ON ROOTS OF RANDOM POLYNOMIALS

ILDAR IBRAGIMOV AND OFER ZEITOUNI

Abstract. We study the distribution of the complex roots of random polynomials of degree $n$ with i.i.d. coefficients. Using techniques related to Rice’s treatment of the real roots question, we derive, under appropriate moment and regularity conditions, an exact formula for the average density of this distribution, which yields appropriate limit average densities. Further, using a different technique, we prove limit distribution results for coefficients in the domain of attraction of the stable law.

1. Introduction

Let $\{a_j\}_{j=0}^{\infty}$ denote a sequence of i.i.d. random variables. Let $P_n(z) = \sum_{j=0}^{n} a_j z^j$ denote the random polynomial of order $n$ defined by the sequence $\{a_j\}$. After initial attempts, by Littlewood and Offord [16], to evaluate the order of the mean number of real roots, Kac [13] has computed, in the case that the $\{a_j\}$ are standard normal, the distribution of the real zeros of $P_n(z)$. His results were extended in various directions, most notably to the non-Gaussian case, by Erdős and Offord, Stevens, Logan and Shepp, and Ibragimov and Maslova (see [3], [18] for a bibliography). See also [6] for an integral geometric derivation of Kac’s formula and an updated account of this question.

Our interest in this paper is to explore the analogue question for the distribution of the roots in the complex plane. To state our results, we need to introduce a bit of notation. Let $\Omega$ denote a Borel measurable subset of $\mathbb{R}^2$. Let $N_n(\Omega)$ denote the number of complex roots of $P_n(z)$ in $\Omega$. We let $\nu_n(r) = N_n(\{z : |z| < r\})$ and $\bar{\nu}_n(r) = N_n(\{z : |z| > r\})$. When referring to the average distribution of the complex zeros, we will mean the evaluation of $E(\nu_n(r))$. Note that since the law of $\nu_n(r)$ is identical to the law of $\bar{\nu}_n(1/r)$, it follows that $E(\nu_n(r)) = E(\bar{\nu}_n(1/r))$.

The computation of the average distribution of zeros was originally studied by Hammersley [10], who derived an exact (albeit complicated) formula for it in the Gaussian case. An early theorem of Sparo and Sur, which refines earlier results by Polya (cf. [3, page 174]), implies that not only does $\nu_n(r)/n \rightarrow_{n \rightarrow \infty} 0$ in probability for any $r < 1$ but also, letting $N_n(\alpha, \beta) = N_n(\{z : \alpha \leq \arg z < \beta\})$ denote the

Received by the editors December 2, 1995.

1991 Mathematics Subject Classification. Primary 34F05. Secondary 26C10, 30B20.

Key words and phrases. Random polynomials, complex roots, domain of attraction of the stable law.

The work of the first author was partially supported by the Russian Foundation for Fundamental Research, grant 94-01-00301, and by grants R36000 and R36300 of the International Scientific Foundation.

The work of the second author was done while he visited MIT, under support from NSF grant 9302709–DMS.

©1997 American Mathematical Society
number of roots of $P_n(z)$ in a sector $0 \leq \alpha \leq \theta \leq \beta < 2\pi$, one has under mild conditions that $N_n(\alpha, \beta)/n \to_{n \to \infty} (\alpha - \beta)/2\pi$ in probability. For an earlier, and probably first, version of the angular distribution result, see [8], and for a refinement of this result, see [2].

In a recent paper, Shepp and Vanderbei ([18]) derive, in the case of normal $\{a_j\}$, an exact expression for the average distribution of the roots as well as limit results as $n \to \infty$. In particular, they give precise estimates of the way in which, as $n \to \infty$, about $n - 2 \log n/\pi$ of the zeros concentrate on the unit circle, uniformly in the angle, whereas $2 \log n/\pi$ real roots concentrate at $\pm 1$.

The technique of proof used by Shepp and Vanderbei is based on an argument principle to compute the average distribution of the zeros, using the Gaussian law of $\{a_j\}$ in order to reduce the question to the evaluation of a function of 4 (correlated) Gaussian random variables. This technique does not seem amenable to handling distributions other than the normal one.

We extend the results of Shepp and Vanderbei in two different directions. Using an approach based on Jensen’s formula, we present in Theorem 1 limit average distribution results for arbitrary i.i.d. coefficients in the domain of attraction of the stable law. These may be thought as global limit theorems. Using an argument closer in spirit to the point of view adopted by Rice [17] in his attempts to handle the real case, we derive in Theorem 2 a local limit theorem for the density of zeros for i.i.d. coefficients which possess finite absolute seventh moment and a bounded density. This approach yields as a by-product a simple derivation of the main result of [18].

Our main result concerning the average distribution of zeros is the following:

**Theorem 1.** Let $\{a_j\}_{j=1}^\infty$ be i.i.d. random variables whose common distribution $G$ belongs to the domain of attraction of an $\alpha$–stable law. Then, for any $0 \leq s < \infty$,

$$\lim_{n \to \infty} E \left( \frac{\nu_n(\exp(-s/n))}{n} - \frac{1 - e^{-\alpha s}(1 + \alpha s)}{\alpha s(1 - e^{-\alpha s})} \right) = F(\alpha s).$$

The following is immediate from our previous discussion:

**Corollary 1.** Under the assumptions of Theorem 1, for $0 \leq s < \infty$,

$$\lim_{n \to \infty} E \left( \frac{\nu_n(\exp(s/n))}{n} \right) = F(\alpha s).$$

In particular,

$$\lim_{n \to \infty} E \left( \frac{\nu_n(\exp(s/n)) - \nu_n(\exp(-s/n))}{n} \right) = 1 - 2F(\alpha s) = \frac{1 + e^{-\alpha s}}{1 - e^{-\alpha s}} - \frac{2}{\alpha s},$$

We recall (cf. [11] for the results quoted here) that the distribution $G$ on the real line belongs to the domain of attraction of a stable law with exponent $\alpha$ if, for suitable $A_n, B_n$,

$$\lim_{n \to \infty} P(B^{-1}_n \sum_{j=1}^n a_j - A_n < x) = \mathcal{F}(x),$$

where $\mathcal{F}$ possesses the characteristic function

$$f(t) = \exp\{-c|t|^\alpha(1 + K(\alpha, \beta, t))\},$$
with \( K(\alpha, \beta, t) = i\beta \text{sign} \tan(\pi \alpha/2) \) if \( \alpha \neq 1 \) and \( K(1, \beta, t) = 2i\beta \text{sign}(\log |t|)/2\pi \).

