|F;| — 1)! cyclic permutations of the elements IBf. Notice that sgtv) =
v(E) _1)IFel-1
1_[(=1 ( ) .
For example, iln = 7 andF = [{1, 3,4, 6}, {2, 5, 7}], thenS*({1, 3,4, 6}) x
S*({2, 5, 7}) is the set of 12 permutations:

(13462257, (1364(257,(1436(257,(1463(257),
(1634(257,(1643(257,(1346(275,(1364(275),
(1436(275,(1463(275,(1634(275,(1643(275).

We are applying Parseval's formula t8.81), and thus we need to determine

Wg(u). So, for each cycléi1, ..., im), we evaluate the Fourier transform
271 MUy X
/Rm Ke (Xig, i) Ke (Xig, Xig) - ... - Ke(Xip, Xi;)€ 2 X dx, ---dx,. (3.33)

Expanding the product df.’s, we obtain 2' terms

/ 3 eh@ SIN(T (Xiy — @1Xi,))  SINGT (Xify — BmXiy))
RM 735 7T(Xil - alxiz) ”(Xim - amxil)

.ezm YL Ui X dx, - --dx,,. (3.34)
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Here a ranges over all 2 m-tuples(ay, ..., am) with a; € {1, -1}, and(a) =
#{j | aj = —1}.
According to Lemma, if )" |uj; | < 1,then 8.39) is

m
2m—28 + Z ) (Z Cj uij) (l -V (C]_Uil, ey CmUim)) 5 (335)
c =1

wherecis over all 2"1 m-tuples(cy, ..., cm) with ¢j € {1, -1}, ¢, = 1, and where

V(y) = M(y) — m(y), (3.36)
M(y) = max{s(y),k=1,...,n},
m(y) = min{s(y).k=1,...,n},

k
Si(y) =Y _ .
i=1

Applying Parseval’'s formula to3(31) and recalling the assumption that the support
of [T, fi(up) isin X1, Jui| < 1 (so in the integral below, we are restricted to the
region where Lemma applies), we find that{ 31) equals

n v(F)
fRn (H du f?(ui)) N B (G A
i=1 F ¢=1
) IFe|
{.2;:} 2\F15|—28+XC:5 ;CjUij (1—V(cluil,...,cwuilm)) ,
ilieF, =

(3.37)

wherez{i i eFL} is over all(|F¢| — 1)! cyclic permutations of the elements IBf.
Next, in the inner sum, change variables = c;u;;. Recalling that thef’s are
assumed to be even functions, we find that the above becomes

n v(F)
f (]"[ dui f?(un)) >[I
R" \i—1 F =1

2 e )

{ilicFe}
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Applying the combinatorial identitylf5, (4.35)], we get

-((Ile—l)!— > (HI=D!(Fel —1—|H)!

[H.H]

v

B
[T ((IFZI —Dis 4+ (Z wi)

=1 iEF@

)

Here,[H, H®] runs over all(2/F¢l — 2) /2 ways of decomposinB; into two disjoint
proper subsetdd U H® = F;,, H N H® = ¢, with H # @, F,. Since)_ |F¢| = n, we
can rewrite the above as

n v(B)
/ <1_[dui fi (Ui)> > ET] ((IFzI - 1)!3 +36 (Z Ui)
L et F =1

>

keH

J)

We now prove the lemma that was required in deriving the above.

> u

keH

((IFel—l)!— > (HI = DRl —1—[H])!

[H.H]

(3.38)

LEMMA 3
Let>1L; |uj| < 1. Then

/ 3 eh@ Sin(T (X, — 1%2))  SINGE (Xm — AnX1)) oriux g
R™ 73 7 (X1 — a1X2) 7T (Xm — @mX1)

m
=22, 28 (Z ¢ Uj) (1—V (QuU1, ..., CmUm)) . (3.39)

c j=1

The notation here is defined betweén3f) and (3.36). Note: In the degenerate case
m = 1, the above should be read as

in(2 - 1
/ 1430\ orivx gy — Lo sy, U <1
R 2w X 2

Proof
Them = 1 case is easy to check and follows from the fact ta®) x[—1,13(u) =
fR(Sin(ZnX)/(ZnX))eZ”'”X dx. So, assume tham > 2, and consider a typical

