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The zeros of random polynomials cluster uniformly

near the unit circle

C. P. Hughes and A. Nikeghbali

Abstract

In this paper we deduce a universal result about the asymptotic distribution of roots of
random polynomials, which can be seen as a complement to an old and famous result
of Erdős and Turan. More precisely, given a sequence of random polynomials, we show
that, under some very general conditions, the roots tend to cluster near the unit circle, and
their angles are uniformly distributed. The method we use is deterministic: in particular,
we do not assume independence or equidistribution of the coefficients of the polynomial.

1. Introduction

In this paper, we are interested in the uniform concentration near the unit circle of roots of poly-
nomials.

Let (PN (Z))N�1 be a sequence of polynomials. Denote the zeros of PN (Z) by z1, . . . , zN . Let

νN (ρ) := #
{

zk : 1 − ρ � |zk| � 1
1 − ρ

}
(1)

be the number of zeros of PN (Z) lying in the annulus bounded by 1 − ρ and 1/(1 − ρ), where
0 � ρ � 1, and let

νN (θ, φ) := #{zk : θ � arg(zk) < φ} (2)

be the number of zeros of PN (Z) whose argument lies between θ and φ, where 0 � θ < φ � 2π.

We say that the zeros cluster uniformly around the unit circle if for all fixed 0 < ρ < 1,

lim
N→∞

1
N

νN (ρ) = 1 (3)

and

lim
N→∞

1
N

νN (θ, φ) =
φ − θ

2π
. (4)

The purpose of this paper is to find a general but simple condition for when the zeros cluster
uniformly around the unit circle.

Theorem 1. Let (PN (Z)) be a sequence of polynomials, with

PN (Z) =
N∑

k=0

aN,kZ
k,
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Zeros of random polynomials

such that aN,0aN,N �= 0 for all N . Let

LN (PN ) = log
( N∑

k=0

|aN,k|
)
− 1

2
log |aN,0| − 1

2
log |aN,N |.

If

LN (PN ) = o(N),
then the zeros of this sequence cluster uniformly near the unit circle, i.e. for all 0 < ρ < 1,

lim
N→∞

1
N

νN (ρ) = 1,

and for all 0 � θ < φ � 2π,

lim
N→∞

1
N

νN (θ, φ) =
φ − θ

2π
.

where νN (ρ) and νN (θ, φ) are defined in (1) and (2) respectively.

The second part of our theorem, on νN (θ, φ), follows from the celebrated result of Erdős and
Turan [ET50] on the distribution of roots of polynomials.

Theorem 2 (Erdős–Turan). Let (ak)0�k�N be a sequence of complex numbers such that a0aN �= 0,
and let

P (Z) =
N∑

k=0

akZ
k.

Define

LN (P ) = log
N∑

k=0

|ak| − 1
2

log |a0| − 1
2

log |aN |. (5)

Then ∣∣∣∣ 1
N

νN (θ, φ) − φ − θ

2π

∣∣∣∣2 � C

N
LN (P )

for some constant C, where νN (θ, φ) is defined in (2).

The above theorem shows that if LN (P ) is small compared with the degree N , then the angles
of the roots are nearly uniformly distributed, and that is precisely the reason why this theorem has
been extensively used to prove asymptotic uniform concentration near the unit circle of the roots
of some families of random polynomials.

In this paper, we prove a natural complement to this result.

Theorem 3. Let (ak)0�k�N be a sequence of complex numbers such that a0aN �= 0, and let

P (Z) =
N∑

k=0

akZ
k.

Let LN (P ) be defined as in (5). Then for 0 < ρ < 1,(
1 − 1

N
νN (ρ)

)
� 2

Nρ
LN (P )

where νN (ρ) is defined in (1).

These two theorems on deterministic polynomials give a sufficient condition for the roots of
random polynomials to cluster uniformly around the unit circle, and we show how results of Šparo
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and Šur [SS62], Arnold [Arn66], and Shmerling and Hochberg [SH02] follow as corollaries of this.
Indeed, we show that some of their conditions on the coefficients of the polynomials can be dropped.

