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Goals of the Talk

@ Research: What questions to ask? How? With whom?
@ Explore: Look for the right perspective.

@ Utilize: What are your tools and how can they be used?
@ succeed: Control what you can: reports, talks, ....

Joint with many students and junior faculty over the years.




Research: What questions to ask? How? With whom?

@ Build on what you know and can learn.
@ What will be interesting?
@ How will you work?

@ Where are the questions? Classes, arXiv, conferences, ....

A




Explore: Look for the right perspective.

@ Ask interesting questions.
@ Look for connections.

@ Be a bit of a jack-of-all trades.

Leads naturally into....




Utilize: What are your tools and how can they be used?

Law of the Hammer:

@ Abraham Kaplan: | call it the law of the instrument, and it
may be formulated as follows: Give a small boy a hammer,
and he will find that everything he encounters needs
pounding.

@ Abraham Maslow: | suppose it is tempting, if the only tool
you have is a hammer, to treat everything as if it were a
nail.

@ Bernard Baruch: If all you have is a hammer, everything
looks like a nail.

¢




Succeed: Control what you can: reports, talks

@ Write up your work: post on the arXiv, submit.

@ Go to conferences: present and mingle (no spam and
P&J).

@ Turn things around fast: show progress, no more than 24
hours on mundane.

@ Service: refereeing, MathSciNet, ....

TS HHSHHH
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Pre-requisites: Probability Review

@ Let X be random variable with density p(x):
op(x) > 0; [7 p(x)dx = 1;
oProb(a< X <b)= f;’ p(x)dx.

@ Mean: u= [%_ xp(x)dx.

@ Variance: 02 = [*_(x — p)?p(x)dx.

@ Gaussian: Density (2702) "2 exp(—(x — u)?/202).
Q
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Pre-requisites: Combinatorics Review

n!: number of ways to order n people, order matters.

ﬁlk), = nCk = (i): number of ways to choose k from n,

order doesn’t matter.

Stirling’s Formula: n! ~ n"e~"v/27n.
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Previous Results

Fibonacci Numbers: Fpy 1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....
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Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.
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Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 = 34 + 17 = Fg + 17.
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Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13 +4 = Fg + Fg + 4.
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Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....
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Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf’'s Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51 =34+ 13+3+1=Fg+ Fg+ F3+ Fy.
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Previous Results

Fibonacci Numbers: Fni1 = Fn + Fp_1;
First few: 1,2,3,5,8,13,21,34,55,89,....

Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of
non-consecutive Fibonacci numbers.

Example: 51=34+13+3+1=Fg+Fg+F3z+Fj.
Example: 83 =55+21+5+2=Fg+F7; +F4 +F,.
Observe: 51 miles ~ 82.1 kilometers.
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Old Results

Central Limit Type Theorem

As n — oo distribution of number of summands in Zeckendorf
decomposition for m € [Fn, Fn.1) is Gaussian (normal).

0.030 [ o~
0.025 |
0.020 [
0.015 [
0.010 |

0.005 |

500 520 540 560 580 600

Figure: Number of summands in [F2o10, F2011); F2010 ~ 1020,
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New Results: Bulk Gaps:

Theorem (Zeckendorf Gap Distribution)

Gap measures vm,, converge almost surely to average gap
measure where P (k) = 1/¢X for k > 2.

Figure: Distribution of gaps in [F F  F ~ 10298,




Pre-regs
°

New Results: Longest Gap

Theorem (Longest Gap)

As n — oo, the probability that m € [F,, F,,11) has longest gap
less than or equal to f(n) converges to

Prob (L,(m) < f(n)) =~ g—eosn—1(n/logs

Immediate Corollary: If f(n) grows slower or faster than
logn/log ¢, then Prob(L,(m) < f(n)) goesto 0 or 1,
respectively.
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Preliminaries: The Cookie Problem

The Cookie Problem

The number of ways of dividing C identical cookies among P

distinct people is (57 1).
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Cookie Monster eats P — 1 cookies: (1) ways to do.
Divides the cookies into P sets.
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Preliminaries: The Cookie Problem

The Cookie Problem
The number of ways of dividing C identical cookies among P

C+P—1)_

distinct people is (“5";

Proof: Consider C + P — 1 cookies in a line.
Cookie Monster eats P — 1 cookies: (1) ways to do.
Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):

D
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-




Pre-regs
°

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.




