

# Cookie Monster Meets the Fibonacci Numbers. Mmmmmm – Theorems!

## **Research and Results in REUs: Steven J. Miller**

http://www.williams.edu/Mathematics/sjmiller/public\_html

## Florida Institute of Technology, May 20, 2016



|       |        |              |       |          | Future / Refs |
|-------|--------|--------------|-------|----------|---------------|
| 00000 | 000000 | 000000000000 | 00000 | 00000000 | 00            |

## Introduction

| Intro | Pre-reqs    | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|-------------|---------------|-------------|---------------------|---------------|
| ●○○○○ | 000000      | 0000000000000 | ೦೦೦೦೦       |                     | 00            |
| Goals | of the Tall | ۲.            |             |                     |               |

- R esearch: What questions to ask? How? With whom?
- Explore: Look for the right perspective.
- U tilize: What are your tools and how can they be used?
- succeed: Control what you can: reports, talks, ....



Joint with many students and junior faculty over the years.

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
| 00000 |          |             |             |                     |               |

Research: What questions to ask? How? With whom?

- Build on what you know and can learn.
- What will be interesting?
- How will you work?
- Where are the questions? Classes, arXiv, conferences, ....

| Intro<br>○○●○○ | Pre-reqs | Gaussianity<br>০০০০০০০০০০০০০০ | Gaps (Bulk)<br>00000 | Kentucky and Quilts | Future / Refs |
|----------------|----------|-------------------------------|----------------------|---------------------|---------------|
|                |          |                               |                      |                     |               |

## Explore: Look for the right perspective.

- Ask interesting questions.
- Look for connections.
- Be a bit of a jack-of-all trades.

Leads naturally into....



| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
| 00000 |          |             |             |                     |               |

#### Utilize: What are your tools and how can they be used?

#### Law of the Hammer:

- Abraham Kaplan: I call it the law of the instrument, and it may be formulated as follows: Give a small boy a hammer, and he will find that everything he encounters needs pounding.
- Abraham Maslow: I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail.
- Bernard Baruch: If all you have is a hammer, everything looks like a nail.



| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
| 00000 |          |             |             |                     |               |
|       |          |             |             |                     |               |

#### Succeed: Control what you can: reports, talks

- Write up your work: post on the arXiv, submit.
- Go to conferences: present and mingle (no spam and P&J).
- Turn things around fast: show progress, no more than 24 hours on mundane.
- Service: refereeing, MathSciNet, ....

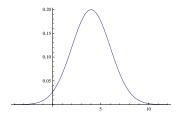


| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          |             |             |                     |               |
|       |          |             |             |                     |               |
|       |          |             |             |                     |               |

## **Pre-requisites**

| Intro | Pre-reqs | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|---------------|-------------|---------------------|---------------|
| 00000 | 00000    | 0000000000000 | 00000       | 00000000            | 00            |
|       |          |               |             |                     |               |

#### **Pre-requisites: Probability Review**



Let X be random variable with density p(x):
p(x) ≥ 0; ∫<sub>-∞</sub><sup>∞</sup> p(x)dx = 1;
Prob (a ≤ X ≤ b) = ∫<sub>a</sub><sup>b</sup> p(x)dx.
Mean: μ = ∫<sub>-∞</sub><sup>∞</sup> xp(x)dx.
Variance: σ<sup>2</sup> = ∫<sub>-∞</sub><sup>∞</sup> (x - μ)<sup>2</sup>p(x)dx.
Gaussian: Density (2πσ<sup>2</sup>)<sup>-1/2</sup> exp(-(x - μ)<sup>2</sup>/2σ<sup>2</sup>).

| Intro<br>00000                       | Pre-reqs<br>⊙●○○○○ | Gaussianity<br>0000000000000 | Gaps (Bulk)<br>೦೦೦೦೦ | Kentucky and Quilts | Future / Refs<br>00 |  |  |  |
|--------------------------------------|--------------------|------------------------------|----------------------|---------------------|---------------------|--|--|--|
| Pro requisites: Combinatorios Poview |                    |                              |                      |                     |                     |  |  |  |
| Pre-requisites: Combinatorics Review |                    |                              |                      |                     |                     |  |  |  |

- *n*!: number of ways to order *n* people, order matters.
- $\frac{n!}{k!(n-k)!} = nCk = \binom{n}{k}$ : number of ways to choose *k* from *n*, order doesn't matter.
- Stirling's Formula:  $n! \approx n^n e^{-n} \sqrt{2\pi n}$ .

| Intro  | Pre-reqs   | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|------------|---------------|-------------|---------------------|---------------|
| 00000  | ○○●○○○     | 0000000000000 | ০০০০০       |                     | oo            |
| Previo | ous Result | S             |             |                     |               |

| Intro  | Pre-reqs  | Gaussianity      | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-----------|------------------|-------------|---------------------|---------------|
| 00000  | ○○●○○○    | oooooooooooooooo | ೦೦೦೦೦       |                     | oo            |
| Previo | us Rosult | e                |             |                     |               |