More precisely, let (Ω,F , P) be a probability space, on which a random array (aN,k) N�1
0�k�N

is
defined. Consider now the sequence of random polynomials (PN (Z)), with

PN (Z) =
N∑

k=0

aN,kZ
k. (6)

The asymptotics for roots of random polynomials in the complex plane have already been studied
in the special case where

PN (Z) =
N∑

k=0

akZ
k;

which corresponds to the special array (aN,k)k�N = (a0, a1, . . . , aN ), and it is not our intention
to give a full historical account here (see [BS86], [Far98], [EK95] for more details and references),
but we rather mention the papers of Šparo and Šur [SS62], Arnold [Arn66], and Shmerling and
Hochberg [SH02] which contain the most general results about uniform clustering near the unit
circle. Šparo and Šur [SS62] have considered i.i.d. complex coefficients (an)n�0 and have shown
that under some integrability conditions, the zeros of such sequences cluster uniformly near the
unit circle, with convergence in (3) and (4) holding in probability. Arnold [Arn66] improved this
result and proved that the convergence holds almost surely and in the pth mean if the moduli of ak

are equidistributed (plus some integrability conditions). Recently, Shmerling and Hochberg [SH02]
have obtained stronger results: they have shown that the condition on equidistribution can be
dropped if (an)n�0 is a sequence of independent variables which have continuous densities fn which
are uniformly bounded in some neighbourhood of the origin with finite means µn and standard
deviations σn that satisfy the condition

max
{
lim sup

n→∞
n
√

|µn|, lim sup
n→∞

n
√

|σn|
}

= 1,

P{a0 = 0} = 0.

The authors mentioned above consider the cases of (3) and (4) separately. They prove (4)
using Theorem 2 and prove (3) using techniques from random power series. In particular, to prove
(4), they are able to show that LN (P )/N → 0 as N → ∞ and this proof is only a few lines,
while the techniques used to prove (3) are more sophisticated. Thus, a side benefit of Theorem 3
is that once one proves the uniform distribution of the angles using Theorem 2 of Erdős and
Turan, then one actually proves uniform clustering near the unit circle considerably simplifying the
arguments in the proofs on uniform clustering in [Arn66] and [SH02]. Moreover, as we shall see, our
results also give us an estimate for the rate of clustering (that is, how quickly ρ → 0 as a function
of N).

The historical results we have mentioned above do not apply to the more general case of
sequences of random polynomials of the form (6) we are dealing with, and they also do not lead
to anything interesting in the case of deterministic sequences of polynomials (the asymptotic study
of roots sequences of deterministic polynomials occurs in problems of equidistribution of algebraic
integers; see, for example, [Bil97]). Moreover, these results do not cover the cases where the coeffi-
cients are dependent with different distributions: for example, in the semiclassical approximations
for multidimensional quantum systems, one needs to locate roots of high-degree random polynomi-
als with dependent and non-identically distributed coefficients [BBL96] (we should point out that
the authors in [BBL96] have observed the uniform clustering in the special case of self-reciprocal
polynomials with complex Gaussian coefficients with finite variance).

736



Zeros of random polynomials

The aim of this paper is to show that the phenomenon of uniform concentration of zeros around
the unit circle is universal, in the sense that no independence or equidistribution on the coefficients
is required, but only conditions on their size. Our method, based on elementary complex analysis,
reduces both convergences (3) and (4) to the same problem, namely showing that LN (P ), defined
in (5), is small compared with the degree N of the polynomial P , thus complementing Theorem 2
of Erdős and Turan.

The structure of this paper is as follows. In § 2 we prove our main theorems and then, in § 3, we
use them to deduce clustering of zeros for general sequences of random polynomials.

2. Basic estimates

For N � 1, let (ak)0�k�N be a sequence of complex numbers satisfying a0aN �= 0. From this sequence
construct the polynomial

PN (Z) =
N∑

k=0

akZ
k,

and denote its zeros by zi (where i ranges from 1 to N). For 0 � ρ � 1, we are interested in
estimates for

ν̃N (ρ) = #{zj , |zj | < 1 − ρ},

νN (ρ) = #
{

zj, |zj | >
1

1 − ρ

}
,

νN (ρ) = #
{

zj , 1 − ρ � |zj | � 1
1 − ρ

}
,

which counts the number of zeros of the polynomial PN (Z) which lie respectively inside the open
disc of radius 1−ρ, outside the closed disc of radius 1/(1−ρ), and inside the closed annulus bounded
by circles of radius 1 − ρ and 1/(1 − ρ).