This happens iff the characteristic function of \( G \), denoted \( g(t) \), satisfies in a neighborhood of the origin the relationship

\[
g(t) = \exp \{i\gamma t - c|t|^\alpha (1 + K(\alpha, \beta, t))h(t)\},
\]

where \( h(t) \) is slowly varying in the sense of Karamata. Further, the normalizing factors \( B_{-1/n} \) may be defined as the roots of the equation \( B_{-1/n}h(B_{-1/n}) = n^{-1} \). In particular, \( B_{n} = n^{1/\alpha}h(n) \) for some slowly varying \( h(t) \).

The proof of Theorem 1, based on Jensen’s formula, is given in Section 3.

We next describe a local limit result concerning the average density of zeros. Since the asymptotic distribution of real roots is well understood, we will concentrate here on the zeros in the complex plane. Thus, let \( \Omega \) be a measurable subset of \( \mathbb{R}^2 \) which does not intersect the real line. We will compute explicitly a function \( h_n(r, \theta) \) such that

\[
E(\nu_n(\Omega)) = \int_{\Omega} h_n(r, \theta) r \, dr \, d\theta.
\]

Here and throughout, \( z \) will stand for complex variables whereas \( r, \theta \) stand for their polar representation, with \( z = re^{i\theta} \).

An explicit computation of \( h_n(r, \theta) \) is possible in the case of normal coefficients (see (15) below). Our main interest, however, is the proof of

**Theorem 2.** Assume \( \{a_j\} \) possess a bounded density and absolute moments of seventh order. Then, for \( r = 1 - x/n, x \) fixed, and \( \theta \in (0, \pi) \) fixed, one has

\[
\lim_{n \to \infty} n^{-2}h_n(r, \theta) = \left( \frac{\int_0^x e^{-2y}dy}{\pi x^2} \right)^2 \frac{\left( \int_0^x ye^{-2y}dy \right)^2 - \left( \int_0^x ye^{-2y}dy \right)^2}{\pi x^2} = 1 - \left( \frac{x}{\sinh(x)} \right)^2 \frac{1}{4\pi x^2},
\]

and the convergence is uniform in compact subsets of \([0, \infty) \times (0, \pi)\).

Note that Theorem 2 is consistent with the predictions of Theorem 1.

**Remark.** The i.i.d. assumption as well as the precise assumptions on the coefficients \( \{a_j\} \) can be relaxed. In particular, a proof is possible (essentially using the same Edgeworth expansion, at the cost of messier computations) for variables possessing finite fifth absolute moments, and the same proof works also for non-zero mean random variables. However, the computation of limiting average densities of zeros for stable random variables \( \{a_j\} \) or for general random variables in the domain of attraction of the stable or Gaussian laws seems more delicate, and the technique we use does not seem appropriate.

Due to its relative simplicity, we first present, in Section 2, the proof of Theorem 2, together with the precise computation of the Gaussian case. Sections 3 and 4 are devoted to the proof of Theorem 1.

## 2. Density results

To explain our approach to the density question, let \( z = re^{i\theta} \), and let

\[
X_1 \equiv X_1^n(r, \theta) = \sum_{j=0}^{n} a_j r^j \cos(j\theta), \quad X_2 \equiv X_2^n(r, \theta) = \sum_{j=0}^{n} a_j r^j \sin(j\theta)
\]
denote the real and imaginary parts of $P_n(z)$. Let $J$ denote the Jacobian of the (random) transformation $(r, \theta) \to (X_1, X_2)$, and let $p_{r, \theta}$ denote the density (at $(0,0)$) of the random vector $X = (X_1^\theta(r, \theta), X_2^\theta(r, \theta))$. Then (see Adler [1, p. 97]) the average density of the complex roots satisfies, everywhere but on the real axis, the formula

$$h_n(r, \theta) = E(|\det J| | X_1^n = X_2^n = 0)p_{r, \theta}.$$ 

By a straightforward computation, one checks that

$$\det J = \sum_{j,k=0}^{n} jka_ka_jr^{j+k-1}\cos((j-k)\theta)$$ 

(6)

$$= \frac{1}{r} \left( \left( \sum_{j=0}^{n} ja_jr^j \cos(j\theta) \right)^2 + \left( \sum_{j=0}^{n} ja_jr^j \sin(j\theta) \right)^2 \right) \geq 0.$$ 

Thus, the evaluation of $h_n$ reduces to the computation of the expectation of a quadratic form of i.i.d. random variables, conditioned on two linear combinations thereof. That is,

$$h_n(r, \theta) = E(\sum_{j,k=0}^{n} jka_ka_jr^{j+k-1}\cos((j-k)\theta) | X_1^n = X_2^n = 0)p_{r, \theta}.$$ (7)

We remark that while our interest is primarily in the complex roots, and we will make assumptions that will imply that $\theta \neq 0$ in (7), one could also handle the real roots by a similar study. The approach of Rice, alluded to in the abstract, consists of looking at the (one dimensional) map $r \to X_1$ with $\theta = 0$, and computing its derivative. Since the results of that analysis are well documented, we do not consider it here.