Pre-regs
°

Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fny1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fny1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
dq Z:il—l,dj Z:ij —ij_l—Z(j >1).
d1+d2+---+dk :n72k+1,dj > 0.
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Preliminaries: The Cookie Problem: Reinterpretation

Reinterpreting the Cookie Problem

The number of solutionsto X; +--- +Xp = C with x; > 0 is
(“pZ1Y)-

Let phx = # {N € [Fn,Fnt1): the Zeckendorf decomposition of
N has exactly k summands}.
For N € [Fn,Fny1), the largest summand is Fp.
N :Fil+Fi2+"'+Fik,l+Fn:
1§i1<i2<"'<ik,1<ik:n,ij*ij,122.
dq Z:il—l,dj Z:ij —ij_l—Z(j >1).
d1+d2+---+dk :n72k+1,dj > 0.

(n—2k+1 + k—l) _ (n—k).

Cookie counting = pp i = k_1 k—1

1
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Generalizing Lekkerkerker: Erdos-Kac type result

Theorem (KKMW 2010)

As n — oo, the distribution of the number of summands in
Zeckendorf’'s Theorem is a Gaussian.

Sketch of proof: Use Stirling’s formula,
n! ~ n"e "v2rn

to approximates binomial coefficients, after a few pages of
algebra find the probabilities are approximately Gaussian.
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(Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in [Fn, F 1) is
fa(k) = (”’1 k)/Fn,l Consider the density for the n + 1 case. Then we have, by Stirling

nato = ("9 =

1
(n—k)y 1 1 (n—Kk)"TKF2 1

(n — 2k)Ik! Fn V2r k(k+%)(n B Zk)n—2k+% Fn

plus a lower order correction term.
Also we can write Fp = % ¢>”+1 = \% ¢" for large n, where ¢ is the golden ratio (we are using relabeled

Fibonacci numbers where 1 = F; occurs once to help dealing with uniqueness and F, = 2). We can now split the
terms that exponentially depend on n.

3 1 (n—k) V5 _n (n—k)"k
frrall) = (r k=20 & > ("’ m)
Define
W 1 -k V5 n (kK
"7 VamVkn—2k) o " Y Kk(n— 2k)pn—2

Thus, write the density function as
fap1(k) = NnSn

where Ny, is the first term that is of order n—1/2 and Sy, is the second term with exponential dependence on n.
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(Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable k = i + xo where . and o are the
mean and the standard deviation, and depend on n. The discrete weights of f, (k) will become continuous. This
requires us to use the change of variable formula to compensate for the change of scales:

fa(k)dk = fa(p + ox)odx.

Using the change of variable, we can write N as

Nn _ 1 n—k @
V2r \ k(n — 2k) VB
1 1—k/n \/5
T Vazmn \ (k/m)(T - 2k/n) &
B \/ 1— (u+ox)/n V5
ﬁ (1 + o) /M)A — 2(u + ox)/n) &
1-C-—y V5

V2 C+y)@-2c-2y) ¢

where C = p/n = 1/(¢ + 2) (note that #? = ¢ + 1) andy = ox/n. But for large n, the y term vanishes since
o ~ ynandthusy ~ n~1/2 Thus

N 1 V6 1 (+1(0+2) V5 1 5¢+2) 1
" V2mn (1 — 20) "¢ Vamn P ¢ V2mn ¢  V2no?
since =n ¢
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(Sketch of the) Proof of Gaussianity

For the second term Sp, take the logarithm and once again change variablesby k = o + xo,

—n_(n—0w
log(Sn) = log | ¢ i (n — 202
—  —nlog()+ (n — K)log(n — k) — (k) log(k)

— (n — 2k) log(n — 2k)
= —nlog(¢) + (n — (p +xo))log(n — (u + xo))
— (4 +x0) log(u + xo)
— (0 = 2(u + x0)) log(n — 2(u + X))
—nlog(¢)

0= (-t x) (loa(n — ) + g (1~ nxfu))

— (b +x0) (log(u) + log (1 + %))

—(n = 2(u + x0)) (log(” — 2u) + log (1 Th ioz;))

= —nlog()

ot (3 ) ()

— (u +x0o)log (1+ Xf)

—(n = 2(u + x0)) (log (5 —2> +log (1_ niO-ZLL))A

s
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(Sketch of the) Proof of Gaussianity

Note that, since n/p = ¢ + 2 for large n, the constant terms vanish. We have log(Sp)