Theorem 4. For N � 1, let (ak)0�k�N be a sequence of complex numbers which satisfy a0aN �= 0.
Then, for 0 < ρ < 1

1
N

ν̃N (ρ) � 1
Nρ

(
log

( N∑
k=0

|ak|
)
− log |a0|

)
, (7)

1
N

νN (ρ) � 1
Nρ

(
log

( n∑
k=0

|ak|
)
− log |aN |

)
, (8)

and (
1 − 1

N
νN (ρ)

)
� 2

Nρ

(
log

( N∑
k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

)
. (9)

Proof. An application of Jensen’s formula (see, for example, [Lan99, p. 341]) yields

1
2π

∫ 2π

0
log |PN (eiϕ)|dϕ − log |PN (0)| =

∑
|zi|<1

log
1
|zi|

where the sum on the right-hand side is on zeros lying inside the open unit disk. We have the
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following minorization for this sum:∑
|zi|<1

log
1
|zi| �

∑
|zi|<1−ρ

log
1
|zi|

� ρν̃N (ρ)

since if 0 � ρ � 1, then for all |zi| � 1 − ρ, log(1/|zi|) � ρ, and by definition there are ν̃N (ρ) such
terms in the sum.

We also have the following trivial upper bound

max
ϕ∈[0,2π]

|PN (eiϕ)| �
N∑

k=0

|ak|,

and so

ρν̃N (ρ) � 1
2π

∫ 2π

0
log |PN (eiϕ)|dϕ − log |a0|

� log
( N∑

k=0

|ak|
)
− log |a0|

which gives (7).
To estimate the number of zeros lying outside the closed disc of radius (1 − ρ)−1, note that

if z0 is a zero of the polynomial PN (Z) =
∑N

k=0 akZ
k, then 1/z0 is a zero of the polynomial

QN (Z) := ZNPN (1/Z) = aN + aN−1Z + · · · + a0Z
N . Therefore, the number of zeros of PN (Z)

outside the closed disc of radius 1/(1− ρ) equals the number of zeros of QN (Z) inside the open disc
of radius 1 − ρ. Therefore, from (7) we obtain

1
N

νN (ρ) � 1
Nρ

(
log

( N∑
k=0

|ak|
)
− log |aN |

)
,

which gives (8).
Since

N − νN (ρ) = ν̃N (ρ) + νN (ρ)
we immediately obtain (9).

Theorem 3 is merely a restatement of (9). Theorem 1 follows from combining this with the result
of Erdős and Turan, Theorem 2.

Remark. Note that if ak �→ λak for some λ �= 0, then the zeros of PN (Z) are unchanged, and

log
( N∑

k=0

|λak|
)
− 1

2
log |λa0| − 1

2
log |λaN | = log

( N∑
k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

so, in some sense, this is a natural function to control the location of the zeros.

3. Uniform clustering results for roots of random polynomials

We require no independence restriction on our random variables. We only assume that

P{aN,0 = 0} = 0 (10)

and
P{aN,N = 0} = 0, (11)

for all N .

738



Zeros of random polynomials

3.1 The main theorem for random polynomials

Theorem 5. For N � 1, let (aN,k)0�k�N be an array of random complex numbers such that
P{aN,0 = 0} = 0 and P{aN,N = 0} = 0 for all N . Let

LN = log
( N∑

k=0

|aN,k|
)
− 1

2
log |aN,0| − 1

2
log |aN,N |. (12)

If

E[LN ] = o(N) as N → ∞, (13)

then there exists a positive function αN satisfying αN = o(N) such that the zeros of the random
polynomial

PN (Z) =
N∑

k=0

aN,kZ
k

satisfy

lim
N→∞

E

[
1
N

νN

(
αN

N

)]
= 1

and

lim
N→∞

E

[
1
N

νN (θ, φ)
]

=
φ − θ

2π
.

In fact the convergence also holds in probability and in the pth mean, for all positive p.

Furthermore, if there exists a (deterministic) positive function αN satisfying αN � N for all N ,
such that

LN = o(αN ) almost surely, (14)

then both convergences hold almost surely (and also in the pth mean, for all positive p).

Proof. The convergence in mean for νN (αN/N) is a consequence of (9). We have

1 − E

[
1
N

νN

(
αN

N

)]
� 2

αN
E[LN ].