(3.40)

f Sin(T (X1 — 1%2)  SINGT (X — 8nX1)) oriux g
R (XL — @1X2) 7T (Xm — 8mX1) )
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Let
=X —aX+1, Ii=1...,m—1
tm = Xm, (3.41)
so that
1 a3 ajap ajapas ag- ... am-1
X1 0 1 a aas a-...-am-1| /t
_10 0 1 ag a-... a8m-1
Xm 0 ..oon.. 0o 1 am_1 tm
0 .o 0 1
Let

K (y) E'sin(ry)/(ry).
Changing variables3(40 is

/Rm Kty - Ktm—DK(tm — am(ts + atto + agaptz + - - - +ag - ... - am—1tm))

'e27ri (tys1+---+tmsm) dt]_ . dtrn,

(3.42)
where
S1 = Ui,
Sp = apug + Uz,
S3 = azapuj + aguz + Uz,
S =4a1... U1 +a-... a_-1U2 + - + a-_1Uk—1 + Uk,
(3.43)
Now, K (y) = K(—Y), so, becausa, € {1, —1}, we find that 8.42 equals
/ K(ty) - Ktm_)K(@mtm —t1 —agty —agaptz —--- —ag - ... - am—1tm))
Rm

g2 (sit+msm) gt ... d,.

Applying [15, (4.28)] (to the variablé; with 1 = —amtm + a1to + ajasts +---+az -
...+ am—1tm), the above becomes

f X[-1/2.1/2] (v) X[-1/2.1/2] (v + S1) e27riv(—amtm+a1t2+a1a2t3+~--+a1~...~am_1tm)
RM ’ ’

K (tp) - - - K (ty_q)e¥ St+mSm) gy dt, - . . dty,.
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Integrating ovely, ..., tmh_1, we get

/R X-1/21/2] (V) x[-1/2,1/21 (v + S1) X[-1/2,1/2] (Q1v + )

" X[-1/2.1/2) (Q8v +83) - ... - x[-1/2.1/2] (@1 - ... - @m—2V + Sm-1)
. g2itm(Sntv(@1-...8m-1-am) gy, dt,,.

(3.44)

Now, if B(a) =#{i | &g = —1}iseven,them;-...-an=1,s0a;-...-an_-1 = am
and thusa; - ... - an—1 — an = 0. Hence the integral ovéy, pulls out as(sy) from
the integral.

Next, if 8(a) isodd, theray - ... -am = —1,s80a;1 - ... am—1 = —am and thus
a1 ... am-1 — am = —2am. Hence the integral ovey, gives us a(sm — 2amv),
which, when integrated over, pulls out a product of characteristic functions.

Hence, we find that{(44) (and hence that3(40) is

3(Sm)/ X[-1/2,1/2) (V) x[-1/2,1/2] (V + S1) X[-1/2,1/2) (Q1v + %) - ...
R

“X[-1/2,1/21 @1 ... - 3n—2V + Sm—1) dv if B(a)iseven (3.45)
1 Sm Sm Sm
Som_ m _ — 45 _ a]—
2X[ 1/2,1/2) (Zam) X[-1/2,1/2] <2am aty 1) X[-1/2,1/2] ( 1261m + 82)
Sm . .
F X[-1/2,1/2] (a1 CeerAme2o -+ 5m—1> if () is odd. (3.46)

We require the following two claims.

CLAIM 4
LetB(a) be odd, and assume that" ,; |uj| < 1. Then

Sm
_ al-... -k 1— =1 k=1,...,m—-1 3.47
X[ 1/2,1/2]( 1 ax L +Sk) (3.47)

Thus, 8.46) equalsl/2.

Proof
Becausex € {1, —1}, we have, from.43),

S =4a1-...-a-1(U1+aup +azauz+---+ag-...-ak—1Ux) . (3.48)
So the coefficient ofij in (3.47) is

(al-...-ak,l)(al-...-am,l)(a1~...-aj,1)
2am

+(a1~...~ak_1)(a1-...-aj_1).
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Wheng(a) is odd,[ ", a = —1; hence 8.49 equals

@ -...-&-1)(@-...-aj-1) c {:_L 1}

2 20 2
So
al-...-ak_1%+sk <1/2
(since we are assumirig", |uj| < 1), and hence the claim is proved. O
CLAIM 5

Let B(a) be even, and assume th@{"zl |ui| < 1. Then B.45 equals
8(sm) (1 —V(up, Uz, ...,a1- ... 8m-1Um))

with V(y) defined in 8.36).