## **Zeckendorf's Theorem**

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

| Intro            | Pre-reqs | Gaussianity     | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |  |  |  |
|------------------|----------|-----------------|-------------|---------------------|---------------|--|--|--|
| 00000            | ○○●○○○   | ooooooooooooooo | ೦೦೦೦೦       |                     | oo            |  |  |  |
| Previous Results |          |                 |             |                     |               |  |  |  |

## Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example: 51 =?

| Intro  | Pre-reqs  | Gaussianity                          | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-----------|--------------------------------------|-------------|---------------------|---------------|
| 00000  | ○○●○○○    | ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০ | ೦೦೦೦೦       |                     | oo            |
| Previo | us Result | e                                    |             |                     |               |

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 17 = F_8 + 17$ .

| Intro  | Pre-reqs  | Gaussianity                          | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-----------|--------------------------------------|-------------|---------------------|---------------|
| 00000  | ○○●○○○    | ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০ | ೦೦೦೦೦       |                     | oo            |
| Previo | us Result | e                                    |             |                     |               |

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 4 = F_8 + F_6 + 4$ .

| Intro  | Pre-reqs  | Gaussianity                          | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-----------|--------------------------------------|-------------|---------------------|---------------|
| 00000  | ○○●○○○    | ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০ | ೦೦೦೦೦       |                     | oo            |
| Previo | us Result | e                                    |             |                     |               |

#### **Zeckendorf's Theorem**

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + 1$ .

| Intro  | Pre-reqs  | Gaussianity                          | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-----------|--------------------------------------|-------------|---------------------|---------------|
| 00000  | ○○●○○○    | ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০ | ೦೦೦೦೦       |                     | oo            |
| Previo | us Result | e                                    |             |                     |               |

#### **Zeckendorf's Theorem**

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$ .

| Intro  | Pre-reqs  | Gaussianity     | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-----------|-----------------|-------------|---------------------|---------------|
| 00000  | ○○●○○○    | ooooooooooooooo | ೦೦೦೦೦       |                     | oo            |
| Provid | us Rosult | e               |             |                     |               |

#### Zeckendorf's Theorem

Every positive integer can be written uniquely as a sum of non-consecutive Fibonacci numbers.

Example:  $51 = 34 + 13 + 3 + 1 = F_8 + F_6 + F_3 + F_1$ . Example:  $83 = 55 + 21 + 5 + 2 = F_9 + F_7 + F_4 + F_2$ . Observe: 51 miles  $\approx 82.1$  kilometers.

| Intro   | Pre-reqs | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|---------|----------|---------------|-------------|---------------------|---------------|
| 00000   | ○○○●○○   | 0000000000000 | ೦೦೦೦೦       |                     | 00            |
| Old Res | sulte    |               |             |                     |               |

## \_\_\_\_\_

## **Central Limit Type Theorem**

As  $n \to \infty$  distribution of number of summands in Zeckendorf decomposition for  $m \in [F_n, F_{n+1})$  is Gaussian (normal).

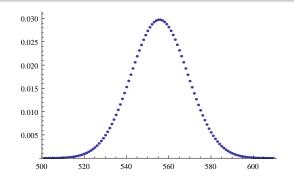


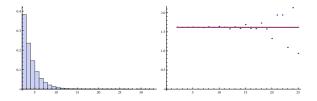
Figure: Number of summands in  $[F_{2010}, F_{2011})$ ;  $F_{2010} \approx 10^{420}$ .

$$m = \sum_{j=1}^{k(m)=n} F_{i_j}, \quad \nu_{m;n}(x) = \frac{1}{k(m)-1} \sum_{j=2}^{k(m)} \delta\left(x - (i_j - i_{j-1})\right).$$

#### **Theorem (Zeckendorf Gap Distribution)**

20

Gap measures  $\nu_{m;n}$  converge almost surely to average gap measure where  $P(k) = 1/\phi^k$  for  $k \ge 2$ .



**Figure:** Distribution of gaps in  $[F_{1000}, F_{1001}); F_{2010} \approx 10^{208}$ .

| Intro Pre-reqs Gauss | ianity Gaps (Bu | ulk) Kentucky and Quilts | Future / Refs |
|----------------------|-----------------|--------------------------|---------------|
| 00000 000000 00000   |                 |                          |               |

#### New Results: Longest Gap

#### Theorem (Longest Gap)

As  $n \to \infty$ , the probability that  $m \in [F_n, F_{n+1})$  has longest gap less than or equal to f(n) converges to

$$\operatorname{Prob}\left(L_n(m) \leq f(n)\right) \approx e^{-e^{\log n - f(n)/\log \phi}}$$

Immediate Corollary: If f(n) grows **slower** or **faster** than  $\log n / \log \phi$ , then  $\operatorname{Prob}(L_n(m) \le f(n))$  goes to **0** or **1**, respectively.

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       | 000000   |             |             |                     |               |

### **The Cookie Problem**

The number of ways of dividing C identical cookies among P distinct people is  $\binom{C+P-1}{P-1}$ .