While (7) is valid in great generality, its evaluation is not always easy. The computation in (7) is greatly simplified in the Gaussian case, which is presented in Section 2.2 below, recovering the results of [18].

2.1. Proof of Theorem 2. Let $\{a_j\}$ be a sequence of i.i.d. random variables which are normalized so that $E(a_j) = 0$ and $Ea_j^2 = 1$. Let $\pi > \theta_0 > 0$ and $x_0 > 0$ be given (fixed throughout the derivation). If $1 \geq r = 1 - \frac{\theta}{\pi} \geq 1 - x_0/n$ and $\theta_0 \leq \theta \leq \pi - \theta_0$, we write that $(r, \theta) \in B_0$. Of course, $B_0$ depends on $x_0$ and $\theta_0$, but we will not spell out this dependence in our notations. Note that since complex roots come in pairs and since the distribution of the zeros is invariant under the transformation $r \to r^{-1}$ (because the $\{a_j\}$ are i.i.d.), it is enough to study this distribution for $(r, \theta) \in [0,1] \times (0, \pi)$.

By (7), one needs to compute the expectation

$$E(a_ja_k | X_1^\theta(r, \theta) = X_2^\theta(r, \theta) = 0).$$

Note that, for $j \neq k$,

$$X_1^\theta(r, \theta) = a_jr^j\cos(j\theta) + a_kr^k\cos(k\theta) + X_1^{j,k}(r, \theta),$$

$$X_2^\theta(r, \theta) = a_jr^j\sin(j\theta) + a_kr^k\sin(k\theta) + X_2^{j,k}(r, \theta).$$
Here, $X_{1,k}^j \equiv X_{1,k}^j(r, \theta)$ and $X_{2,k}^j \equiv X_{2,k}^j(r, \theta)$ are independent of $(a_j, a_k)$. Let $X_{1,n} := n^{-1/2}X_{1,k}^j$, $X_{2,n} := n^{-1/2}X_{2,k}^j$. One has

\[
B_n = \text{cov}(X_{1,n}, X_{2,n}) = \begin{pmatrix}
\frac{1}{n} \sum_{\ell \neq j,k} r^{2\ell} \cos^2(\ell \theta) & \frac{1}{2n} \sum_{\ell \neq j,k} r^{2\ell} \sin(2\ell \theta) \\
\frac{1}{2n} \sum_{\ell \neq j,k} r^{2\ell} \sin(2\ell \theta) & \frac{1}{n} \sum_{\ell \neq j,k} r^{2\ell} \sin^2(\ell \theta)
\end{pmatrix} + V_{j,k}^n.
\]

With $z = re^{i\theta}$, we have

\[
|V_{j,k}^n(\ell, m)| \leq \frac{2}{n} + \frac{1}{n} \sum_{j=0}^n z^{2j}, \quad \ell, m = 1, 2.
\]

Hence, for any $\theta_0 > 0$ and $x_0 > 0$, $\text{sup}_{n,(r, \theta) \in B_0} nV_n < \infty$. Also, for $x_0 \geq x \geq 0$, for $n$ large enough one has

\[
1 - e^{-x} = \sum_{j=0}^\infty n_j r^{2j} \leq \frac{1}{2n} \leq \frac{1}{2}.
\]

Hence, for such $n$, $B_n$ is non-degenerate. Let

\[
\gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^n r^{2j}, \quad Q(\alpha, \beta) = \frac{\alpha^2 + \beta^2}{\gamma}.
\]

Let $p_{X_{1,n}, X_{2,n}}(\alpha, \beta)$ denote the density of the random variables $X_{1,n}, X_{2,n}$ at $(\alpha, \beta)$. It follows after some algebra from standard limit theorems using Edgeworth expansions (see, e.g., [4, Corollary 19.4], with $s = 5$, and note that the conditions needed to apply the result are satisfied in our case) that, for $(r, \theta) \in B_0$,

\[
\sup_{\alpha, \beta} |p_{X_{1,n}, X_{2,n}}(\alpha, \beta) - e^{-Q(\alpha, \beta)} - \frac{P_{1,n}(\alpha, \beta)e^{-Q(\alpha, \beta)}}{\sqrt{n}\gamma} - \frac{P_{2,n}(\alpha, \beta)e^{-Q(\alpha, \beta)}}{n\gamma}| = O(n^{-3/2}),
\]

where the bound in the right hand side is independent of $j, k$, and $P_{1,n}$, $P_{2,n}$ are polynomials of order less than 4, 6, respectively (see [4, Lemma 7.1]), with coefficients independent of $j, k$ and of order $O(1)$.

Observe that, with $j \neq k$,

\[
p_{r, \theta}(a_ja_k|X_1^n = X_2^n = 0) = E \left( a_ja_k p_{X_1^n, X_2^n}(0,0|a_j, a_k) \right) = \frac{1}{n} E \left( a_ja_k p_{X_{1,n}, X_{2,n}}(-\alpha_{jk}, -\beta_{jk}) \right),
\]

where

\[
\alpha_{jk} = (a_jr^j \cos(j\theta) + a_kr^k \cos(k\theta)) / \sqrt{n}, \quad \beta_{jk} = (a_jr^j \sin(j\theta) + a_kr^k \sin(k\theta)) / \sqrt{n}.
\]

