Biases in Fourier Coefficients of Elliptic Curve L-functions.

Steven J. Miller (Williams College)

sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu With Megumi Asada, Eva Fourakis, Andrew Kwon, Blake Mackall, Karl Winsor and Kevin Yang
http://web.williams.edu/Mathematics/sjmiller/public_html/

AMS Special Session on Analytic Number Theory and Automorphic Forms
Washington State University, April 23, 2017

Bias Conjecture for Elliptic Curves

Last Summer: Families and Moments

A one-parameter family of elliptic curves is given by

$$
\mathcal{E}: y^{2}=x^{3}+A(T) x+B(T)
$$

where $A(T), B(T)$ are polynomials in $\mathbb{Z}[T]$.

- Each specialization of T to an integer t gives an elliptic curve $\mathcal{E}(t)$ over \mathbb{Q}.
- The $r^{\text {th }}$ moment of the Fourier coefficients is

$$
A_{r, \mathcal{E}}(p)=\sum_{t \bmod p} a_{\mathcal{E}(t)}(p)^{r} .
$$

Tate's Conjecture

Tate's Conjecture for Elliptic Surfaces

Let \mathcal{E} / \mathbb{Q} be an elliptic surface and $L_{2}(\mathcal{E}, s)$ be the L-series attached to $H_{\text {ét }}^{2}\left(\mathcal{E} / \overline{\mathbb{Q}}, \mathbb{Q}_{I}\right)$. Then $L_{2}(\mathcal{E}, s)$ has a meromorphic continuation to \mathbb{C} and satisfies

$$
-\operatorname{ord}_{s=2} L_{2}(\mathcal{E}, s)=\operatorname{rank} N S(\mathcal{E} / \mathbb{Q})
$$

where $N S(\mathcal{E} / \mathbb{Q})$ is the \mathbb{Q}-rational part of the Néron-Severi group of \mathcal{E}. Further, $L_{2}(\mathcal{E}, s)$ does not vanish on the line $\operatorname{Re}(s)=2$.

Tate's conjecture is known for rational surfaces: An elliptic surface $y^{2}=x^{3}+A(T) x+B(T)$ is rational iff one of the following is true:

- $0<\max \{3 \operatorname{deg} A, 2 \operatorname{deg} B\}<12$;
- $3 \operatorname{deg} A=2 \operatorname{deg} B=12$ and $\operatorname{ord}_{T=0} T^{12} \Delta\left(T^{-1}\right)=0$.

Negative Bias in the First Moment

$A_{1, \varepsilon}(p)$ and Family Rank (Rosen-Silverman)

If Tate's Conjecture holds for \mathcal{E} then

$$
\lim _{x \rightarrow \infty} \frac{1}{X} \sum_{p \leq x} \frac{A_{1, \mathcal{E}}(p) \log p}{p}=-\operatorname{rank}(\mathcal{E} / \mathbb{Q}) .
$$

- By the Prime Number Theorem,

$$
A_{1, \mathcal{E}}(p)=-r p+O(1) \text { implies } \operatorname{rank}(\mathcal{E} / \mathbb{Q})=r .
$$

Bias Conjecture

Second Moment Asymptotic (Michel)

For families \mathcal{E} with $j(T)$ non-constant, the second moment is

$$
A_{2, \varepsilon}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

- The lower order terms are of sizes $p^{3 / 2}, p, p^{1 / 2}$, and 1 .

Bias Conjecture

Second Moment Asymptotic (Michel)

For families \mathcal{E} with $j(T)$ non-constant, the second moment is

$$
A_{2, \mathcal{E}}(p)=p^{2}+O\left(p^{3 / 2}\right) .
$$

- The lower order terms are of sizes $p^{3 / 2}, p, p^{1 / 2}$, and 1 . In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion which does not average to 0 is on average negative.