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       | 000000   |             |             |                     |               |

## The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets.

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       | 000000   |             |             |                     |               |

## The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):



| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       | 000000   |             |             |                     |               |

## The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets.

Example: 8 cookies and 5 people (C = 8, P = 5):



| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       | 000000   |             |             |                     |               |

## The Cookie Problem

The number of ways of dividing *C* identical cookies among *P* distinct people is  $\binom{C+P-1}{P-1}$ .

*Proof*: Consider C + P - 1 cookies in a line. **Cookie Monster** eats P - 1 cookies:  $\binom{C+P-1}{P-1}$  ways to do. Divides the cookies into P sets. **Example**: 8 cookies and 5 people (C = 8, P = 5):



| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       | 000000   |             |             |                     |               |

### Preliminaries: The Cookie Problem: Reinterpretation

## **Reinterpreting the Cookie Problem**

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       | 000000   |             |             |                     |               |

#### Preliminaries: The Cookie Problem: Reinterpretation

## **Reinterpreting the Cookie Problem**

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

 Intro
 Pre-regs
 Gaussianity
 Gaps (Bulk)
 Kentucky and Quilts
 Future / Refs

 00000
 000000
 000000
 00000
 000000
 00

#### Preliminaries: The Cookie Problem: Reinterpretation

## **Reinterpreting the Cookie Problem**

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

For  $N \in [F_n, F_{n+1})$ , the largest summand is  $F_n$ .  $N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n$ ,  $1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2$ . 
 Intro
 Pre-reas
 Gaussianity
 Gaps (Bulk)
 Kentucky and Quilts
 Future / Refs

 00000
 000000
 000000
 00000
 000000
 00

#### Preliminaries: The Cookie Problem: Reinterpretation

## **Reinterpreting the Cookie Problem**

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i \ge 0$  is  $\binom{C+P-1}{P-1}$ .

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

For  $N \in [F_n, F_{n+1})$ , the largest summand is  $F_n$ .

$$N = F_{i_1} + F_{i_2} + \dots + F_{i_{k-1}} + F_n,$$
  

$$1 \le i_1 < i_2 < \dots < i_{k-1} < i_k = n, i_j - i_{j-1} \ge 2.$$
  

$$d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$$
  

$$d_1 + d_2 + \dots + d_k = n - 2k + 1, d_j \ge 0.$$

Pre-reas Gaussianity Gaps (Bulk) Kentucky and Quilts Future / Refs 00000

#### Preliminaries: The Cookie Problem: Reinterpretation

## Reinterpreting the Cookie Problem

The number of solutions to  $x_1 + \cdots + x_P = C$  with  $x_i > 0$  is  $\binom{C+P-1}{P}$ .

Let  $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) \}$ : the Zeckendorf decomposition of *N* has exactly *k* summands}.

For  $N \in [F_n, F_{n+1})$ , the largest summand is  $F_n$ .  $N = F_{i_1} + F_{i_2} + \cdots + F_{i_{k-1}} + F_n,$  $1 < i_1 < i_2 < \cdots < i_{k-1} < i_k = n, i_i - i_{i-1} > 2.$  $d_1 := i_1 - 1, d_j := i_j - i_{j-1} - 2 (j > 1).$  $d_1 + d_2 + \cdots + d_k = n - 2k + 1, d_i \ge 0.$ Cookie counting  $\Rightarrow p_{n,k} = \binom{n-2k+1+k-1}{k-1} = \binom{n-k}{k-1}$ .

| Intro<br>00000 | Pre-reqs | Gaussianity | Gaps (Bulk)<br>೦೦೦೦೦ | Kentucky and Quilts | Future / Refs |
|----------------|----------|-------------|----------------------|---------------------|---------------|
|                |          |             |                      |                     |               |

## **Gaussian Behavior**

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

#### Generalizing Lekkerkerker: Erdos-Kac type result

## Theorem (KKMW 2010)

As  $n \to \infty$ , the distribution of the number of summands in Zeckendorf's Theorem is a Gaussian.

Sketch of proof: Use Stirling's formula,

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

to approximates binomial coefficients, after a few pages of algebra find the probabilities are approximately Gaussian.

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          | 00000000000 |             |                     |               |

#### (Sketch of the) Proof of Gaussianity

The probability density for the number of Fibonacci numbers that add up to an integer in  $[F_n, F_{n+1})$  is  $f_n(k) = \binom{n-1-k}{k}/F_{n-1}$ . Consider the density for the n+1 case. Then we have, by Stirling

$$f_{n+1}(k) = \binom{n-k}{k} \frac{1}{F_n}$$
$$= \frac{(n-k)!}{(n-2k)!k!} \frac{1}{F_n} = \frac{1}{\sqrt{2\pi}} \frac{(n-k)^{n-k+\frac{1}{2}}}{k^{(k+\frac{1}{2})}(n-2k)^{n-2k+\frac{1}{2}}} \frac{1}{F_n}$$

plus a lower order correction term.