For $j \neq k$,

\[
Q(\alpha_{jk}, \beta_{jk}) = \frac{\alpha_j^2 r^{2j} + \alpha_k^2 r^{2k} + 2a_ja_k r^{j+k} \cos((j-k)\theta)}{\gamma n}.
\]
Hence, for $j \neq k$,

\[
E(a_ja_ke^{-Q(\alpha_jk^2,\beta_jk^2)}) = E(a_ja_k(e^{-Q(\alpha_jk,\beta_jk)} - 1))
\]

\[
= E(a_ja_k(e^{-Q(\alpha_jk,\beta_jk)} - 1)1_{(a_j^2 + a_k^2 > n)})
\]

\[
- \frac{1}{\gamma n} E(1_{(a_j^2 + a_k^2 \leq n)}a_ja_k(a_j^2 r^{2j} + a_k^2 r^{2k} + 2a_ja_k r^{j+k} \cos((j-k)\theta))
\]

\[
+ O(n^{-2})
\]

\[
= - \frac{2}{\gamma n} r^{j+k} \cos((j-k)\theta) + O(n^{-2})
\]

where the $O(n^{-2})$ term is uniform in $B_0$. Similarly, since for any finite $p, q$ with $p, q \leq 7$, and $j \neq k$, $E(|a_j|^p|a_k|^q e^{-Q(\alpha_jk,\beta_jk)}) = O(1)$, one concludes that uniformly in $B_0$,

\[
E \left( a_ja_k P_{1,n}(-\alpha_{jk},-\beta_{jk}) e^{-Q(\alpha_{jk},\beta_{jk})} \right) = O(n^{-3/2})
\]

and

\[
E \left( a_ja_k P_{2,n}(-\alpha_{jk},-\beta_{jk}) e^{-Q(\alpha_{jk},\beta_{jk})} \right) = O(n^{-2})
\]

Thus,

\[
p_{r,\theta} E(a_ja_k | X^n_1 = X^n_2 = 0) - \frac{E(a_ja_k e^{-Q(\alpha_{jk},\beta_{jk})})}{n\pi\gamma} = O(n^{-5/2})
\]

where the right hand side is uniform in $(r, \theta) \in B_0$ and in $j, k$. Note however that, again uniformly in $B_0$, $\sum_{j,k=0}^{n} jkr^{j+k} | \cos((j-k)\theta)| = O(n^4)$, and hence the error term in (10) contributes to $h_n(r, \theta), O(n^{3/2})$ at most. Thus, with the $O(\cdot)$ terms again uniform in $B_0$,

\[
p_{r,\theta} \sum_{j,k=0, j \neq k}^{n} jkr^{j+k} \cos((j-k)\theta) E(a_ja_k | X^n_1 = X^n_2 = 0)
\]

\[
= -\frac{2}{\gamma^2 n^2} \sum_{j,k=0}^{n} jkr^{2(j+k)} \cos^2((j-k)\theta)
\]

\[
+ O(\frac{1}{n^3} \sum_{j,k=0}^{n} jkr^{2(j+k)} | \cos((j-k)\theta)|) + O(n^{3/2})
\]

\[
= -\frac{2}{\gamma^2 n^2} \sum_{j,k=0}^{n} jkr^{2(j+k)} \cos^2((j-k)\theta) + O(n^{3/2})
\]

\[
= -\frac{1}{\gamma^2 n^2} \sum_{j,k=0}^{n} jkr^{2(j+k)} + O(n^{3/2})
\]

where the last equality follows from the same estimate as (8).

Similarly, for $j = k$, since

\[
|Ea_j^2(e^{-a_j^2r^{2j}/n} - 1)| \leq \frac{c}{n}
\]

one concludes that

\[
p_{r,\theta} \sum_{j=0}^{n} j^{2+j} E(a_j^2 | X^n_1 = X^n_2 = 0) = \frac{\sum_{j=0}^{n} j^2(1 - \frac{z}{n})^{2j}}{\pi\gamma n} + O(n^{3/2})
\]
Combining (7) and (9)–(13), we conclude that

\[ h_n(r, \theta) = \frac{\sum_{j=0}^{n} j^2 (1 - \frac{x}{n})^{2j}}{\pi \gamma n} - \left( \frac{\sum_{j=0}^{n} j (1 - \frac{x}{n})^{2j}}{\pi \gamma^2 n^2} \right)^2 + O(n^{3/2}). \]

But,

\[ \gamma = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n} (1 - \frac{x}{n})^{2j} = \frac{1}{x} \int_{0}^{x} e^{-2y} dy = \frac{1 - e^{-2x}}{2x}, \]

whereas

\[ \lim_{n \to \infty} n^{-3} \sum_{j=0}^{n} j^2 (1 - \frac{x}{n})^{2j} = \int_{0}^{x} y^2 e^{-2y} dy = \frac{1 - e^{-2x} - 2xe^{-2x} + xe^{-2x}}{4x^3}, \]

and

\[ \lim_{n \to \infty} n^{-4} \left( \sum_{j=0}^{n} j (1 - \frac{x}{n})^{2j} \right)^2 \left( \int_{0}^{x} ye^{-2y} dy \right)^2 = \frac{(1 - e^{-2x} - 2xe^{-2x})^2}{16x^4}. \]

The statement of the theorem follows. \( \square \)

2.2. The Gaussian case. Let the sequence \( \{a_j\} \) consist of i.i.d. standard normal random variables. We suppress in this subsection the superscript \( n \) from \( X_i^n \). Conditioned on \( X_1 = X_2 = 0 \), the joint law of the sequence \( \{a_j \}_{j=0}^{n} \) is again Gaussian, of zero mean, and of covariance

\[ R_c = I - E(aX^T)(E(XX^T))^{-1}E(Xa^T). \]

Here, \( a = (a_0, \ldots, a_n) \) and \( a^T \) denotes the transpose of a vector or matrix \( v \). Let \( \Delta = \text{det}(EXX^T) = E(X_1^2)E(X_2^2) - (E(X_1X_2))^2 \), and let

\[ B = \begin{bmatrix} b_{11} & b_{12} \\ b_{12} & b_{22} \end{bmatrix} = (E(XX^T))^{-1}. \]