Proof
In (3.45, we have, by §.49),

X[-1/2,1/2) (@1 - ... - Ak_1V + )
= xX[-1/212(@1-... &1 (v +Ur+aup +@auz+---+a- ... ak_1Uk)),

andwe candroptha -...-ax_1 € {1, —1} sincex[_1/2,1/2] (y) is even. Furthermore,
thed (sm) restricts us ta; +agus +agauz+---+az-...-an—1Um = 0. And because
we are assumind_\", |ui| < 1 < 2, we may apply I5, Lemma 4.3], obtaining the
claim. Note: In [15, (4.32)], n could read n— 1 without affecting the truth of the
equation since, in the notation of that papes(uf) fa(v +u1+---+un) = fao(v). O

We are now ready to complete the proof of this lemma. By Clajtine contribution
to (3.39 from a with 8(a) odd is

1
Z ZehP@
= 2
B(a) odd
But we are assuming € {1, —1}, so the above is
G (3.50)

The contribution to §.39 from a with g(a) even is, by Clain®,

> 8(sm)(L— V(Ui auy,....a1- ... am-1Um)) . (3.51)

a
B(a) even
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Now,

Sn=a1-...-an-1 (U1 +aUz+@a@Uz+---+ar-...-an-1Um)
= amU1 + amauU2 + amayauz + - -- +amay - ... - dm—1Um

becausd [, a = 1 wheng(a) is even. Let
C=(C1,...,Cm) = (a8m, 8ma1, amard, ..., 8mar - ... - am-1).

Now, becauscﬂimzla4 = 1, cranges over alin-tuples withc;j € {1, —1} andcy = 1.
So, summing over suoty we find that 8.51) equals

m
D 8D cjuj | A=V @mcus, ..., anCmlim)) - (3.52)
c =1

But, becaus&/ (—y) = V(y), the above is (regardless of the valueagf= +1)

m
ZS chuj (1—V (CiU1, ..., CmUm)) . (3.53)
c j=1
This, in combination with§.50, establishes the lemma. O
3.4.l.h.s.= rh.s.
LEMMA 4
We have
/ ndui ﬂ(ui)=/ Fo(u)du.
RlFll iEF@ R
Proof
Both are equal, by Fourier inversion, ¢ ., fi (0). o
LEMMA 5
We have
dui fiu) | & u | = [ Fe(x)dx.
/RM [Tdufiwn|s{ > u fR (%)
ieF, ieF,
Proof

We obtain the lemma by Parseval’s formula. O
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LEMMA 6
Let Hc Fy, H #£ @. Then

/ (H f')“”( [1f )(U) ul du.

> u

keH

ieH ieH¢

Proof
We obtain the lemma by Parseval’s formula. O
Now, W2, = W_1, so we need to comparé g9, with & = —1, to (3.19. By
Lemmasi—6, write (3.39 as

v(F)

Z< “"ETT (Pe+Qr+ R (3.54)
=1

with

Py =(|Fe|—1)!(_—1>/ Fe(u) du,
2 ) Jr

Q¢ = (IFel — 1)!/]R Fe(x) dx,

- (IHI—l)!(Ile—l—IHI)‘/ (ﬂf)(u)(ﬂ f)<u>|u|du

[H,HC] icH ieH¢
(3.55)

Expanding the product ovér we get

Z( 2Ny (]_[ Qz) > <]_[ P@) (]_[ Rg) , (3.56)

S \le&t TCS \LeT¢ LeT

whereSranges over all subsets {)I cee, v(E)}. (We take empty products to be 1.)
Expanding the produdt[,.; R, we find that 8.56) is

S0 % ([Te) X ([T 7 (com ST 041~

(eSF TCS \teT© H j=1

~(|Fe; | — 1= [Hj ) f(]_[ fl)(U) [T * (U)Iu|du> (3.57)

ieH;j ieHf
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where ", is over all [T|-tuples ([Hl, HE], ... . [HiT). chT‘]) and whereT =
{€1.....41}. (f T = ¢, we take the large bracketed factor to be 1. And i« ¢,
but) ", contains no terms, we take it to be zero.) We have thus expressed; i (
the r.h.s. of 8.7) in a form that can easily be compared with the I.h.s., as expresse
in (3.13.