= —nlog(¢) + (n — k) log (% — 1) — (n — 2k) log (5 —2> +(n— (u + xo))log (1— nxj,u>

— (1 +x0)log (1+ Xf) — (0= 2(u +x0))log (1 “h iaz;)

= —nlog(¢) + (n — k)log (¢ + 1) — (n — 2k) log (¢) + (n — (u + x0o)) log (1 - nxo,u>

Xo )
n—2p

= n(—log(6) +Iog (%) 109 (¢)) + kllog(?) + 2I00(4) + (n — (u-+ xo)log (1~ )

— (1 + xo)log (1+ Xf) —(n = 2(u + x0))log (1 -

— (u +x0)log <1+ Xf) — (0= 2(u+xo))log (1_2n jUZ,&L)

= (n— (u+x0))log (1— r\i—au) — (4 +x0)log <1+ XTU)

—(n — 2(i + xo)) log (172ni"zu) .
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(Sketch of the) Proof of Gaussianity

Finally, we expand the logarithms and collect powers of xo /n.

log(Sn) = (n—(u+xU))<_ kil _1( Xa >2+m)
Xo 1 /xo\2
7(u+xa)<775<7) +>
Xo 1 Xo 2
7(n72(#+xa))(72n—2u75(2n—2u> +)
X 1 X 2
= (n_(u+xa))<_n(¢—+l)_5<n(¢—+l)> +>
(642) (¢+2)
X 1 X 2
7(u+xo)< : ——( :) +>
sz 2 \an
2X 1 2x 2
= 2ptxo) [ -2 [ 22 ) 4.
(i) )

- (e e e )

1 2 2 2 2
_Z (X_0> n(—2&+&+2(¢+2)—(¢+2)+4%>

2 \n b+1  p+1
+0 (n (m/n)3)

e
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(Sketch of the) Proof of Gaussianity

log(Sn)

B 7}()(0-)2 3¢ +4 xa\3
= > (¢+2)<¢(¢+1)+1)+o<n(n>)

1 (xo) 3¢ +4+2¢+1 xo\3
= T @2 W)“’(”(T))
= 7%x20'2 (5(¢¢: 2)> +0 (n (xcr/n)s) .
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(Sketch of the) Proof of Gaussianity

But recall that
2 ¢n
5(¢ +2)

3 3
Also, since o ~ nfl/z, n (XT") ~n—1/2 So for large n, the O (n (XT“) > term vanishes. Thus we are left
with

log Sn

Il
|
|

<

1
Sp -2

Il
®

Hence, as n gets large, the density converges to the normal distribution:

fa(k)dk = NpSpdk

A
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Generalizations

Generalizing from Fibonacci numbers to linearly recursive
sequences with arbitrary nonnegative coefficients.

Hnt1 =CiHp +CoHpo1 + - -+ Hp 41, N> L
with H, =1, Hn+1 =ciHy+coHZ1+ - +CyH1 + l, n<yi,
coefficients ¢; > 0; ¢y, >0ifL>2;¢c, > 1ifL=1.

@ Zeckendorf: Every positive integer can be written
uniquely as ) a;H; with natural constraints on the a;’s
(e.g. cannot use the recurrence relation to remove
any summand).

o Lekkerkerker
@ Central Limit Type Theorem

A
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Generalizing Lekkerkerker

Generalized Lekkerkerker's Theorem

The average number of summands in the generalized
Zeckendorf decomposition for integers in [Hy, H, 1) tends
toCn+d asn — oo, where C > 0 and d are computable
constants determined by the ¢;’s.

C— Y1) _ hq_:lo(sm + Sm+1 — 1)(Sm+1 — Sm)Y™(1)

y(1) 2 Z;_:lo(m + 1)(Sms1 — Sm)y™(1)
So=0,Sy=C1+Co+---+Cn.

y(x) is the root of 1 — Sk~ S™ome—tyiym+l,

i=Sm

y(1) is the root of 1 — c;y — coy2 — -+ —cLyt.

A
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Central Limit Type Theorem

Central Limit Type Theorem

As n — oo, the distribution of the number of summands,
i.e.,, a; +a, +---+ an in the generalized Zeckendorf
decomposition Zim:l ajH; for integers in [H,, Hn.1) IS
Gaussian.
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Example: the Special Caseof L =1,c; =10
Hny1 = 10H,, Hy = 1, H, = 10"1,

@ Legal decomposition is decimal expansion: Y ajH;:
ae{0,1,...,9} (1 <i<m),ane{l,...,9}.