Therefore, we see that the result follows for any positive function αN satisfying αN � N for all N
such that E[LN ]/αN → 0, and such a function exists by assumption (13), for example

αN = N min
{

1,

√
E[LN ]

N

}
.

Similarly from Theorem 2 and (13) we have that

E

[∣∣∣∣ 1
N

νN (θ, φ) − φ − θ

2π

∣∣∣∣2
]

� C

N
E[LN ]

= o(1).

Note that the mean square convergence implies convergence in the mean, as in the theorem,
and also convergence in probability. Note, further, that since the random variables are uniformly
bounded (0 � (1/N)νN (θ, φ) � 1), mean convergence implies convergence in the pth mean for all
positive p.

In the same way, the almost sure convergence of (1/N)νN (αN/N) and (1/N)νN (θ, φ) follows
immediately from (9) and Theorem 2, using (14).
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In the following sections, we give some sufficient conditions, which are easy to check, for Theo-
rem 5 to hold. We first consider the case of general sequences of random polynomials for which there
exist no previous results to our knowledge; then we deal with the classical random polynomials.

3.2 General sequences of random polynomials
Proposition 6. Let (aN,k) be an array of random complex numbers which satisfy (10) and (11).
Assume that E[log |aN,0|] = o(N), and E[log |aN,N |] = o(N), and that there exists a fixed 0 < s � 1
such that

N∑
k=0

E[|aN,k|s] = exp(o(N)).

Then there exists a positive sequence (αN ) subject to αN = o(N) such that

lim
N→∞

E

[
1
N

νN

(
αN

N

)]
= 1

and

lim
N→∞

E

[∣∣∣∣ 1
N

νN (θ, φ) − φ − θ

2π

∣∣∣∣
]

= 0.

Proof. Since 0 < s � 1 we have the following concavity inequality:

E

[
log

( N∑
k=0

|aN,k|
)]

� 1
s

log
( N∑

k=0

E[|aN,k|s]
)

.

By assumption, the right-hand side is o(N). Therefore LN , defined in (12), satisfies LN = o(N),
and the result follows from Theorem 5.

Remark. The proposition shows that under some very general conditions (just some conditions on
the size of the expected values of the modulus of the coefficients), without assuming any indepen-
dence or equidistribution condition, the zeros of random polynomials tend to cluster uniformly near
the unit circle. We can also remark that we do not assume that our coefficients must have density
functions: they can be discrete-valued random variables.

Now we give two examples which could not be dealt with using the previous results available in
the literature.

Example 1. Let aN,k be random variables distributed according to the Cauchy distribution with
parameter N(k + 1). The first moment does not exist but some fractional moments do, and in
particular we have, for 0 � s < 1,

E[|aN,k|s] =
N(k + 1)

π

∫ ∞

−∞

|x|s
x2 + N2(k + 1)2

dx

=
1
π

N s(k + 1)sΓ
(

1
2

+
s

2

)
Γ
(

1
2
− s

2

)
.

Moreover,

E[log |aN,k|] = log(N(k + 1)).

Hence, we can apply Proposition 6 and deduce that the zeros of the sequence of random polynomials
with coefficients (aN,k) N�1

0�k�N
where aN,k are chosen from the Cauchy distribution with parameter

N(k + 1) cluster uniformly around the unit circle.
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Example 2. For each N , let (aN,k), 0 � k � N , be discrete random variables taking values in
{±1, . . . ,±N}, not necessarily having the same distribution. Then for any positive function αN � N
such that αN/ log N → ∞ we have

lim
N→∞

1
N

νN

(
αN

N

)
= 1, almost surely,

1
N

νN (θ, φ) → φ − θ

2π
, almost surely.

This follows from Theorem 5, since for any choice of the aN,k we have the deterministic bound

LN = log
( N∑

k=0

|aN,k|
)
− 1

2
log |aN,0| − 1

2
log |aN,N |

� log((N + 1)N) < 2 log(N + 1)

with this choice of αN , LN = o(αN ) almost surely.
As a special case, we have the well-known random polynomials

∑N
k=0 µkZ

k, where µk = ±1,
with probabilities p and (1 − p). Moreover, we have from the Markov inequality, the following rate
for the convergence in probability: There exists a constant C such that

P

{(
1 − 1

N
νN

(
αN

N

))
> ε

}
� 1

ε

C log N

αN

P

{∣∣∣∣ 1
N

νN (θ, φ) − φ − θ

2π

∣∣∣∣ > ε

}
� 1

ε2

C log N

N

for any fixed ε > 0.

