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Bias Conjecture for Elliptic Curves
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Last Summer: Families and Moments

A one-parameter family of elliptic curves is given by

E : y2 = x3 + A(T )x + B(T )

where A(T ),B(T ) are polynomials in Z[T ].

Each specialization of T to an integer t gives an
elliptic curve E(t) over Q.

The r th moment of the Fourier coefficients is

Ar ,E(p) =
∑

t mod p

aE(t)(p)r .
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let E/Q be an elliptic surface and L2(E , s) be the L-series attached to
H2

ét(E/Q,Ql). Then L2(E , s) has a meromorphic continuation to C

and satisfies
−ords=2L2(E , s) = rank NS(E/Q),

where NS(E/Q) is the Q-rational part of the Néron-Severi group of E .
Further, L2(E , s) does not vanish on the line Re(s) = 2.

Tate’s conjecture is known for rational surfaces: An elliptic surface
y2 = x3 + A(T )x + B(T ) is rational iff one of the following is true:

0 < max{3degA, 2degB} < 12;

3degA = 2degB = 12 and ordT=0T 12∆(T−1) = 0.
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Negative Bias in the First Moment

A1,E(p) and Family Rank (Rosen-Silverman)

If Tate’s Conjecture holds for E then

lim
X→∞

1
X

∑

p≤X

A1,E(p) log p
p

= −rank(E/Q).

By the Prime Number Theorem,
A1,E(p) = −rp + O(1) implies rank(E/Q) = r .
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families E with j(T ) non-constant, the second moment
is

A2,E(p) = p2 + O(p3/2).

The lower order terms are of sizes p3/2, p, p1/2, and 1.
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families E with j(T ) non-constant, the second moment
is

A2,E(p) = p2 + O(p3/2).

The lower order terms are of sizes p3/2, p, p1/2, and 1.

In every family we have studied, we have observed:

Bias Conjecture
The largest lower term in the second moment expansion
which does not average to 0 is on average negative .
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Preliminary Evidence and Patterns

Let n3,2,p equal the number of cube roots of 2 modulo p,
and set c0(p) =

[

(

−3
p

)

+
(3

p

)

]

p, c1(p) =
[

∑

x mod p

(x3
−x
p

)

]2
,

c3/2(p) = p
∑

x(p)

(4x3+1
p

)

.

Family A1,E(p) A2,E(p)
y2 = x3 + Sx + T 0 p3

− p2

y2 = x3 + 24(−3)3(9T + 1)2 0
{

2p2
−2p p≡2 mod 3

0 p≡1 mod 3

y2 = x3
± 4(4T + 2)x 0

{

2p2
−2p p≡1 mod 4

0 p≡3 mod 4

y2 = x3 + (T + 1)x2 + Tx 0 p2
− 2p − 1

y2 = x3 + x2 + 2T + 1 0 p2
− 2p −

(

−3
p

)

y2 = x3 + Tx2 + 1 −p p2
− n3,2,pp − 1 + c3/2(p)

y2 = x3
− T 2x + T 2

−2p p2
− p − c1(p)− c0(p)

y2 = x3
− T 2x + T 4

−2p p2
− p − c1(p)− c0(p)

y2 = x3 + Tx2
− (T + 3)x + 1 −2cp,1;4p p2

− 4cp,1;6p − 1
where cp,a;m = 1 if p ≡ a mod m and otherwise is 0.
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Lower order terms and average rank

1
N

2N∑

t=N

∑

γt

φ

(
γt

log R
2π

)
= φ̂(0) + φ(0) −

2
N

2N∑

t=N

∑

p

log p
log R

1
p
φ̂

(
log p
log R

)
at(p)

−
2
N

2N∑

t=N

∑

p

log p
log R

1
p2 φ̂

(
2 log p
log R

)
at(p)2 + O

(
log log R

log R

)
.

φ(x) ≥ 0 gives upper bound average rank.

Expect big-Oh term Ω(1/ log R).
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Implications for Excess Rank

Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

More curves with rank than expected have been
observed, though this excess average rank vanishes
in the limit.

