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Last Summer: Families and Moments

A one-parameter family of elliptic curves is given by
E:y? = x3* 4+ A(T)x +B(T)

where A(T),B(T) are polynomials in Z[T].

@ Each specialization of T to an integer t gives an
elliptic curve £(t) over Q.

@ The r'" moment of the Fourier coefficients is

Ace(p) = D agy(p).

t modp
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Tate’s Conjecture

Tate’s Conjecture for Elliptic Surfaces

Let £/Q be an elliptic surface and L(€, s) be the L-series attached to
Hét(E/Q, Q). Then L,(&, s) has a meromorphic continuation to C

and satisfies

*Ords:ZLZ(SaS) = rank NS(S/Q)v

where NS(£/Q) is the Q-rational part of the Néron-Severi group of €.
Further, L,(&, s) does not vanish on the line Re(s) = 2.

Tate’s conjecture is known for rational surfaces: An elliptic surface
y? =x3 + A(T)x + B(T) is rational iff one of the following is true:

@ 0 < max{3degA, 2degB} < 12;
@ 3degA = 2degB = 12 and ordr_oT2A(T 1) = 0.

A
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Negative Bias in the First Moment

A ¢(p) and Family Rank (Rosen-Silverman)

If Tate’s Conjecture holds for £ then

im %ZM — _rak(£/Q).

X—
7 px P

@ By the Prime Number Theorem,
Aig(p) = —rp + O(1) implies rank(£/Q) =r.
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Bias Conjecture

Second Moment Asymptotic (Michel)

For families £ with j(T) non-constant, the second moment
is

@ The lower order terms are of sizes p®/?, p, p*/?, and 1.

B
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Bias Conjecture

Second Moment Asymptotic (Michel)
For families £ with j(T) non-constant, the second moment
is

@ The lower order terms are of sizes p%/2, p, p*/?, and 1.

In every family we have studied, we have observed:

Bias Conjecture

The largest lower term in the second moment expansion
which does not average to O is on average negative .

TS HHSHHH
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Preliminary Evidence and Patterns

Let n3, , equal the number of cube roots of 2 modulo p,
and set co(p) = |(3) + (3] P cx(P) = [ s (5]
Ca/2(P) = P Xypy (252).

Family A1e(p) Aze(p)
y2=x3+Sx+T 0 pd —p?
y? = x*+2%(=3)(T + 1) 0 T e
y? = x* 4 4(4T + 2)x 0 B s
y2=x3 +(T+1)x +Tx 0 Z_2p-1
y2=x3+x24+2T +1 0 2—2p—(_T3)
y2=x>+Tx*+1 -p P? — N3 20Pp — 1+ C3/2(P)
y?=x3 -T2 4+ T2 —2p p?> —p —c1(p) — co(p)
y2=x3 -T2 +T* -2p p? —p —c1(p) — co(p)
y2=x34+Tx? — (T +3)x +1 —2Cp,1.4P p? —4cy16p — 1

where ¢y am = 1 if p = amod m and otherwise is 0.
= "™’
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Lower order terms and average rank

1 & logR - 2 1
N0 (W) = do+ o) - :
logp 1 ~/2logp 2 loglogR
glogRF¢<logR)at(p) +O< log R )

@ ¢(x) > 0 gives upper bound average rank.

@ Expect big-Oh term Q(1/logR).
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Implications for Excess Rank

@ Katz-Sarnak’s one-level density statistic is used to
measure the average rank of curves over a family.

@ More curves with rank than expected have been
observed, though this excess average rank vanishes
in the limit.

@ Lower-order biases in the moments of families explain
a small fraction of this excess rank phenomenon.
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Methods for Obtaining Explicit Formulas

For a family £ : y? = x3 + A(T )x + B(T), we can write

aco® - — 3 (x +A(t)x+B(t))

X mod p P

where (5> is the Legendre symbol modp given by

1 if X is a non-zero square modulo p

(5) =<0 ifx =0modp
P —1 otherwise.
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Lemmas on Legendre Symbols

Linear and Quadratic Legendre Sums
> (ax;b) — 0 ifpta

X mod p
3 <ax2+bx+c) _ —<%> if p b —4ac

p (p—1)<g) if p | b? — 4ac

X mod p
o

Average Values of Legendre Symbols

The value of <%> for x € Z, when averaged over all
primes p, is 1 if X is a non-zero square, and 0 otherwise.
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Rank 0 Families

Theorem (MMRW’14): Rank O Families Obeying the
Bias Conjecture

For families of the form &£ : y? = x® + ax? + bx +cT +d,

Pos(p) = p2—p <1+ (?) + <a2—p3b>> .

@ The average bias in the size p termis —2 or —1,
according to whether a> — 3b € Z is a non-zero
square.
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Families with Rank

Theorem (MMRW’14): Families with Rank
For families of the form & : y? = x® + aT2x + bT?,

) = 0 1+ (3) + () (B (5

@ These include families of rank O, 1, and 2.

@ The average bias in the size p terms is —3 or —2,
according to whether —3a € Z is a non-zero square.
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Families with Rank

Theorem (MMRW’14): Families with Complex
Multiplication

For families of the form £ : y? = x3 + (aT + b)x,
5 -1
Aog(P) = (P"=P) 1+ () )

@ The average bias in the size p term is —1.

@ The size p? term is not constant, but is on average p?,
and an analogous Bias Conjecture holds.
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Families with Unusual Distributions of Signs

Theorem (MMRW’14): Families with Unusual Signs
For the family £ : y? = x3 4+ Tx? — (T + 3)x + 1,

Aze(p) = p>—p (2+2 <%3>> 1.