Note that

\[ E((aX^T)B) = r^j[b_{11} \cos(j\theta) + b_{12} \sin(j\theta), b_{12} \cos(j\theta) + b_{22} \sin(j\theta)], \]

and hence, after some algebra,

\[ (E(aX^T)(E(XX^T))^{-1}E(Xa^T))_{jk} = r^{j+k} \left( \frac{b_{11} + b_{22}}{2} \cos((j-k)\theta) + \frac{b_{11} - b_{22}}{2} \cos((j+k)\theta) + b_{12} \sin((j+k)\theta) \right). \]

Note that

\[ \Delta(b_{11} + b_{22}) = E(X_1^2) + E(X_2^2) = \sum_{j=0}^{n} r^{2j} = \sum_{j=0}^{n} |z|^{2j}, \]

\[ \Delta(b_{11} - b_{22}) = E(X_2^2) - E(X_1^2) = -\sum_{j=0}^{n} r^{2j} \cos(2j\theta) = -\text{Re} \sum_{j=0}^{n} z^{2j}, \]

\[ 2\Delta b_{12} = \sum_{j=0}^{n} r^{2j} \sin(2j\theta) = \text{Im} \sum_{j=0}^{n} z^{2j}, \]

2433
and thus, using the fact that \( p_{r,\theta} = p_{r,\theta}^G = (2\pi \Delta)^{-1} \) in the Gaussian case, (7)
transforms to (with \( G \) in \( h_n^G \) standing for “Gaussian”),

\[
\begin{align*}
    h_n^G(r, \theta) drd\theta &= \frac{rdrd\theta \left( \sum_j j^2 r^{2j} \right)}{2\pi \Delta^{1/2} r^2} \\
    &- \frac{rdrd\theta \left( \sum_{j,k=0}^n jkr^{2(j+k)} \cos^2((j-k)\theta) \right) \left( \sum_{j=0}^n |z|^{2j} \right)}{4\pi \Delta^{3/2} r^2} \\
    &+ \frac{rdrd\theta \left( \sum_{j,k=0}^n jkr^{2(j+k)} \cos((j-k)\theta) \right)}{4\pi \Delta^{3/2} r^2} \\
    &\times \left( \cos((j+k)\theta) \Re \left( \sum_{j=0}^n z^{2j} \right) - \sin((j+k)\theta) \Im \left( \sum_{j=0}^n z^{2j} \right) \right) \left( 4\pi \Delta^{3/2} r^2 \right)^{-1}.
\end{align*}
\]

Going back to Cartesian coordinates, and letting \( h_n^G(z) d\sigma(z) = h_n^G(r, \theta) drd\theta \), with \( \sigma(\cdot) \) denoting the Lebesgue measure on the complex plane, some simple algebra now leads to

\[
(15)
\]

\[
\begin{align*}
    h_n^G(z) &= \frac{\sum_{j=0}^n j^2 |z|^{2j}}{2\pi \Delta^{1/2} |z|^2} \\
    &+ \frac{\left( \sum_{j=0}^n j |z|^{2j} \right) \left( \sum_{j=0}^n j z^{2j} \right) \left( \sum_{j=0}^n z^{2j} \right) + \left( \sum_{j=0}^n j (z^*)^{2j} \right) \left( \sum_{j=0}^n (z^*)^{2j} \right)}{8\pi \Delta^{3/2} |z|^2} \\
    &- \frac{\left( \sum_{j=0}^n |z|^{2j} \right) \left( \sum_{j=0}^n j |z|^{2j} \right)^2}{8\pi \Delta^{3/2} |z|^2} - \frac{\left( \sum_{j=0}^n |z|^{2j} \right) \left( \sum_{j=0}^n j z^{2j} \right)^2}{8\pi \Delta^{3/2} |z|^2},
\end{align*}
\]

where

\[
\begin{align*}
    \Delta &= \sum_{j,k=0}^n r^{2(j+k)} \left[ \cos^2 j\theta \sin^2 (k\theta) - \cos(j\theta) \cos(k\theta) \sin(j\theta) \sin(k\theta) \right] \\
    &= \sum_{j,k=0}^n |z|^{2(j+k)} \sin^2((k-j)\theta) \\
    &= \frac{\left( \sum_{j=0}^n |z|^{2j} \right)^2}{4} - \frac{\left( \sum_{j=0}^n z^{2j} \right)^2}{4}.
\end{align*}
\]

These expressions are easily seen to coincide with those given in [18], which form the basis for the asymptotic analysis there. In particular, we recall that it was shown in [18] that

\[
\lim_{n \to \infty} h_n^G(z) = \frac{\sqrt{(1 - |z|^2)^{-2} - |1 - z^2|^{-2}}}{\pi(1 - |z|^2)}.
\]

3. Proof of Theorem 1

By Jensen’s formula (see [15, p. 14]), for any \( r > 0 \),

\[
\int_0^r \nu_n(u) du = \frac{1}{2\pi} \int_0^{2\pi} \log |P_n(re^{i\theta})| d\theta - \log |P_n(0)|.
\]
Let \( r = \exp(-s/n) \). Making the change of variables \( u = \exp(-v/n) \), one gets
\[
\int_s^{\infty} \frac{\nu_n(e^{-u/n})}{n} \, du = \frac{1}{2\pi} \int_0^{2\pi} \log |P_n(r(s)e^{i\theta})| d\theta - \log |P_n(0)|.
\]
Hence, since \( \nu_n(r) \) is invariant under multiplication of all coefficients by \( 1/B_n \), one gets, for any \( s_0 \geq 0 \),
\[
\int_{s_0}^{s} \frac{\nu_n(e^{-u/n})}{n} \, du = \frac{1}{2\pi} \int_0^{2\pi} \log |B_n^{-1}P_n(r(s)e^{i\theta})| d\theta - \log |B_n^{-1}P_n(r(s_0)e^{i\theta})| d\theta.
\]
The main technical step required for the proof of the theorem is the following lemma:

**Lemma 1.** There exists a constant \( R \), independent of \( s \), such that
\[
\lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} E \log |B_n^{-1}P_n(r(s)e^{i\theta})| d\theta = h(s),
\]
where \( h(s) = \frac{1}{\alpha} \log \left( \frac{1-e^{-s}}{s} \right) + R \).