More precisely, a typical term in3(13 is specified byF,,s, Shs, &,
(A; B). The sum overE arises from combinatorial sieving, and the sum o8e
{1, e, v(E)} arises from multiplying out the explicit formul&(L2). The sum over
S C Scomes from deciding which prime powers are paired up to produce squar
and which are already squares). (A; B) accounts for all ways of pairing ugp.
The contribution to §.13 from a typical term is

ea”“ﬁﬁ(f]uawﬁy/auma

eeschs

(H(IFeI—l)'( >/leg(u)du)

eSS

j=1

=PNWW(H@ [1P
e o LeS;
1S21/2 o
2272 ] (}Faj|—1)!(|Fbj}—1)!/RFaj(u)Fbj(u)|u|du . (3.58)

j=1

1S21/2
: (252'/2 [T (Fe| =) (JFe;| - 1)!/RFAaj (u)Fp, (u) [ul du)

On the other hand, in3(57), a typical term is specified b¥,, s, Shs, T,
([Hl, HELL ... [HiT HICTI])' Set

Frns.={Fel€e Shs) U {Felte s U{Faj Uy []=1....1%I/2},
Hl = Fal, Hl = Fb17
: : (3.59)
Hisi/2 = Fag,) H|Csz\/2 = Foig| -

Shs and T are chosen in the obvious way (so that both product®sf match,
and both products oP’s match). Notice thatT| = |S|/2 and thatv(F,,s) =

V(Erhs) +1=20/2.
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The contribution to §.57) from this term is thus

(_2)n—v(F|.h.s,)+Szl/2( 1_[ QZ) (1_[ pe)
eesc.h.s. ZE%
1S21/2 ) )
D= (|Faj]—1)!(|Fbj|—1)!/ Fa; (U)Fp; (U) Jul du |,

j=1 R
(3.60)
which is equal, becaugé&| is even, to 8.59).
So every term on the |.h.s. has a corresponding term on the r.h.s.
Conversely, this method of matching (i.63,59) produces for every term on the

r.h.s. its corresponding term on the L.h.s. (with the convention that we disregard,

the r.h.s., any term withT| > 1 but),, empty; we can do so since these terms
contribute nothing to3.57).

Thus ¢.13 = (3.39 and Theorem 3.1 is proved. O

3.5. Examples

One term for n= 17
Letn =17, and let

Eins =[F1, F2, F3, F4, Fs5, Fg, F7]
=[{1,2,13},{4},{3,6,7,9,17}, {8, 10,11}, {5, 12}, {14}, {15, 16}],
Shs.=1{1,2,3,5,6}, Shs. =47},
S =1{1,25,6}, S = {3},
(A;B)=(1,5;2,6). (3.61)

This corresponds on the r.h.s. to

Frns = [31. 82, 83, 54, 55] ,

§1 = Fa, S2 = F7, 3 = Fs,

Sa=F1UFR,, S5 = F5 U Fe,

Shs.=1{3,4,5}, She. = (1.2},

T = {4, 5}, T¢={(3},

Hy = Fq, Hf = P,

Ho = Fs, H5 = Fe. (3.62)
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Tables3.1and 3.2 show the correspondence between terms on the l.h.s. (as e
pressed in3.59) and the r.h.s. (as expressed ind(0)).

3.6. Analogous results f@ggLy /Q

Let L(s, 7) be theL-function attached to a self-contragrediemt=£ 7) automorphic
cuspidal representation of GgloverQ. Such anL-function is given initially (foris
sufficiently large) as an Euler product of the form

M
Lem =]]Lsap) =]]]]@-ax(p. Hp™> "
p p j=1

The conditiont = 7 implies thata; (p, j) € R. The Rankin-Selberd.-function
L(s,m ® m) factors as the product of the symmetric and exterior square
functions (seed]):

L(s, 7 ®7) =L(s,m ®n) = L(s, 7, VAL(S, 7, AD)

and has a simple pole at= 1 which is carried by one of the two factors. Write the
order of the pole of_(s, 7, A%) as(8(xr) + 1)/2 (so thats () = +1).