Preliminary Evidence and Patterns

Let $n_{3,2, p}$ equal the number of cube roots of 2 modulo p, and set $c_{0}(p)=\left[\left(\frac{-3}{p}\right)+\left(\frac{3}{p}\right)\right] p, c_{1}(p)=\left[\sum_{x \bmod p}\left(\frac{x^{3}-x}{p}\right)\right]^{2}$, $c_{3 / 2}(p)=p \sum_{x(p)}\left(\frac{4 x^{3}+1}{p}\right)$.

Family	$A_{1, \mathcal{E}}(p)$	$A_{2, \mathcal{E}}(p)$
$y^{2}=x^{3}+S x+T$	0	$p^{3}-p^{2}$
$y^{2}=x^{3}+2^{4}(-3)^{3}(9 T+1)^{2}$	0	$\left\{\begin{array}{l}2 p^{2}-2 p \\ 0=2 \bmod 3 \\ 0=1 \bmod 3 \\ 0\end{array}\right.$
$y^{2}=x^{3} \pm 4(4 T+2) x$	0	$\left\{\begin{array}{c}2 p^{2}-2 p \\ 0=1 \bmod 4 \\ p=3 \bmod 4 \\ 0\end{array}\right.$
$y^{2}=x^{3}+(T+1) x^{2}+T x$	0	$p^{2}-2 p-1$
$y^{2}=x^{3}+x^{2}+2 T+1$	0	$p^{2}-2 p-\left(\frac{-3}{p}\right)$
$y^{2}=x^{3}+T x^{2}+1$	$-p$	$p^{2}-n_{3,2, p} p-1+c_{3 / 2}(p)$
$y^{2}=x^{3}-T^{2} x+T^{2}$	$-2 p$	$p^{2}-p-c_{1}(p)-c_{0}(p)$
$y^{2}=x^{3}-T^{2} x+T^{4}$	$-2 p$	$p^{2}-p-c_{1}(p)-c_{0}(p)$
$y^{2}=x^{3}+T x^{2}-(T+3) x+1$	$-2 c_{p, 1 ; 4} p$	$p^{2}-4 c_{p, 1 ; 6} p-1$

where $c_{p, \mathrm{a} ; m}=1$ if $p \equiv \operatorname{amod} m$ and otherwise is 0 .

Lower order terms and average rank

$$
\begin{aligned}
& \frac{1}{N} \sum_{t=N}^{2 N} \sum_{\gamma_{t}} \phi\left(\gamma_{t} \frac{\log R}{2 \pi}\right)=\widehat{\phi}(0)+\phi(0)-\frac{2}{N} \sum_{t=N}^{2 N} \sum_{p} \frac{\log p}{\log R} \frac{1}{p} \widehat{\phi}\left(\frac{\log p}{\log R}\right) a_{t}(p) \\
& \quad-\frac{2}{N} \sum_{t=N}^{2 N} \sum_{p} \frac{\log p}{\log R} \frac{1}{p^{2}} \widehat{\phi}\left(\frac{2 \log p}{\log R}\right) a_{t}(p)^{2}+O\left(\frac{\log \log R}{\log R}\right)
\end{aligned}
$$

- $\phi(x) \geq 0$ gives upper bound average rank.
- Expect big-Oh term $\Omega(1 / \log R)$.

Implications for Excess Rank

- Katz-Sarnak's one-level density statistic is used to measure the average rank of curves over a family.
- More curves with rank than expected have been observed, though this excess average rank vanishes in the limit.
- Lower-order biases in the moments of families explain a small fraction of this excess rank phenomenon.

Methods for Obtaining Explicit Formulas

For a family $\mathcal{E}: y^{2}=x^{3}+A(T) x+B(T)$, we can write

$$
a_{\mathcal{E}(t)}(p)=-\sum_{x \bmod p}\left(\frac{x^{3}+A(t) x+B(t)}{p}\right)
$$

where $(\dot{\bar{p}})$ is the Legendre symbol $\bmod p$ given by

$$
\left(\frac{x}{p}\right)= \begin{cases}1 & \text { if } x \text { is a non-zero square modulo } p \\ 0 & \text { if } x \equiv 0 \bmod p \\ -1 & \text { otherwise }\end{cases}
$$

Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums

$$
\begin{aligned}
\sum_{x \bmod p}\left(\frac{a x+b}{p}\right) & =0 \quad \text { if } p \nmid a \\
\sum_{x \bmod p}\left(\frac{a x^{2}+b x+c}{p}\right) & = \begin{cases}-\left(\frac{a}{p}\right) & \text { if } p \nmid b^{2}-4 a c \\
(p-1)\left(\frac{a}{p}\right) & \text { if } p \mid b^{2}-4 a c\end{cases}
\end{aligned}
$$

Average Values of Legendre Symbols

The value of $\left(\frac{x}{p}\right)$ for $x \in \mathbb{Z}$, when averaged over all primes p, is 1 if x is a non-zero square, and 0 otherwise.

Rank 0 Families

Theorem (MMRW'14): Rank 0 Families Obeying the Bias Conjecture

For families of the form $\mathcal{E}: y^{2}=x^{3}+a x^{2}+b x+c T+d$,

$$
A_{2, \mathcal{E}}(p)=p^{2}-p\left(1+\left(\frac{-3}{p}\right)+\left(\frac{a^{2}-3 b}{p}\right)\right) .
$$

- The average bias in the size p term is -2 or -1 , according to whether $a^{2}-3 b \in \mathbb{Z}$ is a non-zero square.

Families with Rank

Theorem (MMRW'14): Families with Rank

For families of the form $\mathcal{E}: y^{2}=x^{3}+a T^{2} x+b T^{2}$,

$$
A_{2, \varepsilon}(p)=p^{2}-p\left(1+\left(\frac{-3}{p}\right)+\left(\frac{-3 a}{p}\right)\right)-\left(\sum_{x(p)}\left(\frac{x^{3}+a x}{p}\right)\right)^{2} .
$$

- These include families of rank 0,1 , and 2.
- The average bias in the size p terms is -3 or -2 , according to whether $-3 a \in \mathbb{Z}$ is a non-zero square.

Families with Rank

Theorem (MMRW'14): Families with Complex Multiplication

For families of the form $\mathcal{E}: y^{2}=x^{3}+(a T+b) x$,

$$
A_{2, \mathcal{E}}(p)=\left(p^{2}-p\right)\left(1+\left(\frac{-1}{p}\right)\right) .
$$

- The average bias in the size p term is -1 .
- The size p^{2} term is not constant, but is on average p^{2}, and an analogous Bias Conjecture holds.

Families with Unusual Distributions of Signs

Theorem (MMRW'14): Families with Unusual Signs

For the family $\mathcal{E}: y^{2}=x^{3}+T x^{2}-(T+3) x+1$,

$$
A_{2, \varepsilon}(p)=p^{2}-p\left(2+2\left(\frac{-3}{p}\right)\right)-1 .
$$

- The average bias in the size p term is -2 .
- The family has an usual distribution of signs in the functional equations of the corresponding L-functions.

The Size $p^{3 / 2}$ Term

Theorem (MMRW'14): Families with a Large Error

For families of the form

$$
\begin{aligned}
& \mathcal{E}: y^{2}=x^{3}+(T+a) x^{2}+\left(b T+b^{2}-a b+c\right) x-b c, \\
& A_{2, \mathcal{E}}(p)=p^{2}-3 p-1+p \sum_{x \bmod p}\left(\frac{-c x(x+b)(b x-c)}{p}\right)
\end{aligned}
$$

- The size $p^{3 / 2}$ term is given by an elliptic curve coefficient and is thus on average 0.
- The average bias in the size p term is -3 .

General Structure of the Lower Order Terms

The lower order terms appear to always

- have no size $p^{3 / 2}$ term or a size $p^{3 / 2}$ term that is on average 0;
- exhibit their negative bias in the size p term;
- be determined by polynomials in p, elliptic curve coefficients, and congruence classes of p (i.e., values of Legendre symbols).

Numerical Investigations

Numerical Methods

- As complexity of coefficients increases, it is much harder to find an explicit formula.
- We can always just calculate the second moment from the explicit formula; if $\mathcal{E}: y^{2}=f(x)$, we have

$$
A_{2, \mathcal{E}}(p)=\sum_{t(p)}\left(\sum_{x(p)}\left(\frac{f(x)}{p}\right)\right)^{2} .
$$

- Takes an hour for the first 500 primes. Optimizations?