Also we can write  $F_n = \frac{1}{\sqrt{5}} \phi^{n+1} = \frac{\phi}{\sqrt{5}} \phi^n$  for large *n*, where  $\phi$  is the golden ratio (we are using relabeled Fibonacci numbers where  $1 = F_1$  occurs once to help dealing with uniqueness and  $F_2 = 2$ ). We can now split the terms that exponentially depend on *n*.

$$f_{n+1}(k) = \left(\frac{1}{\sqrt{2\pi}}\sqrt{\frac{(n-k)}{k(n-2k)}}\frac{\sqrt{5}}{\phi}\right) \left(\phi^{-n}\frac{(n-k)^{n-k}}{k^k(n-2k)^{n-2k}}\right).$$

Define

$$N_n = -\frac{1}{\sqrt{2\pi}} \sqrt{\frac{(n-k)}{k(n-2k)}} \frac{\sqrt{5}}{\phi}, \quad S_n = \phi^{-n} \frac{(n-k)^{n-k}}{k^k (n-2k)^{n-2k}}.$$

Thus, write the density function as

$$f_{n+1}(k) = N_n S_n$$

where  $N_n$  is the first term that is of order  $n^{-1/2}$  and  $S_n$  is the second term with exponential dependence on n.

34

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          | 00000000000 |             |                     |               |

#### (Sketch of the) Proof of Gaussianity

Model the distribution as centered around the mean by the change of variable  $k = \mu + x\sigma$  where  $\mu$  and  $\sigma$  are the mean and the standard deviation, and depend on *n*. The discrete weights of  $f_n(k)$  will become continuous. This requires us to use the change of variable formula to compensate for the change of scales:

$$f_n(k)dk = f_n(\mu + \sigma x)\sigma dx$$

Using the change of variable, we can write  $N_n$  as

$$\begin{split} N_n &= \frac{1}{\sqrt{2\pi}} \sqrt{\frac{n-k}{k(n-2k)}} \frac{\phi}{\sqrt{5}} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-k/n}{(k/n)(1-2k/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-(\mu+\sigma x)/n}{((\mu+\sigma x)/n)(1-2(\mu+\sigma x)/n)}} \frac{\sqrt{5}}{\phi} \\ &= \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C-y}{(C+y)(1-2C-2y)}} \frac{\sqrt{5}}{\phi} \end{split}$$

where  $C = \mu/n \approx 1/(\phi + 2)$  (note that  $\phi^2 = \phi + 1$ ) and  $y = \sigma x/n$ . But for large *n*, the *y* term vanishes since  $\sigma \sim \sqrt{n}$  and thus  $y \sim n^{-1/2}$ . Thus

$$N_n \approx \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{1-C}{C(1-2C)}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{(\phi+1)(\phi+2)}{\phi}} \frac{\sqrt{5}}{\phi} = \frac{1}{\sqrt{2\pi n}} \sqrt{\frac{5(\phi+2)}{\phi}} = \frac{1}{\sqrt{2\pi\sigma^2}}$$

since  $\sigma^2 = n \frac{\phi}{5(\phi+2)}$ .

35

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## (Sketch of the) Proof of Gaussianity

For the second term  $S_n$ , take the logarithm and once again change variables by  $k = \mu + x\sigma$ ,

$$\begin{split} \log(S_n) &= & \log\left(\phi^{-n}\frac{(n-k)^{(n-k)}}{k^k(n-2k)^{(n-2k)}}\right) \\ &= & -n\log(\phi) + (n-k)\log(n-k) - (k)\log(k) \\ &- (n-2k)\log(n-2k) \\ &= & -n\log(\phi) + (n-(\mu+x\sigma))\log(n-(\mu+x\sigma)) \\ &- (\mu+x\sigma)\log(\mu+x\sigma) \\ &- (n-2(\mu+x\sigma))\log(n-2(\mu+x\sigma)) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log(n-\mu) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\left(\log(\mu) + \log\left(1+\frac{x\sigma}{\mu}\right)\right) \\ &- (n-2(\mu+x\sigma))\left(\log(n-2\mu) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \\ &= & -n\log(\phi) \\ &+ (n-(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-1\right) + \log\left(1-\frac{x\sigma}{n-\mu}\right)\right) \\ &- (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) \\ &- (n-2(\mu+x\sigma))\left(\log\left(\frac{n}{\mu}-2\right) + \log\left(1-\frac{x\sigma}{n-2\mu}\right)\right) \end{split}$$

36

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

Note that, since  $n/\mu = \phi + 2$  for large *n*, the constant terms vanish. We have log(S<sub>n</sub>)

$$= -n\log(\phi) + (n-k)\log\left(\frac{n}{\mu}-1\right) - (n-2k)\log\left(\frac{n}{\mu}-2\right) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) \\ - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-2\mu}\right) \\ = -n\log(\phi) + (n-k)\log(\phi+1) - (n-2k)\log(\phi) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) \\ - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-2\mu}\right) \\ = n(-\log(\phi) + \log\left(\phi^2\right) - \log(\phi)) + k(\log(\phi^2) + 2\log(\phi)) + (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) \\ - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) - (n-2(\mu+x\sigma))\log\left(1-2\frac{x\sigma}{n-2\mu}\right) \\ = (n-(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-\mu}\right) - (\mu+x\sigma)\log\left(1+\frac{x\sigma}{\mu}\right) \\ - (n-2(\mu+x\sigma))\log\left(1-\frac{x\sigma}{n-2\mu}\right).$$