Lower-order biases in the moments of families explain
a small fraction of this excess rank phenomenon.
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Methods for Obtaining Explicit Formulas

For a family E : y2 = x3 + A(T )x + B(T ), we can write

aE(t)(p) = −
∑

x mod p

(
x3 + A(t)x + B(t)

p

)

where
(

·

p

)
is the Legendre symbol modp given by

(
x
p

)
=





1 if x is a non-zero square modulo p
0 if x ≡ 0 mod p
−1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

∑

x mod p

(
ax + b

p

)
= 0 if p ∤ a

∑

x mod p

(
ax2 + bx + c

p

)
=




−
(

a
p

)
if p ∤ b2 − 4ac

(p − 1)
(

a
p

)
if p | b2 − 4ac

Average Values of Legendre Symbols

The value of
(

x
p

)
for x ∈ Z, when averaged over all

primes p, is 1 if x is a non-zero square, and 0 otherwise.
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Rank 0 Families

Theorem (MMRW’14): Rank 0 Families Obeying the
Bias Conjecture

For families of the form E : y2 = x3 + ax2 + bx + cT + d ,

A2,E(p) = p2 − p
(

1 +

(
−3
p

)
+

(
a2 − 3b

p

))
.

The average bias in the size p term is −2 or −1,
according to whether a2 − 3b ∈ Z is a non-zero
square.
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Families with Rank

Theorem (MMRW’14): Families with Rank

For families of the form E : y2 = x3 + aT 2x + bT 2,

A2,E(p) = p2 − p
(

1 +
(

−3
p

)
+
(

−3a
p

))
−
(∑

x(p)

(
x3+ax

p

))2
.

These include families of rank 0, 1, and 2.

The average bias in the size p terms is −3 or −2,
according to whether −3a ∈ Z is a non-zero square.
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Families with Rank

Theorem (MMRW’14): Families with Complex
Multiplication

For families of the form E : y2 = x3 + (aT + b)x ,

A2,E(p) = (p2 − p)
(

1 +

(
−1
p

))
.

The average bias in the size p term is −1.

The size p2 term is not constant, but is on average p2,
and an analogous Bias Conjecture holds.
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Families with Unusual Distributions of Signs

Theorem (MMRW’14): Families with Unusual Signs

For the family E : y2 = x3 + Tx2 − (T + 3)x + 1,

A2,E(p) = p2 − p
(

2 + 2
(
−3
p

))
− 1.

The average bias in the size p term is −2.

The family has an usual distribution of signs in the
functional equations of the corresponding L-functions.
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The Size p3/2 Term

Theorem (MMRW’14): Families with a Large Error

For families of the form
E : y2 = x3 + (T + a)x2 + (bT + b2 − ab + c)x − bc,

A2,E(p) = p2 − 3p − 1 + p
∑

x mod p

(
−cx(x + b)(bx − c)

p

)

The size p3/2 term is given by an elliptic curve
coefficient and is thus on average 0.

The average bias in the size p term is −3.
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General Structure of the Lower Order Terms

The lower order terms appear to always

have no size p3/2 term or a size p3/2 term that is on
average 0;

exhibit their negative bias in the size p term;

be determined by polynomials in p, elliptic curve
coefficients, and congruence classes of p (i.e., values
of Legendre symbols).
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Numerical Investigations
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Numerical Methods

As complexity of coefficients increases, it is much
harder to find an explicit formula.

We can always just calculate the second moment
from the explicit formula; if E : y2 = f (x), we have

A2,E(p) =
∑

t(p)


∑

x(p)

(
f (x)

p

)


2

.

Takes an hour for the first 500 primes. Optimizations?
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Numerical Methods

Consider the family y2 = f (x) = ax3 + (bT + c)x2 + (dT + e)x + f . By
similar arguments used to prove special cases,

A2,E(p) = p2 − 2p + pC0(p) − pC1(p)− 1 +#1,

where

C0(p) =
∑

x(p)

∑

y(p): β(x,y)≡0

(
A(x)A(y)

p

)
,

C1(p) =
∑

x(p): β(x,x)≡0

(
A(x)2

p

)
,

#1 = p
∑

x(p)

∑

y(p): A(x)≡0 and A(y)≡0

(
B(x)B(y)

p

)
,

and β, A, and B are polynomials.
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Numerical Methods

Co(p) ordinarily O(p2) to compute.