We desire to generalize Theoréirl to the zeros oL (s, 7 ® xq) whose Euler
product is given by

M
Ls, 7@ xd) =[[[[Q— xa(Pex(p, NP7
p j=1

Now, whenr = 7, L(S, # ® xq) has a functional equation of the form

M
o5, 7 ® xd) =7 "2 T((S+ rwxa(1)/2L(S 7 ® xa)
j=1

=&e(8,7m Q@ xd)P(L -8 7 Q xd),
where theu, g4 (j)’s are complex numbers that are known to satisfy
R (Hroxa(])) > —1/2
(and are conjectured to satisfy(1.rgyq(j)) > 0). We also have

(8, ® xd) =& ® Xd)Q;éﬁ/z = iQ;gxﬁ/Z
with e(r ® x4) = x/'(d), wherey’ is a quadratic character that depends only on
7. Whené(z) = —1, all twists haves(m ® xq) = 1. If () = 1, then half the
L(s,m ® xd)'s haves(m ® xq) = 1 and the other half haws7r ® xq) = —1 (with
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Shs.S{L....v(Eins)} S S Shas. with S| even.(A; B)
accounts for all ways of pairing ugp. Further,
Shs. C {1 »»»»»
| T|-tuples([H1. ch] s [HT H|T|c]). The matching is as
described in&.59.

v(Frhs)} T € Shs, andH is over all

In]] Fins | Shs | & | AB || Finse | Shs | T H
1 [{(1})] 9 9 = [{1] 0 U =
{1} ) = {1 ] =
2 {1, 2)] ] [ — {1, 2]] ] ] —
1 ? — 1 7 =
[{1}, {2} 0 ) = [{1, {21 0 @ =
{1} % = {1} 7 —
2 @ — 2} 7 =
{12} [ — 1,2 ] =
L2} | (L2 [{1, 2}] {1} | [{1.{2]
3 [{1, 2, 3}] 0 % = [{1, 2, 3}] ] ] —
{1} ) = {1} ) —
[{1.2}, {3)] 0 9 = [{1. 2}, {3)] 0 0 =
{1} 9 = {1} ) =
{2} ) = {2} ) =
1,2 ] — 1,2 ] —
L2} | (1,2 [{1,2,3)] {1} {1 | [{1,2}, (3}
[{1, 3}, {2] 0 ) = {1, 3}, {2] 0 @ =
{1} 0 = {1} ) =
{2} 0 = {2} ] =
1,2 ] — 1,2 ] =
L2} | (1,2 [{1.2,3)] {1} {1 | [{1,3}. (2]
[{2, 3}, {1)] 0 ) = [{2,3}, {1)] 0 9 =
1 ] — (1 7 —
{2} 9 = {2} ] =
{12} [ — (1,2 ] —
(L2} | (L2 [{1.2,3)] {1} {1 | [{2.3}. (1]
[{1}. {2}, {3}] 0 ) = [(1}. {2}, {3}] 0 ) =
{1} ) = {1} 0 =
{2} 9 = {2} ) —
{3} 0 = {3} ) =
1,2 ? — 1,2 ] =
(L2} | (L2 [{1.2}, {3)] {1} | [{1.{2]
{13} 9 = [(1}. {2}, {3}] {1, 3} ) =
L3 | (13 [{1. 3}, {2)] {1} | [Y,.{3]
2,3 ) = [{1,.{2,.{3] | (2.3 ) =
2.3} | (23 [{2.3}, {1)] {1} 1| [2,{3)]
{1.2,3} 0 = [{1,{2).{3)] | {1,238 | ¥ =
(1.2} | (L2 [{1.2}, {3)] (L2} | {1 | [{1).{2)]
(L3 | (L3 [{1. 3}, {2)] L2} | {1 | [{1).{3)]
(2.3} | 23 [{2,3}, {1)] (L2} | {1 | [{2.{3]
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Table 3.2. Terms on the r.h.s. that are discarded since they
contribute nothing to3.57).