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          | 00000000000 |             |                     |               |

Finally, we expand the logarithms and collect powers of  $x\sigma/n$ .

$$\begin{split} \log(S_n) &= (n - (\mu + x\sigma)) \left( -\frac{x\sigma}{n - \mu} - \frac{1}{2} \left( \frac{x\sigma}{n - \mu} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left( \frac{x\sigma}{\mu} - \frac{1}{2} \left( \frac{x\sigma}{\mu} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left( -2 \frac{x\sigma}{n - 2\mu} - \frac{1}{2} \left( 2 \frac{x\sigma}{n - 2\mu} \right)^2 + \dots \right) \\ &= (n - (\mu + x\sigma)) \left( -\frac{x\sigma}{n \frac{(\phi + 1)}{(\phi + 2)}} - \frac{1}{2} \left( \frac{x\sigma}{n \frac{(\phi + 1)}{(\phi + 2)}} \right)^2 + \dots \right) \\ &- (\mu + x\sigma) \left( \frac{x\sigma}{\frac{\phi}{\phi + 2}} - \frac{1}{2} \left( \frac{x\sigma}{\frac{\phi}{\phi + 2}} \right)^2 + \dots \right) \\ &- (n - 2(\mu + x\sigma)) \left( -\frac{2x\sigma}{n \frac{\phi}{\phi + 2}} - \frac{1}{2} \left( \frac{2x\sigma}{n \frac{\phi}{\phi + 2}} \right)^2 + \dots \right) \\ &= \frac{x\sigma}{n} n \left( - \left( 1 - \frac{1}{\phi + 2} \right) \frac{(\phi + 2)}{(\phi + 1)} - 1 + 2 \left( 1 - \frac{2}{\phi + 2} \right) \frac{\phi + 2}{\phi} \right) \\ &- \frac{1}{2} \left( \frac{x\sigma}{n} \right)^2 n \left( -2 \frac{\phi + 2}{\phi + 1} + \frac{\phi + 2}{\phi + 1} + 2(\phi + 2) - (\phi + 2) + 4 \frac{\phi + 2}{\phi} \right) \\ &+ O \left( n(x\sigma/n)^3 \right) \end{split}$$

38

| Intro Pre | re-reqs | Gaussianity                             | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-----------|---------|-----------------------------------------|-------------|---------------------|---------------|
|           |         | 000000000000000000000000000000000000000 |             |                     |               |

$$\begin{split} \log(S_n) &= \frac{x\sigma}{n}n\left(-\frac{\phi+1}{\phi+2}\frac{\phi+2}{\phi+1}-1+2\frac{\phi}{\phi+2}\frac{\phi+2}{\phi}\right)\\ &\quad -\frac{1}{2}\left(\frac{x\sigma}{n}\right)^2n(\phi+2)\left(-\frac{1}{\phi+1}+1+\frac{4}{\phi}\right)\\ &\quad +O\left(n\left(\frac{x\sigma}{n}\right)^3\right)\\ &= -\frac{1}{2}\frac{(x\sigma)^2}{n}(\phi+2)\left(\frac{3\phi+4}{\phi(\phi+1)}+1\right)+O\left(n\left(\frac{x\sigma}{n}\right)^3\right)\\ &= -\frac{1}{2}\frac{(x\sigma)^2}{n}(\phi+2)\left(\frac{3\phi+4+2\phi+1}{\phi(\phi+1)}\right)+O\left(n\left(\frac{x\sigma}{n}\right)^3\right)\\ &= -\frac{1}{2}x^2\sigma^2\left(\frac{5(\phi+2)}{\phi n}\right)+O\left(n(x\sigma/n)^3\right). \end{split}$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

But recall that

$$\sigma^2 = \frac{\phi n}{5(\phi+2)}.$$

Also, since  $\sigma \sim n^{-1/2}$ ,  $n\left(\frac{x\sigma}{n}\right)^3 \sim n^{-1/2}$ . So for large *n*, the  $O\left(n\left(\frac{x\sigma}{n}\right)^3\right)$  term vanishes. Thus we are left with

$$\log S_n = -\frac{1}{2}x^2$$
$$S_n = e^{-\frac{1}{2}x^2}$$

Hence, as n gets large, the density converges to the normal distribution:

$$f_n(k)dk = N_n S_n dk$$
  
=  $\frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}x^2} \sigma dx$   
=  $\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx.$ 



Generalizing from Fibonacci numbers to linearly recursive sequences with arbitrary nonnegative coefficients.

$$H_{n+1} = c_1 H_n + c_2 H_{n-1} + \cdots + c_L H_{n-L+1}, \ n \ge L$$

with  $H_1 = 1$ ,  $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_nH_1 + 1$ , n < L, coefficients  $c_i \ge 0$ ;  $c_1, c_L > 0$  if  $L \ge 2$ ;  $c_1 > 1$  if L = 1.