@ ForN € [Hy,Hpy1), m =n, i.e., first term is
a,H, = a,10"1.

@ A;: the corresponding random variable of a;.
The A’s are independent.

@ For large n, the contribution of A, is immaterial.
Ai (1 <i < n) are identically distributed random
variables
with mean 4.5 and variance 8.25.

@ Central Limit Theorem: A, + Az + - - -+ A, — Gaussian
with mean 4.5n + O(1)
and variance 8.25n 4+ O(1).

A
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Generating Function (Example: Binet's Formula)

Binet's Formula

AT
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Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)

AR




Gaussianity
[ ]

Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

A7
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Generating Function (Example: Binet's Formula)

Binet's Formula

A

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2
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Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2

= Z Fox" = Z Fox" 4 ZFan+2

n>3 n>2 n>1

A
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Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2
= D Fox"=) Fpx™ 4 ) Fox"?
n>3 n>2 n>1

= ZFan :XZFan—i—XZZFnX”

n>3 n>2 n>1
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Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2

= D Fox"=) Fpx™ 4 ) Fox"?
n>3 n>2 n>1

= Zan” :XZFan —|—XZZF”X”
n>3 n>2 n>1

= g(x) — Fix — Fox2 = x(g(x) — F1x) + x2g(x)
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Generating Function (Example: Binet's Formula)

Binet's Formula

n n
Fi=Fo=1 Fo= % [(355) - (2£) .

@ Recurrence relation: Fp; =Fn+Fn_1 Q)
@ Generating function: g(x) = > .o FnX".

(1) = D Faax™ =) Fox" 4> Fox"t

n>2 n>2 n>2

= D Fox"=) Fpx™ 4 ) Fox"?
n>3 n>2 n>1

= Zan” :XZFan —|—XZZF”X”
n>3 n>2 n>1

g(x) — F1x — Fox? = x(g(x) — F1x) + x%g(x)
g(x) = x/(1 —x —x3).

vl
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Partial Fraction Expansion (Example: Binet's Formula)

@ Generating function: g(x) = > .o FnX" = =

1—x—x2"
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Partial Fraction Expansion (Example: Binet's Formula)

@ Generating function: g(x) = > .o FnX" = =

1—x—x2"

@ Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet's Formula)

@ Generating function: g(x) = > .o FnX" = =

1—x—x2"

@ Partial fraction expansion:
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Partial Fraction Expansion (Example: Binet's Formula)

_ X
1—x—x2"

@ Generating function: g(x) = >, o FnX" =

@ Partial fraction expansion:

XL B .
=X =T 552 T & Ll 1y )

Coefficient of x" (power series expansion):

n n
Fn= % [(H—f) - <—1+‘/§) ] - Binet’s Formula!

. . . . l _ 2 3
(using geometric series: 1= =1+r1 +r°+r°+-...).
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Differentiating Identities and Method of Moments

@ Differentiating identities
Example: Given a random variable X such that

PriX =1) =1, Pr(X =2) =%, Pr(X =3) = %
then what's the mean of X (i.e., E[X])?
Solution: Let f(x) = X + zx* + gx° + - = =5 — L.
f/(x)=1-24+2 - Ix+3- x>+
f'(l)y=1-2+2-2+3-1+---=E[X].
@ Method of moments: Random variables X, X,, . ...

If " moments E[X!] converges those of standard
normal then X,, converges to a Gaussian.

Standard normal distribution
2m™ moment: (2m — 1)!! = (2m — 1)(2m —3)---1,
(2m — 1) moment: 0.
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.
@ Recurrence relation:

N e [Fn+1,Fn+2): N = Fn+1—|—Ft—|—-'-,t§ n-—1.

Prnyik+1 = Pn-ik +Pno2k +--:
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New Approach: Case of Fibonacci Numbers
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Gaussianity
L]

New Approach: Case of Fibonacci Numbers

¢

pnk = # {N € [Fn, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.

@ Recurrence relation:
N e [Fni, Fn2)) N=F 1 +F 4+, t<n-1.
Prnrik+rr = Pn-1k +Pn-2k+--:
Prhk+i1 = Pn—2k T Pn-azx+---
= Pn+1k+1 = Pnk+1+ Pn-1k-
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New Approach: Case of Fibonacci Numbers

pnk = # {N € [Fn, Fni1): the Zeckendorf decomposition of
N has exactly k summands}.