In]| Fme | Sns | T | H |
(1] 1 [ @ [ @ [none]
2 ({1}, {2)] {1} 1) none

{1, {2 2} 2} none
[{1}, {2}] (1,2 (1,2} none

3 [{1, 2}, {3}] {2} {2} none
[{1,2}, {3}] (1,2 2} none
[{1,2}, {3}] (1,2 (1,2 none
[{1,3}, {2]] {2} 2} none
[{1, 3}, {2}] {1,2} (2} none
[{1, 3}, {2}] {1, 2} {1, 2} none
[{2, 3}, {1)] {2} {2} none
[{2.3}, {1)] 1,2 (2} none
[{2,3}, {1}] (1,2 (1,2 none
({1}, {2}, {3}] {1} {1} none
[{1. {2}, {3}] {2} {2} none
[{1},{2}, {3} (3} {3} none
HY.{20.{31 | {12 {1} none
[{1}, {2}, {3} {1,2) (2} none
[{1},{2},{3}] (1,2 1,2 none
[{1}. {2}, {3}] {1, 3} 1 none
{L.{2.{3] | {1.3) {3} none
HY.{23.{3)] | {13 {1,3} | none
HY.{21.{3)] | {23 {2} none
({1}, {2}, {3} (2,3} (3} none
[{1}, {2}, {3}] (2,3} 2,3 none
[{1.{2.{3)] | (1.2.3) {1} none
[{1.{23.{3)] | (1L.2.3) {2} none
L. {2.{3)] | (1,.2,3} {3} none
[{1},{2},{3}] | {1,2,3} {1, 2} none
[(1}.{2).{3)] | (12,3} | {13} | none
[({1}.{2}.{3)] | (.23} | {2.3) | none
[{1}, {2}, {3}] {1,2, 3} {1,2,3 none
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the correspondingl’s lying in fixed arithmetic progressions to the modulus of the
charactery’). Whene(mr ® xq) = 1, we write the nontrivial zeros di(s, 7 ® xq4) as

12+iy D, i==£1,42,43,...,

with
2 1 1 2
Ry S RS <0<y <Ry D <.
and

(=k) (9]

Ye@xa = Vo

Whene(r ® xq) = —1,y =0isazerool(s,7 ® xq), and we index the zeros as

l/2+|y(ng, j €z,

with

(=2 (Gh) () @ 2
- Rrexe = RVrgxa < Yeoxa = 0= Rrgxy < Rrgyg < -

and
=k _ (k)
Yr®xd

= "Vr®xd
Next, letD(X) be as in 8.4), and let

Dy, +(X) = {de D(X) : e(r ® xq) = 1},
Dy —(X)={d e D(X) : e(r ® xq) = —1}.

Then, assuming, foM > 4, the Ramanujan conjecture
laz (P, DI <1,

we have the following theorem.

THEOREM 3.2

Let f(X1,...,%Xn) = ]'[I _1 fi(xi) be even in all its variables with each ih S(R).
Assumefurtherthat(ul,.. up) is supported mZI 1 Uil < /M. Thenifs(r) =
ll

(J1) (J2) (in)
Z f (LMyﬂ@l’Xd’ LMYr@ya - L Vmégxa)

lim ——
X=00 | Dy +(X)| deDyr.+(X) 1. in

/ f OOW"H(x) dx, (3.63)
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and if§(;r) = —1 (so that all twists have(r ® xq) = 1),

i 1 * (jv) (j2) (in)
x“—r>noo|D(X)| Z Z f (LMyJT®Xd’ LMVr@xgr -+ LMVJT@%Xd)

deD(X) j1,..rJin
— / f(x)WL(J’gp(x) dx, (3.64)
Rn
where
M log X
Lm = —F——,
b 21
W(gp(Xe, - - - Xn) = det(K_1(Xj, X)) 1<j<n
1<k<n
W0, - Xn) = det(Ka(x] X0) 1<) <n
s 1<k<n

WOH(xa, - Xn) = det(K-1(xj, X0)1<j<n
1<k<n

n
+ ) 8(x) det(K_1(Xj. X)) 1< £v<n »
=1 1<k#v<n

_ Sin( (X — y)) 8sin(n(x +VY)

e ¥) == =y X+ Y)

(Wfl!)o(x) = 1 — sin(27x)/(2nrx) + §(x)) and WhereZ’jk1
(0), £1, £2, ..., with ji, # =]k, if K1 # ko.