- Zeckendorf: Every positive integer can be written uniquely as ∑ a<sub>i</sub>H<sub>i</sub> with natural constraints on the a<sub>i</sub>'s (e.g. cannot use the recurrence relation to remove any summand).
- Lekkerkerker
- Central Limit Type Theorem

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |
|       |          |              |             |                     |               |
|       |          |              |             |                     |               |

#### **Generalizing Lekkerkerker**

### Generalized Lekkerkerker's Theorem

The average number of summands in the generalized Zeckendorf decomposition for integers in  $[H_n, H_{n+1})$  tends to Cn + d as  $n \to \infty$ , where C > 0 and d are computable constants determined by the  $c_i$ 's.

$$C = -\frac{y'(1)}{y(1)} = \frac{\sum_{m=0}^{L-1} (s_m + s_{m+1} - 1)(s_{m+1} - s_m)y^m(1)}{2\sum_{m=0}^{L-1} (m+1)(s_{m+1} - s_m)y^m(1)}$$

$$s_0 = 0, s_m = c_1 + c_2 + \dots + c_m.$$

$$y(x) \text{ is the root of } 1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}.$$

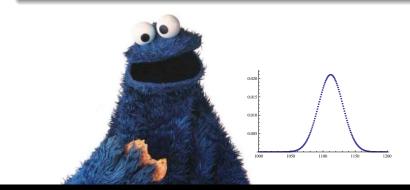
$$y(1) \text{ is the root of } 1 - c_1 y - c_2 y^2 - \dots - c_L y^L.$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |
|       |          |              |             |                     |               |

#### **Central Limit Type Theorem**

## **Central Limit Type Theorem**

As  $n \to \infty$ , the distribution of the number of summands, i.e.,  $a_1 + a_2 + \cdots + a_m$  in the generalized Zeckendorf decomposition  $\sum_{i=1}^{m} a_i H_i$  for integers in  $[H_n, H_{n+1})$  is Gaussian.



| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

**Example: the Special Case of** L = 1,  $c_1 = 10$ 

$$H_{n+1} = 10H_n, H_1 = 1, H_n = 10^{n-1}.$$

• Legal decomposition is decimal expansion:  $\sum_{i=1}^{m} a_i H_i$ :

$$\mathbf{a}_i \in \{0, 1, \dots, 9\} \ (1 \leq i < m), \ \mathbf{a}_m \in \{1, \dots, 9\}.$$

- For  $N \in [H_n, H_{n+1})$ , m = n, i.e., first term is  $a_n H_n = a_n 10^{n-1}$ .
- *A<sub>i</sub>*: the corresponding random variable of *a<sub>i</sub>*. The *A<sub>i</sub>*'s are independent.
- For large *n*, the contribution of *A<sub>n</sub>* is immaterial.
   *A<sub>i</sub>* (1 ≤ *i* < *n*) are identically distributed random variables
   with mean 4.5 and variance 8.25.
- Central Limit Theorem:  $A_2 + A_3 + \cdots + A_n \rightarrow$  Gaussian with mean 4.5n + O(1) and variance 8.25n + O(1).

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

# Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## **Binet's Formula**

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

(1)

• Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ 

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1 + \sqrt{5}}{2} \right)^n - \left( \frac{-1 + \sqrt{5}}{2} \right)^n \right].$$

(1)

• Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$ 

• Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

(1) 
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

(1) 
$$\Rightarrow \sum_{n\geq 2} \boldsymbol{F}_{n+1} \boldsymbol{x}^{n+1} = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 2} \boldsymbol{F}_{n-1} \boldsymbol{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \boldsymbol{F}_n \boldsymbol{x}^n = \sum_{n\geq 2} \boldsymbol{F}_n \boldsymbol{x}^{n+1} + \sum_{n\geq 1} \boldsymbol{F}_n \boldsymbol{x}^{n+2}$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} \mathbf{x}^{n+1} = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} \mathbf{x}^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^{n+1} + \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n \mathbf{x}^n = \mathbf{x} \sum_{n\geq 2} \mathbf{F}_n \mathbf{x}^n + \mathbf{x}^2 \sum_{n\geq 1} \mathbf{F}_n \mathbf{x}^n$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation:  $\boldsymbol{F}_{n+1} = \boldsymbol{F}_n + \boldsymbol{F}_{n-1}$  (1)
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

## Binet's Formula

$$F_1 = F_2 = 1; \ F_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right].$$

- Recurrence relation:  $F_{n+1} = F_n + F_{n-1}$
- Generating function:  $g(x) = \sum_{n>0} F_n x^n$ .

$$(1) \Rightarrow \sum_{n\geq 2} \mathbf{F}_{n+1} x^{n+1} = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 2} \mathbf{F}_{n-1} x^{n+1}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = \sum_{n\geq 2} \mathbf{F}_n x^{n+1} + \sum_{n\geq 1} \mathbf{F}_n x^{n+2}$$
$$\Rightarrow \sum_{n\geq 3} \mathbf{F}_n x^n = x \sum_{n\geq 2} \mathbf{F}_n x^n + x^2 \sum_{n\geq 1} \mathbf{F}_n x^n$$
$$\Rightarrow g(x) - \mathbf{F}_1 x - \mathbf{F}_2 x^2 = x(g(x) - \mathbf{F}_1 x) + x^2 g(x)$$
$$\Rightarrow g(x) = x/(1 - x - x^2).$$

| Intro | Pre-reqs | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|---------------|-------------|---------------------|---------------|
|       |          | 0000000000000 |             |                     |               |

• Generating function: 
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$
.