Equipped with Lemma 1, let us complete the proof of Theorem 1. Let
\[
f_n(v) = E \left( \frac{\nu_n(e^{-v/n})}{n} \right).
\]
Note that \( f_n(\cdot) \) is a bounded monotone function. Thus, by Helly’s theorem, one may find a subsequence \( n_j \) such that \( f_{n_j}(\cdot) \) converges pointwise to a limit \( f(\cdot) \). Lemma 1 then implies that \( \int_{s_0}^{s} f(v) \, dv = h(s) - h(s_0) \), and hence the convergence along subsequences may be replaced by a full convergence. But then
\[
\lim_{n \to \infty} E \left( \frac{\nu_n(e^{-v/n})}{n} \right) = f(v) = h'(v).
\]
This yields Theorem 1.

**Proof of Lemma 1.** Let \( X_1^n, X_2^n \) be as in (5), with \( r = r(s) = \exp(-s/n) \), and recall that
\[
|P_n(re^{i\theta})|^2 = (X_1^n)^2 + (X_2^n)^2.
\]
(We will suppress the dependence of \( X_1^n \) on \( r, \theta \) in our notation.) The crucial observation needed for the proof of Lemma 1 is contained in

**Lemma 2.** For almost all \( \theta \in [0, 2\pi] \), the distribution of the \( \mathbb{R}^2 \) vector \( X_n(\theta, s) = B_n^{-1}(X_1^n, X_2^n) \) converges as \( n \to \infty \) to the distribution with the characteristic function
\[
g_\alpha(t_1, t_2) = \exp \left( -c_\alpha |t_1|^2 + t_2^{\alpha/2}(1 - e^{-\alpha s})/(\alpha s) \right),
\]
with
\[
c_\alpha = \frac{4\Gamma(\alpha)}{\alpha 2^{\alpha/2} \Gamma(\alpha/2)^2}.
\]
Proof of Lemma 2. Assume first that \( \{a_j\} \) possess an \( \alpha \)-stable law, with characteristic function
\[
g(t) = \exp \left( i\gamma t - |t|^\alpha (1 + K(\alpha, \beta, t)) \right),
\]
and normalizing constant \( B_n = n^{1/\alpha} \) (see (4) for the definitions). We assume for simplicity \( \alpha \neq 1 \) and \( \gamma = 0 \), the general case being similar. Let \( g_n(t_1, t_2) \) denote the characteristic function of \( X_n \). Then, making the change of coordinate \( (t_1, t_2) \to (\rho, \psi) \), one gets
\[
g_n(\rho, \psi) = \exp \left( -\frac{\rho^n}{n} \sum_{j=0}^{n} |r^j \cos(j \phi + \psi)|^\alpha (1 + i \beta \text{sign(cos)(j \phi + \psi))) \right).
\]
Since for almost all \( \theta \), the empirical distribution of the sequence \( x_j = j\theta/2\pi \) converges weakly to the uniform distribution (due to ergodicity, see [5, p. 294]), one gets that
\[
\frac{1}{n} \sum_{j=1}^{n} |\cos(j \phi + \psi)|^\alpha (1 + i \beta \text{sign(cos})(j \phi + \psi)) \to_{n \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} |\cos x|^\alpha (1 + i \beta \text{sign(cos)}(x)) dx
\]
\[
= \frac{1}{2\pi} \int_{0}^{2\pi} |\cos x|^\alpha dx.
\]
Hence, by Abel summation,
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n} |r^j \cos(j \phi + \psi)|^\alpha (1 + i \beta \text{sign(cos})(j \phi + \psi))
\]
\[
= \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n} r^{\alpha j} - r^{\alpha (j+1)} \left( \frac{1}{J} \sum_{k=0}^{J} |\cos(k \phi + \psi)|^\alpha (1 + i \beta \text{sign(cos)}(k \phi + \psi)) \right)
\]
\[
+ \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} |\cos(j \phi + \psi)|^\alpha (1 + i \beta \text{sign(cos)}(j \phi + \psi)) e^{-\alpha s}
\]
\[
= \frac{1}{2\pi} \int_{0}^{2\pi} |\cos x|^\alpha dx \left( \frac{1 - e^{-\alpha s}}{\alpha s} \right).
\]
It follows that
\[
\lim_{n \to \infty} g_n(\rho, \psi) = \exp \left( -\rho^n c_\alpha \left( \frac{1 - e^{-\alpha s}}{\alpha s} \right) \right).
\]
This completes the proof in the \( \alpha \)-stable case.