Sum over zeros of β(x , y) mod p

Fixing an x , β is a quadratic in y . So, with the
quadratic formula mod p, we know where to look for y
to see if there is a zero.

Now O(p); runs from 6000th to 7000th prime in an
hour.
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Potential Counterexamples

Families of Rank as Large as 3

E : y2 = x3 + ax2 + bT 2x + cT 2 with b, c 6= 0:

A2,E(p) = p2 + p
∑

P(x,y)≡0

(
(x3 + bx)(y3 + by)

p

)

+ p


 ∑

x3+bx≡0

(
ax2 + c

p

)


2

− p
∑

P(x,x)≡0

(
x3 + bx

p

)2

− p
(

2 +

(
−b
p

))
−


 ∑

x mod p

(
x3 + bx

p

)


2

− 1

where P(x , y) = bx2y2 + c(x2 + xy + y2) + bc(x + y).
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A Positive Size p Term?

p
[∑

x3+bx≡0

(
ax2+c

p

)]2
can be +9p on average!

Terms such as −p
∑

P(x,x)≡0

(
x3+bx

p

)2
,

−p
(

2 +
(

−b
p

))
, and −

[∑
x mod p

(
x3+bx

p

)]2
contribute

negatively to the size p bias.

The term p
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
is of size p3/2.

A2,E (p) = p2 + p
∑

P(x,y)≡0

(

(x3 + bx)(y3 + by)

p

)

+ p





∑

x3+bx≡0

(

ax2 + c

p

)





2

− p
∑

P(x,x)≡0

(

x3 + bx

p

)2

− p
(

2 +

(

−b

p

))

−





∑

x mod p

(

x3 + bx

p

)





2

− 1

where P(x, y) = bx2y2 + c(x2 + xy + y2) + bc(x + y).
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Analyzing the Size p3/2 Term

We averaged
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
over the first

10,000 primes for several rank 3 families of the form
E : y2 = x3 + ax2 + bT 2x + cT 2.

Family Average
y2 = x3 + 2x2 − 4T 2x + T 2 −0.0238
y2 = x3 − 3x2 − T 2x + 4T 2 −0.0357
y2 = x3 + 4x2 − 4T 2x + 9T 2 −0.0332
y2 = x3 + 5x2 − 9T 2x + 4T 2 −0.0413
y2 = x3 − 5x2 − T 2x + 9T 2 −0.0330
y2 = x3 + 7x2 − 9T 2x + T 2 −0.0311
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The Right Object to Study

c3/2(p) :=
∑

P(x,y)≡0

(
(x3+bx)(y3+by)

p

)
is not a natural object

to study (for us multiply by p).

An example distribution for y2 = x3 + 2x3 − 4T 2x + T 2.

Figure: c3/2(p) over the first 10,000 primes.
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In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve
coefficients.

Figure: −
∑

x mod p

(
x3+x+1

p

)
−
∑

x mod p

(
x3+x+2

p

)
over the first

10,000 primes.
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More Error Distributions

Figure: c3/2(p) for y2 = 4x3 + 5x2 + (4T − 2)x + 1, first 10,000
primes.
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More Error Distributions

Figure: −
∑

x mod p

(
x3+x+1

p

)
distribution, first 10,000 primes.
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More Error Distributions

Figure: c3/2(p) over y2 = 4x3 + (4T + 1)x2 + (−4T − 18)x + 49, first
10,000 primes.
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More Error Distributions

Figure: −
∑

x mod p

(
x5+x3+x2+x+1

p

)
distribution, first 10,000 primes.
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Summary of p3/2 Term Investigations

In the cases we’ve studied, the size p3/2 terms

appear to be governed by (hyper)elliptic curve
coefficients;

may be hiding negative contributions of size p;

prevent us from numerically measuring average
biases that arise in the size p terms.
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Future Directions
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Questions for Further Study

Are the size p3/2 terms governed by (hyper)elliptic
curve coefficients? Or at least other L-function
coefficients?

Does the average bias always occur in the terms of
size p?

Does the Bias Conjecture hold similarly for all higher
even moments?

What other (families of) objects obey the Bias
Conjecture? Kloosterman sums? Cusp forms of a
given weight and level? Higher genus curves?
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Thank you!
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