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

• Generating function: 
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$
.

• Partial fraction expansion:

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

• Generating function: 
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left( \frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

| Intro | Pre-reqs | Gaussianity  | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|--------------|-------------|---------------------|---------------|
|       |          | 000000000000 |             |                     |               |

• Generating function: 
$$g(x) = \sum_{n>0} F_n x^n = \frac{x}{1-x-x^2}$$

• Partial fraction expansion:

$$\Rightarrow g(x) = \frac{x}{1-x-x^2} = \frac{1}{\sqrt{5}} \left( \frac{\frac{1+\sqrt{5}}{2}x}{1-\frac{1+\sqrt{5}}{2}x} - \frac{\frac{-1+\sqrt{5}}{2}x}{1-\frac{-1+\sqrt{5}}{2}x} \right)$$

**Coefficient of** *x*<sup>*n*</sup> (power series expansion):

$$\boldsymbol{F}_n = \frac{1}{\sqrt{5}} \left[ \left( \frac{1+\sqrt{5}}{2} \right)^n - \left( \frac{-1+\sqrt{5}}{2} \right)^n \right] \text{ - Binet's Formula!}$$
(using geometric series:  $\frac{1}{1-r} = 1 + r + r^2 + r^3 + \cdots$ ).

 Intro
 Pre-regs
 Gaussianity
 Gaps (Bulk)
 Kentucky and Quilts
 Future / Refs

 00000
 0000000
 000000
 00000
 000000
 00

#### **Differentiating Identities and Method of Moments**

Differentiating identities

Example: Given a random variable X such that

 $Pr(X = 1) = \frac{1}{2}, Pr(X = 2) = \frac{1}{4}, Pr(X = 3) = \frac{1}{8}, \dots$ then what's the mean of X (i.e., E[X])? Solution: Let  $f(x) = \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots = \frac{1}{1-x/2} - 1$ .  $f'(x) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4}x + 3 \cdot \frac{1}{8}x^2 + \dots$ .  $f'(1) = 1 \cdot \frac{1}{2} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{8} + \dots = E[X].$ 

Method of moments: Random variables X<sub>1</sub>, X<sub>2</sub>, ....
 If l<sup>th</sup> moments E[X<sub>n</sub><sup>l</sup>] converges those of standard normal then X<sub>n</sub> converges to a Gaussian.

# Standard normal distribution:

 $2m^{\text{th}}$  moment:  $(2m - 1)!! = (2m - 1)(2m - 3) \cdots 1$ ,  $(2m - 1)^{\text{th}}$  moment: 0.

#### New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2})$$
:  $N = F_{n+1} + F_t + \cdots, t \le n-1$ .  
 $p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$ 

#### New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

• Recurrence relation:

$$N \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$
  
$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$
  
$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

 Intro
 Pre-reqs
 Gaussianity
 Gaps (Bulk)
 Kentucky and Quilts
 Future / Refs

 00000
 0000000
 00000
 00000
 00000
 00
 00

#### New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

• Recurrence relation:

Λ

$$V \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

#### New Approach: Case of Fibonacci Numbers

 $p_{n,k} = \# \{ N \in [F_n, F_{n+1}) :$  the Zeckendorf decomposition of N has exactly k summands $\}$ .

• Recurrence relation:

Λ

$$V \in [F_{n+1}, F_{n+2}): N = F_{n+1} + F_t + \cdots, t \le n-1.$$

$$p_{n+1,k+1} = p_{n-1,k} + p_{n-2,k} + \cdots$$

$$p_{n,k+1} = p_{n-2,k} + p_{n-3,k} + \cdots$$

$$\Rightarrow p_{n+1,k+1} = p_{n,k+1} + p_{n-1,k}.$$

• Generating function:  $\sum_{n,k>0} p_{n,k} x^k y^n = \frac{y}{1-y-xy^2}$ . • Partial fraction expansion:

$$\frac{y}{1 - y - xy^2} = -\frac{y}{y_1(x) - y_2(x)} \left(\frac{1}{y - y_1(x)} - \frac{1}{y - y_2(x)}\right)$$
  
where  $y_1(x)$  and  $y_2(x)$  are the roots of  $1 - y - xy^2 = 0$ .

Coefficient of  $y^n$ :  $g(x) = \sum_{k>0} p_{n,k} x^k$ .