"""" in IS over k =

RemarkAgain, as in Theorem.1, the assumptiond; even andf of the form[] f;
can be removed.

Proof
The proof is similar to that of Theorem 1. The main difference is in the explicit
formula that, forL (s, 7 ® xq), reads

Z Fe (LmYrer) :/ Fe(x)dx + O(1/log X)

R
2 & A(m)ay(m) ~ ( logm
_ F 3.65

MIongX::1 m1/2 xa(m) Z(Mlogx) (3.65)

Yn®xq

where
M
ar(pf) =) ak(p, ).
j=1
We consider the two caseXyr) = —1 andé(;r) = 1, separately.
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For both cases we require the estimates

D larMAM)? /m ~ log’(T)/2,

m<T

> ar(phlogp ~ —8(m)T, (3.66)
p<T

> lar(p)log pl? /p ~ log*(T)/2

p<T

(see [L5] and [6]). For these estimates, ardd > 4, the Ramanujan conjecture is
assumed; these three are needed in the analogs of €J@wbclaim3.22 and Sub-
claim3.24

Whené(r) = —1, all twists haves(m ® xq) = 1. The combinatorics work out
exactly the same. The smaller supportfofompensates for the presence of ién
the explicit formula.

Whend(r) = 1, we need to examine the two subcasds, ® xq4) = 1 and
e(m™ ® xq) = —1, separately.

As the analog of Lemma, we have the following lemma.

LEMMA 7
Whens () = 1,
1 2 \*& = Amya,(m)
im 5ot 2 (woax) 1T~ ors xam)
X—>oo|Dn,+(X)|d€Dm+(x) M log X et m?Y/
. logm 1/S] .
-ng<Mlg X): > |3 H/Fg(u)du
9 SCS eSS R
|S| even
1S,1/2 o
D0 2% ] f |ulFa (W) Fo; (u)du |, (3.67)
(A:B) j=1 ’R
where S= {l1,...,lk}. > s,cs Iis over all subsets Sof S whose size is even.

|S| even
Z(A; B) is over all ways of pairing up the elements of 5,(x) is defined in §.117).

Proof
Notice that the only difference in the r.h.s. of this lemma as compared to Lenigna

in the factor -
1 R
<§> n/Fg(U)dU.
eSS R

The difference in sign is accounted for by the opposite sigi .ind. O
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So, we have that the I.h.s. df.63, for D, 4, tends, asX — oo, to

]_[fRFg(x)dx>

LeSt

v(F)

D" E T aFd - Z(
E =1 S
1>|$| R

— Fe(u)du
x () I

$CS
|S| even
1S1/2 ) .
> 2902 T [ jul o Py, @ du
(A:B) j=1 7%

This expression matches.889 with ¢ = 1; that is, this equals (in the notation of
Section3.3)

/ f(x)W+(x)dx=/ f(x)Wfr”)O(x)dx.
RN RO :

For thee(r ® xq) = —1 case, there is always a zercsat 1/2,
0
Vadg = 0.

and, before applying the combinatorial sieving of Secfidh) we need to isolate this
zero. Now

Zkf <LMy7§{gl>))(d, LMV;g)xd""’ LMVég;d)

J1,es) in

S (B LBl L)
j170,.... in#0

n

k f (.\F) (_v ) .

3 Y (L L2 0 Lyl L)

v=1 ju=0

jk#0,k#v

We only focus on the first sum on the r.h.s. above. The same technique applies
the remaining sums.
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By combinatorial sieving and the explicit formula, we find that

(jv (i2) (Jn)
Z f(LMJ/ ®Xd’ yﬂ@Xd""’L Vn’@?xd>
j1#0,..., jn#0
v(F)

=Y " E T aFd -1
FE =1

2 & A(m)ag(m)
'(/RFK(X)O'X_ Mlogxg1 mz xd(™

A logm
() - R0+ 0w/ogx). @68
But, by (3.66),
4 A(pHar(p?) - ( 2logp
—Fe(0) = M|ogxz p = (MIogX)

and this has the effect, iB(69), of changing the sign of the contribution from the
squares of primes. O
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