3.3 Classical random polynomials
Let us now consider the special, but important case of the classical random polynomials as mentioned
in § 1, that is

PN (Z) =
N∑

k=0

akZ
k. (15)

These polynomials have been extensively studied (see, for example, [BS86] or [Far98] for a
complete account).

The results of the previous section take a simpler form in the special case of random polynomials
of the form (15). The conditions (10) and (11) become

P{aN = 0} = 0, for all N � 0.

In this more special case, we can deal more easily with almost sure convergence, which in
our framework is the strongest convergence. We proceed to give some simple-to-check sufficient
conditions on the moments of ak to ensure that Theorem 5 holds.

Theorem 7. Let (ak)k�0 be a sequence of complex random variables. Assume that the following
hold.

• There exists some s > 0 such that if λk := E[|ak|s], then λk < ∞ for all k, and

lim sup
k→∞

(λk)1/k = 1.

• There exists some t > 0 such that for all k,

ξk := E

[
1

|ak|t
]

< ∞ (16)
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and

lim sup
k→∞

(ξk)1/k = 1.

Then there exists a deterministic positive sequence (αN ) subject to 0 < αN � N for all N and
αN = o(N) as N → ∞, such that

lim
N→∞

1
N

νN

(
αN

N

)
= 1, almost surely

and

lim
N→∞

1
N

νN (θ, φ) =
φ − θ

2π
, almost surely.

In fact, the convergence also holds in the pth mean for every positive p.

The proof of this theorem requires the following simple lemma.

Lemma 8. If (λk) is a sequence of real non-negative numbers such that

lim sup
k→∞

λ
1/k
k � 1,

then there exists a sequence (εN ) of real positive numbers tending to zero such that

N∑
k=0

λk � exp(NεN )

for all N .

Proof. Let ε > 0 be arbitrarily small. Since lim supk→∞ λ
1/k
k � 1 there exists a constant C = C(ε)

such that λk � C(1 + ε)k. Therefore,

N∑
k=0

λk � C
(1 + ε)N+1 − 1

ε

� exp
(

N

(
ε +

log C − log ε + ε

N

))
,

where we have used the bound log(1+ ε) � ε for ε > 0. Hence, there exists an N0 = N0(ε) such that
for all N > N0

N∑
k=0

λk � exp(2Nε),

and since ε is arbitrary, this proves the lemma.

Proof of Theorem 7. Note that (16) implies P{|ak| = 0} = 0. Therefore, from Theorem 5 it is
sufficient to prove that there exists a deterministic sequence αN = o(N) such that (1/αN )LN → 0
almost surely, which by the Borel–Cantelli lemma would follow from showing that for any ε > 0,

∞∑
N=1

P

{∣∣∣∣ 1
αN

LN

∣∣∣∣ � ε

}
< ∞.
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First, from the concavity of log, we note that LN is positive since

LN := log
( N∑

k=0

|ak|
)
− 1

2
log |a0| − 1

2
log |aN |

� log(|a0| + |aN |) − 1
2

log |a0| − 1
2

log |aN |
� log 2.

Now, using the fact that{
1

αN
LN � ε

}
⊆

{
1

αN
log

( N∑
k=0

|ak|
)

� ε/3
}
∪

{−log |a0|
2αN

� ε/3
}
∪

{−log |aN |
2αN

� ε/3
}

we have

P

{∣∣∣∣ 1
αN

LN

∣∣∣∣ � ε

}
= P

{
1

αN
LN � ε

}

� P

{
1

αN
log

( N∑
k=0

|ak|
)

� ε/3
}

+ P

{−log |a0|
2αN

� ε/3
}

+ P

{−log |aN |
2αN

� ε/3
}

.

(17)

To calculate the first sum we wish to bound

P

{ N∑
k=0

|ak| � eεαN /3

}
.