@ Recurrence relation:
N e [Fni, Fn2)) N=F 1 +F 4+, t<n-1.
Prnrik+rr = Pn-1k +Pn-2k+--:
Prhk+i1 = Pn—2k T Pn-azx+---
= Pn+1k+1 = Pnk+1+ Pn-1k-

e Generating function: 3o PnxX*y" = 1= 5.
@ Partial fraction expansion:

y - y ( 1 B 1 )
1—-y—xy?2  yi(x) —y2(x) \y —ya(x) Yy —ya(x)

where y;(x) and y,(x) are the roots of 1 —y — xy? = 0.

Coefficient of y": g(x) = 3.0 PnxXX.
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Gaussianity

New Approach: Case of Fibonacci Numbers (Continued)
n. the corresponding random variable associated

g(x) = Zk>0 pn,ka.

@ Differentiating identities:
9(1) = > o0 Pnk = Fay1 — Fn,
9'(X) = Do kX1, g'(1) = g(1)E[Ka],
(xg’ X))/ =2 k>0 kzpn,kxk_l,
(xg'(x)) k=1 = 9(1E[KZ],
(x (xg'(%))) [xe1 = GE[K3], ...
Similar results hold for the centralized K,:
K! =K, — E[Kq].

@ Method of moments (for normalized K/):
E[(K3)?M/(SD(Ky))?™ — (2m — 1)I1,
E[(K))?™1/(SD(K}))>™1 — 0. = K, — Gaussian.
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Gaussianity

New Approach: General Case

Let pnx = # {N € [Hn, Hny1): the generalized Zeckendorf
decomposition of N has exactly k summands}.

@ Recurrence relation:
Fibonacci: pni1k+1 = Prk+1 + Pnk-
. L-1 S -1
General: pni1k = > mlo 2ilen  Pnomk-i-
where s = 0,8, =C1 +Co + -+ -+ Cp.
@ Generating function:
. Ty
Fibonacci: T2
General:
ky/n L-1 Sm+1—1 \jy,m+1 ky,n
anl_ PnkX"y" — Zmzo ngm XJy Zn<L—m Pn kXY

_ L1 Smi1—1y jyym+l

¢
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New Approach: General Case (Continued)

@ Partial fraction expansion:

. Ly 1 _1
Fibonacci: V1) —Y2(X) <y—yl(X) y—Y2(X)>'
General: L

B(x,y)

_Zsrl X ; (v =i I Tz (%) = yi(x))

i=sL-1

L—1 Smy1—1

BOGY) = ) Pxxy" =D > xXy™ 3 p iy,

n<L m=0 j=Sm n<L—m

yi(x): root of 1 — SO Semia—hyjymil — g,

i=Sm

Coefficient of y™ g(X) = ", =0 PakX .
@ Differentiating identities
@ Method of moments: implies K, — Gaussian.

¢




Gaps (Bulk)

Gaps in the Bulk J
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Distribution of Gaps

For F;, + F;, +---+ F,,, the gaps are the differences
M —Th-1,Tn-1 —Th—2,..., 12— I.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.
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Distribution of Gaps

For F;, + F;, +---+ F,,, the gaps are the differences
M —Th-1,Tn-1 —Th—2,..., 12— I.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P, (k) be the probability that a gap for a decomposition
in [Fn, Fne1) is of length k.
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Distribution of Gaps

For F;, + F;, +---+ F,,, the gaps are the differences
M —Th-1,Tn-1 —Th—2,..., 12— I.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P, (k) be the probability that a gap for a decomposition
in [Fn, Fne1) is of length k.

What is P (k) = limy_,o Pn(k)?
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Distribution of Gaps

For F;, + F;, +---+ F,,, the gaps are the differences
M —Th-1,Tn-1 —Th—2,..., 12— I.

Example: For F; 4+ Fg + F1g, the gaps are 7 and 10.

Let P, (k) be the probability that a gap for a decomposition
in [Fn, Fne1) is of length k.

What is P (k) = limy_,o Pn(k)?