Numerical Methods

Consider the family $y^{2}=f(x)=a x^{3}+(b T+c) x^{2}+(d T+e) x+f$. By similar arguments used to prove special cases,

$$
A_{2, \mathcal{E}}(p)=p^{2}-2 p+p C_{0}(p)-p C_{1}(p)-1+\#_{1}
$$

where

$$
\begin{aligned}
C_{0}(p) & =\sum_{x(p)} \sum_{y(p): \beta(x, y) \equiv 0}\left(\frac{A(x) A(y)}{p}\right), \\
C_{1}(p) & =\sum_{x(p):} \sum_{\beta(x, x) \equiv 0}\left(\frac{A(x)^{2}}{p}\right), \\
\#_{1} & =p \sum_{x(p)} \sum_{y(p): A(x) \equiv 0 \text { and } A(y) \equiv 0}\left(\frac{B(x) B(y)}{p}\right),
\end{aligned}
$$

and β, A, and B are polynomials.

Numerical Methods

- $C_{o}(p)$ ordinarily $O\left(p^{2}\right)$ to compute.
- Sum over zeros of $\beta(x, y) \bmod p$
- Fixing an x, β is a quadratic in y. So, with the quadratic formula mod p, we know where to look for y to see if there is a zero.
- Now $O(p)$; runs from $6000^{\text {th }}$ to $7000^{\text {th }}$ prime in an hour.

Potential Counterexamples

Families of Rank as Large as 3

$\mathcal{E}: y^{2}=x^{3}+a x^{2}+b T^{2} x+c T^{2}$ with $b, c \neq 0$:

$$
\begin{aligned}
A_{2, \mathcal{E}}(p) & =p^{2}+p \sum_{P(x, y)=0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right) \\
+p & {\left[\sum_{x^{3}+b x=0}\left(\frac{a x^{2}+c}{p}\right)\right]^{2}-p \sum_{P(x, x) \equiv 0}\left(\frac{x^{3}+b x}{p}\right)^{2} } \\
& -p\left(2+\left(\frac{-b}{p}\right)\right)-\left[\sum_{x \bmod p}\left(\frac{x^{3}+b x}{p}\right)\right]^{2}-1
\end{aligned}
$$

where $P(x, y)=b x^{2} y^{2}+c\left(x^{2}+x y+y^{2}\right)+b c(x+y)$.

A Positive Size p Term?

$p\left[\sum_{x^{3}+b x=0}\left(\frac{a x^{2}+c}{p}\right)\right]^{2}$ can be $+9 p$ on average!

- Terms such as $-p \sum_{P(x, x)=0}\left(\frac{x^{3}+b x}{p}\right)^{2}$,
$-p\left(2+\left(\frac{-b}{p}\right)\right)$, and $-\left[\sum_{x \bmod p}\left(\frac{x^{3}+b x}{p}\right)\right]^{2}$ contribute negatively to the size p bias.
- The term $p \sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)$ is of size $p^{3 / 2}$.

$$
\begin{aligned}
& A_{2, \mathcal{E}}(p)=p^{2}+p \sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)+p\left[\sum_{x^{3}+b x \equiv 0}\left(\frac{a x^{2}+c}{p}\right)\right]^{2} \\
& -p \sum_{P(x, x) \equiv 0}\left(\frac{x^{3}+b x}{p}\right)^{2}-p\left(2+\left(\frac{-b}{p}\right)\right)-\left[\sum_{\left.x \bmod p\left(\frac{x^{3}+b x}{p}\right)\right]^{2}-1}\right.
\end{aligned}
$$

where $P(x, y)=b x^{2} y^{2}+c\left(x^{2}+x y+y^{2}\right)+b c(x+y)$.

Analyzing the Size $p^{3 / 2}$ Term

We averaged $\sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)$ over the first 10,000 primes for several rank 3 families of the form $\mathcal{E}: y^{2}=x^{3}+a x^{2}+b T^{2} x+c T^{2}$.