Assume next that the sequence \( \{a_j\} \) is in the domain of attraction of an \( \alpha \)-stable law, with normalizing constant \( B_n \) and characteristic function \( g(t) \). Recall that (see [11, Chapter 2.6]), a distribution \( G \) on the real line with characteristic function \( g(t) \) belongs to the domain of attraction of the stable law in (4) if and only if
\[
g(t) = \exp(i\gamma t - |t|^\alpha (1 + K(\alpha, \beta, t)) h(t)) \tag{18}
\]
The proof now proceeds exactly as before, with the normalizing constants \( B_n \) chosen as described after (4). \( \square \)
Equipped with Lemma 2, we may return to the proof of Lemma 1. Recall that

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} E \log |B_n^{-1} P_n(r(s) e^{i\theta})| d\theta$$

(19)

$$= \lim_{n \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} E \log(B_n^{-1} \sqrt{(X_1^n)^2 + (X_2^n)^2}) .$$

Suppose that one could now interchange the limit and expectation operation. Denote by \( p_{\alpha}(x_1, x_2) \) the density of the law associated with the characteristic function \( g_{\alpha}(t_1, t_2) \) (such a density exists since \( g_{\alpha} \in L_1(\mathbb{R}^2) \)). An explicit computation reveals that

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \log \sqrt{x_1^2 + x_2^2} p_{\alpha}(x_1, x_2) dx_1 dx_2 = h(s) .$$

Thus, all that remains is to prove the uniform integrability of the integrand in the left hand side of (19). That is, we need to prove that, uniformly in \( n \),

$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} E \log(B_n^{-1} \sqrt{(X_1^n)^2 + (X_2^n)^2}) 1_{\{ |\log(B_n^{-1} \sqrt{(X_1^n)^2 + (X_2^n)^2})| > N \}} d\theta = 0 .$$

(20)

It is straightforward to check (using \([11, \text{Theorem 2.6.4}]\)) that for any \( \lambda < \alpha \),

$$\sup_{n} E(||B_n^{-1} X_1^n||^\lambda) < \infty .$$

Thus, the upper tail in (20) poses no problem, and the proof of Lemma 1 is reduced to the proof of

**Lemma 3.** Uniformly in \( n \),

$$\lim_{N \to \infty} \frac{1}{2\pi} \int_{0}^{2\pi} E \log(B_n^{-1} \sqrt{(X_1^n)^2 + (X_2^n)^2}) 1_{\{ |\log(B_n^{-1} \sqrt{(X_1^n)^2 + (X_2^n)^2})| < -N \}} d\theta = 0 .$$

(21)

Since it is not particularly illuminating, we provide the proof of Lemma 3 in Section 4.

4. Proof of Lemma 3

We recall that the concentration function of a distribution \( A \) on the real line with characteristic function \( a(t) \) is defined as

$$Q(\tau) = \sup_{x} A\{ [x, x + \tau] \} .$$

Then (cf. \([9, \text{p. 292}]\)) \( Q(\tau) \leq C\tau \int_{-\tau}^{\tau} |a(t)| dt \), with \( C \) independent of the distribution \( A \). In this section, \( C \) denotes a constant whose value may change from line to line but is independent of \( n, N \). We use \( Q \) to denote the concentration function...
of the distribution of $B_n^{-1}X_1^n$. Then,

\begin{align*}
\frac{1}{2\pi} \int_0^{2\pi} P(|X_1^n| < e^{-k})d\theta &\leq \frac{1}{2\pi} \int_0^{2\pi} Q(e^{-k+1})d\theta \\
&\leq \frac{Ce^{-k+1}}{2\pi} \int_0^{2\pi} d\theta \int_{-e^{-k-1}}^{e^{-k-1}} \prod_{j=0}^{n} |g\left(\frac{\tau j \cos(j\theta)}{B_n}\right)| d\theta \\
&\leq \frac{Ce^{-k+1}}{2\pi} \int_0^{2\pi} d\theta \int_{-e^{-k-1}}^{e^{-k-1}} \exp\left(-\frac{1}{2} \sum_{j=0}^{n} \left(1 - \left|g\left(\frac{\tau j \cos(j\theta)}{B_n}\right)\right|^2\right)\right) .
\end{align*}

Note that for sufficiently small $|t|$ one has that $|g(t)|^2 = \exp(-2|t|^\alpha h(t))$, with $h(\cdot)$ slowly varying. Hence, for $k$ such that $e^{-k} > cB_n^{-1}$, we have that

\begin{align*}
\frac{1}{2\pi} \int_0^{2\pi} P(|X_1^n| < e^{-k})d\theta &\leq \frac{Ce^{1-k}}{2\pi} \int_0^{2\pi} d\theta \int_{-e^{-k-1}}^{e^{-k-1}} \exp(-|t|^\alpha B_n^{-\alpha} \sum_{j=1}^{n} |\cos(j\theta)|^\alpha r^\alpha h(\tau j \cos(j\theta)/B_n)) dt \\
&\leq Ce^{-k} ,
\end{align*}

where we have used the fact that $h(B_n^{-1})/B_n^\alpha < C/n$.

We show below that there exist positive constants $\ell, q, C$ such that

\begin{align*}
\frac{1}{2\pi} \int_0^{2\pi} Q(\tau)d\theta &\leq C(n^{-3} + n^\ell \tau^{q}) .
\end{align*}

Note that (24) is trivial when the random variables \{\alpha_i\} possess a bounded density.

Assuming (24), we conclude the proof of Lemma 3. Note that

\begin{align*}
\frac{1}{2\pi} \int_0^{2\pi} E \log(B_n^{-1} \sqrt{(X_1^n)^2 + (X_2^n)^2}) 1_{|\log(B_n^{-1} \sqrt{(X_1^n)^2 + (X_2^n)^2})| > N}) d\theta \\
&\leq \sum_{k=\log N}^{[n^{1/s}]} \frac{1}{2\pi} \int_0^{2\pi} E \log(B_n^{-1} |X_1^n|) 1_{\{-k+1 \leq \log(B_n^{-1} |X_1^n|) < k\}) d\theta \\
&+ \frac{1}{2\pi} \int_0^{2\pi} E \log(B_n^{-1} |X_1^n|) 1_{(\log(B_n^{-1} |X_1^n|) < -n^{1/s})} d\theta .
\end{align*}