Can ask similar questions about binary or other
expansions: 2012 = 210 4 29 4+ 28 4 27 4 26 4 24 4 23 4 22

¢
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Main Result

Theorem (Distribution of Bulk Gaps (SMALL 2012))

LetHy, 1 = ciHy +CoHn1 + -+ ¢ Hn 1L be a positive
linear recurrence of length L wherec; > 1forall1 <i <L.
Then

1—- (&) \*+at-3) :j=0

CLek

P(j) = { AN ) (1 —2ay) +a) :j=1

CLek

(A — 1)? (gt;) A j>2
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Special Cases

Theorem (Base B Gap Distribution (SMALL 2011))

(B—1)(B—2
B2

For base B decompositions, P(0) = ) and for

k > 1, P(k) = cgB¥, with cg = E-138=2),

Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions, P(k) = 1/¢* for k > 2,
with ¢ = 125 the golden mean.

y
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn,lﬁ.
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn,lﬁ.

Let Xij = #{m € [Fn, Fn;1): decomposition of m includes
Fi, Fj, but not Fq fori < q <j}.

TS -
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Proof of Bulk Gaps for Fibonacci Sequence

Lekkerkerker = total number of gaps ~ Fn,lﬁ.

Let Xij = #{m € [Fn, Fn;1): decomposition of m includes
Fi, Fj, but not Fq fori < q <j}.

n—k
P(k) = lim &=L 2Ltk
n—oo anl—¢2+l

y
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Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj?

B Fi_1 F Fiir Fiigei F..1 F,

R RRRRRRRRRRRRRRRRRRRREERERERRERRRRRRRRERERRERERERESESSSS BB




Gaps (Bulk)
L]

Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj?

B Fi_1 F Fiir Fiigei F..1 F,

For the indices less than i: F;_; choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[Fi,Fi 1) = Fiy1 — Fi = Fi_1.
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Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj?

B Fi_1 F Fiir Fiigei F..1 F,

For the indices less than i: F;_; choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[Fi,Fi 1) = Fiy1 — Fi = Fi_1.

For the indices greater than i + k: F,_x_;j_» choices. Why? Shift.
Choose summands from {Fy,..., Fo_k_it1} with F1, Fp_«_i11
chosen. Decompositions with largest summand F,,_y_j 1 minus
decompositions with largest summand F,__;.
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Calculating Xi,i+k

How many decompositions contain a gap from F; to Fj?

B Fi_1 F Fiir Fiigei F..1 F,

For the indices less than i: F;_; choices. Why? Have F; as largest
summand and follows by Zeckendorf: #[Fi,Fi 1) = Fiy1 — Fi = Fi_1.

For the indices greater than i + k: F,_x_;j_» choices. Why? Shift.
Choose summands from {Fy,..., Fo_k_it1} with F1, Fp_«_i11

chosen. Decompositions with largest summand F,,_y_j 1 minus
decompositions with largest summand F,__;.

So total number of choices is F,,_x_o_iFi_1.

v TS
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Determining P (k)

Recall
n—k n—k
. i1 Xij ) nXE . o F_
P(k): lim i=1 :],|+k — lim i=1 ' n kn2 i l.
n— o0 F”*lm n— o0 F”*lm
Use Binet’s formula. Sums of geometric series:
P(k) =1/¢".

n3f
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Kentucky Sequence and Quilts
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.




Kentucky and Quilts
°

Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).
Kentucky: These are (s,b) = (1, 2).
[1, 2], [3, 4], [5,
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).
Kentucky: These are (s,b) = (1, 2).
(1. 2], [3 4], [5 8,
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).
Kentucky: These are (s,b) = (1, 2).
(1. 2], [3 4, [5 8], [11,
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).
Kentucky: These are (s,b) = (1, 2).
[1, 2], [3, 4], [5, 8], [11, 16],
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).
Kentucky: These are (s,b) = (1, 2).
[1, 2], [3, 4], [5, 8], [11, 16], [21,
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).
Kentucky: These are (s,b) = (1, 2).
[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]




Kentucky and Quilts
°

Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).
Kentucky: These are (s,b) = (1, 2).
[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]

@ ap, = 2" and apn4y = (22" — (—1)"):
dnt1 = Ap-1 + Zan737 ai = 17 a = 27 az = 37 g = 4.
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Kentucky Sequence

Rule: (s, b)-Sequence: Bins of length b, and:

@ cannot take two elements from the same bin, and

o if have an element from a bin, cannot take anything
from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s,b) = (1, 1).