@ The average bias in the size p term is —2.

@ The family has an usual distribution of signs in the
functional equations of the corresponding L-functions.
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The Size p3/2 Term

Theorem (MMRW’14): Families with a Large Error

For families of the form
E:y?=x3+ (T +a)x?+ (bT +b?—ab +c)x — bc,

<—cx(x + b)(bx — c))

Aog(p) = P —3p—1+p ) :

X mod p

@ The size p®/? term is given by an elliptic curve
coefficient and is thus on average 0.

@ The average bias in the size p term is —3.
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General Structure of the Lower Order Terms

The lower order terms appear to always
@ have no size p¥? term or a size p®/? term that is on
average 0;

@ exhibit their negative bias in the size p term;

@ be determined by polynomials in p, elliptic curve
coefficients, and congruence classes of p (i.e., values
of Legendre symbols).
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Numerical Investigations J
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Numerical Methods

@ As complexity of coefficients increases, it is much
harder to find an explicit formula.

@ We can always just calculate the second moment
from the explicit formula; if £: y? = f(x), we have

2

restp) = X (3 ()

t(p) \x(p)

@ Takes an hour for the first 500 primes. Optimizations?
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Numerical Methods

Consider the family y? = f(x) = ax® + (bT +¢)x? + (dT +e)x +f. By
similar arguments used to prove special cases,

Aoe(p) = P? —2p +pCo(p) ~ PCL(P) — 1+ #1,

where
A(X)A
Co(p) = 3 (%) ’
x(p) y(p): B(x,y)=0
A(x)?
ap = > (p> ) |
x(p): B(x,x)=0

#1

DI G ]

x(p) y(p): A(x)=0 and A(y

and 3, A, and B are polynomials.
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Numerical Methods

@ C,(p) ordinarily O(p?) to compute.

@ Sum over zeros of 5(x,y) mod p

@ Fixing an x, ( is a quadratic in y. So, with the
guadratic formula mod p, we know where to look for y

to see if there is a zero.

@ Now O(p); runs from 6000" to 7000" prime in an
hour.
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Potential Counterexamples

Families of Rank as Large as 3

E:y2=x3+ax?+bT?x +cT?with b, c #0:

Aoc(p) = pPp 3 <x3+bx)(y +bY))

P(x.y)= P

2
ax?+c X3 + bx \ 2
| X ()] e (57
x3-+bx=0 P P(x,x)=0 P

@)L 2, 5]

X mod p
where P(x,y) = bx2y? + ¢(x2 + xy +y?) + bc(x +y).
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A Positive Size p Term?

p [Zx3+bx50 (ax;+c)]2 can be +9p on average!

2
@ Terms such as —p 3", 1= (Xs%bx) ’

—p <2 + (‘Tb)) and — [ZX mod p <X3;bx)]2 contribute

negatively to the size p bias.

o The term p Yo, 40 <w> is of size p%/2.

2
3 3 2

Aze(p) = PP+p D (M)_ﬂ)[ > <ax +c>]
X,y)=0 P x34+bx=0 P

P(x,y)=

o 2 (55 e ()| 3, (52

X mod p

where P(x,y) = bx?y? + ¢(x? + xy +y?) + bc(x +y).
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Analyzing the Size p3/2 Term

We averaged >, .10 (W) over the first

10,000 primes for several rank 3 families of the form
E:y?=x3+ax?+bT?x +cT2.

Family Average
y2=x3+2x2 - 4T%x + T2 | —0.0238
y2=x3-3x2 -T2x +4T2% | —0.0357
y 3 4 4x% —4T2x +9T2 | —0.0332

X

x3 4 5x% —9T2x +4T2 | —0.0413
y2 =x%-5x2-T2x +9T2 | —0.0330
y2=x3 + 7x2—9T2x + T2 | —0.0311
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The Right Object to Study

C3/2(P) = ZP(X,y)EO (W) is not a natural object

to study (for us multiply by p).

An example distribution for y? = x3 + 2x3 — 4T2x + T2.
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Figure: c3/»(p) over the first 10,000 primes.

OGS
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In Terms of Elliptic Curve Coefficients

Compare it to the distribution of a sum of 2 elliptic curve
coefficients.

300

1 2 3 4

Figure: —>" mod p (Xsﬁ.fx“) =2 mod p (X3+,;‘+2) over the first
10,000 primes.
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More Error Distributions

—02.0 . . E X . 1.0 15 2.0

Figure: cz/o(p) for y? = 4x3 + 5x2 + (4T — 2)x + 1, first 10,000
primes.
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More Error Distributions
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Figure: — >, 1od p (MTX“) distribution, first 10,000 primes.
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More Error Distributions
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Figure: c3/p(p) over y? = 4x3 + (4T + 1)x? + (—4T — 18)x + 49, first
10,000 primes.
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More Error Distributions

400

350

300

250

200

150

100

50

0
-4 -3 -2 =1 0 1 2 3 4

Figure: —>" 1od p (%) distribution, first 10,000 primes.
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Summary of p3/2 Term Investigations

In the cases we’ve studied, the size p%/? terms

@ appear to be governed by (hyper)elliptic curve
coefficients;

@ may be hiding negative contributions of size p;

@ prevent us from numerically measuring average
biases that arise in the size p terms.
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Questions for Further Study

@ Are the size p%? terms governed by (hyper)elliptic
curve coefficients? Or at least other L-function
coefficients?

@ Does the average bias always occur in the terms of
size p?

@ Does the Bias Conjecture hold similarly for all higher
even moments?

@ What other (families of) objects obey the Bias
Conjecture? Kloosterman sums? Cusp forms of a
given weight and level? Higher genus curves?
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