Family	Average
$y^{2}=x^{3}+2 x^{2}-4 T^{2} x+T^{2}$	-0.0238
$y^{2}=x^{3}-3 x^{2}-T^{2} x+4 T^{2}$	-0.0357
$y^{2}=x^{3}+4 x^{2}-4 T^{2} x+9 T^{2}$	-0.0332
$y^{2}=x^{3}+5 x^{2}-9 T^{2} x+4 T^{2}$	-0.0413
$y^{2}=x^{3}-5 x^{2}-T^{2} x+9 T^{2}$	-0.0330
$y^{2}=x^{3}+7 x^{2}-9 T^{2} x+T^{2}$	-0.0311

The Right Object to Study

$c_{3 / 2}(p):=\sum_{P(x, y) \equiv 0}\left(\frac{\left(x^{3}+b x\right)\left(y^{3}+b y\right)}{p}\right)$ is not a natural object to study (for us multiply by p).

An example distribution for $y^{2}=x^{3}+2 x^{3}-4 T^{2} x+T^{2}$.

Figure: $c_{3 / 2}(p)$ over the first 10,000 primes.

In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve coefficients.

Figure: $-\sum_{x \bmod p}\left(\frac{x^{3}+x+1}{p}\right)-\sum_{x} \bmod p\left(\frac{x^{3}+x+2}{p}\right)$ over the first 10,000 primes.

More Error Distributions

Figure: $c_{3 / 2}(p)$ for $y^{2}=4 x^{3}+5 x^{2}+(4 T-2) x+1$, first 10,000 primes.

More Error Distributions

Figure: $-\sum_{x \bmod p}\left(\frac{x^{3}+x+1}{\rho}\right)$ distribution, first 10,000 primes.

More Error Distributions

Figure: $c_{3 / 2}(p)$ over $y^{2}=4 x^{3}+(4 T+1) x^{2}+(-4 T-18) x+49$, first 10,000 primes.

More Error Distributions

Figure: $-\sum_{x \bmod p}\left(\frac{x^{5}+x^{3}+x^{2}+x+1}{p}\right)$ distribution, first 10,000 primes.

Summary of $p^{3 / 2}$ Term Investigations

In the cases we've studied, the size $p^{3 / 2}$ terms

- appear to be governed by (hyper)elliptic curve coefficients;
- may be hiding negative contributions of size p;
- prevent us from numerically measuring average biases that arise in the size p terms.

Future Directions

Questions for Further Study

- Are the size $p^{3 / 2}$ terms governed by (hyper)elliptic curve coefficients? Or at least other L-function coefficients?
- Does the average bias always occur in the terms of size p ?
- Does the Bias Conjecture hold similarly for all higher even moments?
- What other (families of) objects obey the Bias Conjecture? Kloosterman sums? Cusp forms of a given weight and level? Higher genus curves?

References

References

Biases:

1- and 2-level densities for families of elliptic curves: evidence for the underlying group symmetries, Compositio Mathematica 140 (2004), 952-992. http://arxiv.org/pdf/math/0310159.

- Variation in the number of points on elliptic curves and applications to excess rank, C. R. Math. Rep. Acad. Sci. Canada 27 (2005), no. 4, 111-120. http://arxiv.org/abs/math/0506461.
- Investigations of zeros near the central point of elliptic curve L-functions, Experimental Mathematics 15 (2006), no. 3, 257-279. http://arxiv.org/pdf/math/0508150.
- Lower order terms in the 1-level density for families of holomorphic cuspidal newforms, Acta Arithmetica 137 (2009), 51-98. http://arxiv.org/pdf/0704.0924v4.
- Moments of the rank of elliptic curves (with Siman Wong), Canad. J. of Math. 64 (2012), no. 1, 151-182. http://web.williams.edu/Mathematics/sjmiller/public_html/math/papers/ mwMomentsRanksEC812final.pdf

Funded by NSF Grants DMS1265673, DMS1347804 and Williams College.

Thank you!