Kentucky: These are (s,b) = (1, 2).
[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]

@ ap, = 2" and apn4y = (22" — (—1)"):
dnt1 = Ap-1 + Zan737 ai = 17 a = 27 az = 37 g = 4.
® a1 = a1 + 2a,_3: New as leading term O.
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What's in a name?

« C i [J www.11points.com/Dating-Sex/11

[ ariv [ PeopleSoft & AMSGradBlog @] Glow 317 Efj33r [ wowki [fsched BTRR HealthHub fit; PMEI2 P

fall under the "well, we have to invite your Uncle Bernie” umbrella!

A ban on marriages between first
cousins and first cousins once
remouved: Indiana, Kentucky, Nevada,
Ohio, Wuhmgton md W:scnn.sln. Tnace

first cousin once removed (your first cousin
once removed is the child of your first

because there aren't any lega, mallso
states to marry your second cousin, Seriously.

o

A ban on marriages between first
cousins, but first cousins once
removed are good to go: Arkansas,
Delaware, Iowa, Idaho, Kansas, Louisiana,
New Hampshire, Michigan, Minnesota,
Missouri, M i, Mont North Dakota, Nebraska, Oregon, Oklah lvani:
South Dakota, Texas, West Virginia and Wyom.ing. So these states are pretty stri
not as worried about cousins from different generations (the whole once rems
them, as vou'll see below, also have other litile loopholes.

Adopted first cousins are good to ge, as long as they've got proof:
Louisiana, Mississippi, Oregon, WesEergnma. Iwas nci.r\m surprised more of the banned states
from above don't have adopted cousin UD\JhDJE Bem

w
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What's in a name?

What's in 2 name?

o {
EvanWilliam¥ feaneis
o WHTSKEY

783 E
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Gaussian Behavior

0.035
0.030 —
0.025 —
0.020 —
0.015 —
0.010 —

0.005 |-

T [ L |
620 640 660 680 700 720

Figure: Plot of the distribution of the number of summands for
100,000 randomly chosen m € [1, aso00) = [1,22°%?) (s0 m has on the
order of 602 digits).
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020

010

005

1 L | I " L n n n n ! n n n n !

10 20 30 40

Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,2%%9) (so m has on the order of 60 digits).
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Figure: Plot of the distribution of gaps for 10,000 randomly chosen
m € [1,a400) = [1,2%%9) (so m has on the order of 60 digits). Left
(resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break
into even and odd gaps.
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Fibonacci Spiral




Fibonacci Spiral
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The Fibonacci (or Log Cabin) Quilt: Work in Progress

12 10
4 3
16 5 1 14 5
3 9 28 2 8 25
2 1
7 6
21 19
1,2,3,4,5,7,9, 12, 16, 21, 28, ... 1,2,3,5,6,8,10,14,19, 25,33, ...

® a1 = a1 + an_», NON-uniqueness (average number
of decompositions grows exponentially).

@ In process of investigating Gaussianity, Gaps,
Kmina Kavea Kmax; Kgreedy-
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Average Number of Representations

@ dn: the number of FQ-legal decompositions using only elements of
{3.1, az, ..., an}.
@ c, requires a, to be used, b, requires a, and a,_; to be used.

>
o
S
o
=]
(op
S
Q
S

N
[EEY
o

11
15
21
30

O©CoOoO~NO UL~ WNE
(o]

OCOP~WNDNEPREPEP

ONO~NOOAWNPE

w
2

Table: First few terms. Findd, =dn_1 +dy_2 —dp_3+dn_5 —dy_g,
implying drg.ae(n) &~ C - 1.05459".
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Greedy Algorithm

h,n: number of integers from 1 to a, ;1 — 1 where the greedy algorithm
successfully terminates in a legal decomposition.

L] @[ ho] P |
T 1| 1] 100.0000
2| 2| 2| 100.0000
3| 3| 3| 1000000
4l 4| 4] 1000000
5| 5| 5| 833333
6| 7| 7| 875000
10| 21| 25| 925926
11| 28| 33| 916667
17 || 151 | 184 || 92.4623

Table: First few terms, yields h, = h,_1 + h,_5 + 1 and percentage
converges to about 0.92627.
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Future Research

Future Research

@ Generalizing results beyond PLRS, signed
decompositions, higher dimensions....

@ Other systems such as f-Decompositions of
Demontigny, Do, Miller and Varma.
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