Using (23), we find that

\begin{align*}
\sum_{k=\log N}^{[n^{1/s}]} \frac{1}{2\pi} \int_0^{2\pi} E \log(B_n^{-1} |X_1^n|) 1_{\{-k+1 \leq \log(B_n^{-1} |X_1^n|) < k\}) d\theta \\
&\leq C(n^{-1/4} + \sum_{k=N}^{\infty} ke^{-k}) ,
\end{align*}

whereas, using (24) and the bound

\begin{align*}
E \int_0^{2\pi} \log^2 |P_n(re^{i\theta})| d\theta &\leq (Cn)^2 ,
\end{align*}
which is due to the integrability of the function \( \log^2 x \) at zero and the assumption \( P(a_j = 0) = 0 \), we obtain

\[
\frac{1}{2\pi} \int_0^{2\pi} E \log(B_n^{-1} \sqrt{(X_1^2)^2 + (X_2^2)^2}) 1_{\log(B_n^{-1} \sqrt{(X_1^2)^2 + (X_2^2)^2}) < -n^{1/8}} d\theta
\]

\[
\leq \frac{1}{2\pi} \int_0^{2\pi} E^{1/2} |\log|P_n(re^{i\theta})|| |\text{Prob}^{1/2}(|B_n^{-1} P_n(re^{i\theta})| < e^{-n^{1/8}})| d\theta
\]

\[
\leq Cn \left( \frac{1}{2\pi} \int_0^{2\pi} Q(e^{-n^{1/8}}) d\theta \right)^{1/2} \leq C(1/\sqrt{n} + n^{(l+1)/2} e^{-qn^{1/8}/2}).
\]

Thus, Lemma 3 follows from (23), (25) and (26) once we prove (24).

To this end, denote by \( \tilde{G} \) the distribution with characteristic function \( |\varphi(t)|^2 \).

Then, from (22), for some constants \( a, b \),

\[
\frac{1}{2\pi} \int_0^{2\pi} Q(\tau) d\theta
\]

\[
\leq \frac{C\tau}{2\pi} \int_0^{2\pi} \int_{-1/\tau}^{1/\tau} \exp\left(-\frac{1}{2} \int_{-\infty}^{\infty} \sum_{j=1}^{n} (1 - \cos \left( \frac{txr_j \cos(j\theta)}{B_n} \right) ) \tilde{G}(dx)\right) dt
\]

\[
\leq \frac{C\tau}{2\pi} \int_0^{2\pi} \int_{-1/\tau}^{1/\tau} \exp\left(-C \int_{-\infty}^{\infty} \sum_{j=1}^{n} (1 - \cos \left( \frac{txr_j \cos(j\theta)}{B_n} \right) ) G(dx)\right) dt,
\]

where \( G \) is some distribution concentrated on \([-b, -a] \cup [a, b]\) and \( C = C(a, b) \).

Using Jensen’s inequality, we obtain

\[
\frac{1}{2\pi} \int_0^{2\pi} Q(\tau) d\theta
\]

\[
\leq \sup_{a \leq |x| \leq b} \frac{CB_n \tau}{2\pi} e^{-cn} \int_{-1/\tau B_n}^{1/\tau B_n} dt \int_0^{2\pi} \exp \left( c \sum_{j=1}^{n} \cos(txr_j \cos(j\theta)) \right) d\theta.
\]

Let

\[
\Gamma_1(x, n) = \{ \theta \in [0, 2\pi] : \sum_{j=1}^{n} \cos(txr_j \cos(j\theta)) \leq n/2 \},
\]

and \( \Gamma_2(x, n) = [0, 2\pi] \setminus \Gamma_1(x, n) \). Since the integral over \( \Gamma_1 \) in (27) yields a bound much better than that in (24), our main task is now to estimate the Lebesgue
measure of $\Gamma_2 = \Gamma_2(x, n)$. Note that

$$\int_0^{2\pi} \left| \sum_{j=1}^k \cos(txr^j \cos(j\theta)) \right|^6 d\theta = O(n^3)$$

$$+ \sum_{s \neq j_1 \neq j_2 \neq j_3} \int_0^{2\pi} \cos^3(txr^s \cos(s\theta)) \cos(txr^{j_1} \cos(j_1\theta))$$

$$\times \cos(txr^{j_2} \cos(j_2\theta)) \cos(txr^{j_3} \cos(j_3\theta)) d\theta$$

$$+ \ldots$$

$$+ \sum_{j_1 \neq j_2 \neq \ldots \neq j_6} \int_0^{2\pi} \cos(txr^{j_1} \cos(j_1\theta))$$

$$\times \cos(txr^{j_2} \cos(j_2\theta)) \ldots \cos(txr^{j_6} \cos(j_6\theta)) d\theta$$

$$\leq C(n^3 + n^{\ell+6}/t^q),$$

for some $\ell, q$ positive. Hence,

$$\int_0^{2\pi} 1_{\{\sum_{j=1}^k \cos(txr^j \cos(j\theta)) > n/2\}} d\theta$$

$$\leq \frac{26}{n^6} \int_0^{2\pi} \left| \sum_{j=1}^k \cos(txr^j \cos(j\theta)) \right|^6 d\theta \leq C(n^{-3} + n^{\ell t^{-q}}).$$

Substituting in (27), we find that

$$\frac{1}{2\pi} \int_0^{2\pi} Q(\tau) d\tau \leq C(e^{-cn/2} + n^{-3} + n^{\ell t^{-q}}),$$

which is more than enough to imply (24). \hfill \Box

Acknowledgment

We thank Larry Shepp for raising our interest in this question, making [18] available to us, and for giving us the opportunity to meet. O.Z. thanks Moshe Porat and Sharon Urieli for originally bringing the problem to his attention, Nir Cohen for helpful discussions, Alan Edelman for helpful discussions and for making [6] available to us, and Robert Adler for the reference to [1].

References


Mathematics Institute, Fontanka 27, St. Petersburg 191011, Russia

E-mail address: ibr32@pdmi.ras.ru

Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

E-mail address: zeitouni@ee.technion.ac.il