For this event to happen at least one of the |ak| must be larger than eεαN /3/(N + 1). Therefore,

P

{ N∑
k=0

|ak| � eεαN /3

}
� P

{ N⋃
k=0

{
|ak| � 1

N + 1
eεαN/3

}}

�
N∑

k=0

P

{
|ak| � 1

N + 1
eεαN /3

}
.

By Tchebychev’s inequality we have

P

{
|ak| � 1

N + 1
eεαN /3

}
� E[|ak|s]

(1/(N + 1)eεαN /3)s
= λk(N + 1)s exp(−sεαN/3).

Summing this over k from 0 to N , and using Lemma 8, we see that there exists a sequence of
positive numbers (εN ) which tends to zero such that

P

{ N∑
k=0

|ak| � eεαN /3

}
� exp(s log(N + 1) − sεαN/3 + NεN ).

Hence if, for N � N0 for some N0 sufficiently large, αN is chosen so that

αN � 3NεN

sε
+

(
3
ε

+
6
sε

)
log(N + 1)

and subject to the extra conditions 0 < αN � N with αN = o(N), then we see that

∞∑
N=N0

P

{ N∑
k=0

|ak| � eεαN/3

}
�

∞∑
N=1

1
(N + 1)2

< ∞
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and, hence,
∞∑

N=1

P

{ N∑
k=0

|ak| � eεαN /3

}
< ∞. (18)

We now deal with the remaining two terms in (17). If αN/ log N → ∞, then by Tchebychev’s
inequality and the assumption that E[|a0|−t] < ∞, we have

∞∑
N=1

P

{−log |a0|
2αN

� ε/3
}

�
∞∑

N=1

E[|a0|−t]
exp(2tεαN/3)

< ∞.

Finally note that lim supN→∞ ξ
1/N
N � 1 implies there exists a positive sequence (ε′N ) tending to zero

such that ξN � exp(Nε′N ) for all N . Hence, by (16) and Tchebychev’s inequality,
∞∑

N=1

P

{−log |aN |
2αN

� ε/3
}

�
∞∑

N=1

E

[
1

|aN |t
]

exp(−2tεαN/3)

=
∞∑

N=1

ξN exp(−2tεαN/3)

�
∞∑

N=1

exp(Nε′N − 2tεαN/3)

and this sum is finite if

αN � 3Nε′N
2tε

+
3
tε

log N

for sufficiently large N .
Combining the previous two equations and (18) with (17) we conclude that if (αN ) is a deter-

ministic sequence satisfying 0 < αN � N for all N , αN = o(N) and
αN

log N + NεN + Nε′N
→ ∞

(and such a sequence exists since both εN and ε′N tend to zero), then for any ε > 0,
∞∑

N=1

P

{∣∣∣∣ 1
αN

LN

∣∣∣∣ � ε

}
< ∞,

which by the Borel–Cantelli lemma shows LN/αN → 0 almost surely, and the result now follows
from Theorem 5.

From Theorem 7 we deduce the following corollary.

Corollary 9. Let (ak)k�0 be a sequence of (possibly dependent) complex random variables such
that the moduli |ak| have densities which are uniformly bounded in a neighbourhood of the origin.
Assume that there exists some s ∈ (0, 1] such that if λk := E[|ak|s] then λk < ∞ for all k, and

lim sup
k→∞

(λk)1/k = 1.

Then almost surely the zeros of the classical random polynomial

P (Z) =
N∑

k=0

akZ
k

cluster uniformly around the unit circle.
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Proof. It suffices to note that in this special case, supN ξN � C for some positive constant C, and
so the conclusions of Theorem 7 follow. These imply uniform clustering of the zeros (and even give
an estimate on the rate of clustering).

Example. Let PN (Z) =
∑N

k=0 akZ
k, with ak being distributed on R+ with Cauchy distribution with

parameter k−σ, σ > 0. This distribution has density
2

πkσ

1
x2 + k−2σ

on the positive real line. The conditions of Theorem 7 are satisfied since

λk := E[a1/2
k ] � C

kσ
and ξN := E

[
1

a
1/2
N

]
� Ckσ.

Therefore, if αN = o(N) is such that αN/ log N → ∞, then

lim
N→∞

1
N

νN

(
αN

N

)
= 1, almost surely

and

lim
N→∞

1
N

νN (θ, φ) =
φ − θ

2π
, almost surely.

Again, the convergence also holds in the pth mean for every positive p.
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