#### New Approach: Case of Fibonacci Numbers (Continued)

 $K_n$ : the corresponding random variable associated with k.  $g(x) = \sum_{k>0} p_{n,k} x^k$ .

• Differentiating identities:

$$\begin{split} g(1) &= \sum_{k>0} p_{n,k} = F_{n+1} - F_n, \\ g'(x) &= \sum_{k>0} k p_{n,k} x^{k-1}, \ g'(1) = g(1) E[K_n], \\ (xg'(x))' &= \sum_{k>0} k^2 p_{n,k} x^{k-1}, \\ (xg'(x))' &|_{x=1} = g(1) E[K_n^2], \\ (x (xg'(x))')' &|_{x=1} = g(1) E[K_n^3], \dots \end{split}$$

Similar results hold for the centralized  $K_n$ :  $K'_n = K_n - E[K_n].$ 

• Method of moments (for normalized  $K'_n$ ):  $E[(K'_n)^{2m}]/(SD(K'_n))^{2m} \rightarrow (2m-1)!!,$  $E[(K'_n)^{2m-1}]/(SD(K'_n))^{2m-1} \rightarrow 0. \Rightarrow K_n \rightarrow \text{Gaussian}.$ 

| Intro | Pre-reqs | Gaussianity       | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------------|-------------|---------------------|---------------|
|       |          | 00000000000000000 |             |                     |               |

#### New Approach: General Case

Let  $p_{n,k} = \# \{ N \in [H_n, H_{n+1}) \}$ : the generalized Zeckendorf decomposition of N has exactly k summands  $\}$ .

• Recurrence relation:

Fibonacci:  $p_{n+1,k+1} = p_{n,k+1} + p_{n,k}$ . General:  $p_{n+1,k} = \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} p_{n-m,k-j}$ . where  $s_0 = 0, s_m = c_1 + c_2 + \dots + c_m$ .

• Generating function:

Fibonacci: 
$$\frac{y}{1-y-xy^2}$$
.  
General:  

$$\frac{\sum_{n \le L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n}{1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1}}$$

| Intro | Pre-reqs | Gaussianity    | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|----------------|-------------|---------------------|---------------|
|       |          | 00000000000000 |             |                     |               |

#### New Approach: General Case (Continued)

• Partial fraction expansion:

Fibonacci: 
$$-\frac{y}{y_1(x)-y_2(x)} \left(\frac{1}{y-y_1(x)} - \frac{1}{y-y_2(x)}\right).$$
  
General:  
 $-\frac{1}{\sum_{j=s_{L-1}}^{s_L-1} x^j} \sum_{i=1}^{L} \frac{B(x,y)}{(y-y_i(x)) \prod_{j \neq i} (y_j(x) - y_i(x))}.$   
 $B(x,y) = \sum_{n \leq L} p_{n,k} x^k y^n - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} \sum_{n < L-m} p_{n,k} x^k y^n,$   
 $y_i(x)$ : root of  $1 - \sum_{m=0}^{L-1} \sum_{j=s_m}^{s_{m+1}-1} x^j y^{m+1} = 0.$ 

Coefficient of  $y^n$ :  $g(x) = \sum_{n,k>0} p_{n,k} x^k$ .

- Differentiating identities
- Method of moments: implies  $K_n \rightarrow$  Gaussian.

| Intro<br>00000 | Pre-reqs | Gaussianity<br>ooooooooooooo | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|----------------|----------|------------------------------|-------------|---------------------|---------------|
|                |          |                              |             |                     |               |

# Gaps in the Bulk

| Intro   | Pre-reqs    | Gaussianity     | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|---------|-------------|-----------------|-------------|---------------------|---------------|
| 00000   | 000000      | ooooooooooooooo | ●○○○○       |                     | oo            |
| Distrib | oution of G | Saps            |             |                     |               |

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

| Intro   | Pre-reqs    | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|---------|-------------|---------------|-------------|---------------------|---------------|
| 00000   | 000000      | 0000000000000 | ●○○○○       |                     | oo            |
| Distrib | oution of G | Baps          |             |                     |               |

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(k)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length *k*.

| Intro   | Pre-reqs             | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |  |  |
|---------|----------------------|---------------|-------------|---------------------|---------------|--|--|
| 00000   | 000000               | 0000000000000 | ●○○○○       |                     | oo            |  |  |
| Distrib | Distribution of Gaps |               |             |                     |               |  |  |

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(k)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length *k*.

What is  $P(k) = \lim_{n \to \infty} P_n(k)$ ?

| Intro   | Pre-reqs             | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |  |  |
|---------|----------------------|---------------|-------------|---------------------|---------------|--|--|
| 00000   | 000000               | 0000000000000 | ●○○○○       |                     | oo            |  |  |
| Distrib | Distribution of Gaps |               |             |                     |               |  |  |

Example: For  $F_1 + F_8 + F_{18}$ , the gaps are 7 and 10.

Let  $P_n(k)$  be the probability that a gap for a decomposition in  $[F_n, F_{n+1})$  is of length *k*.

What is  $P(k) = \lim_{n \to \infty} P_n(k)$ ?

Can ask similar questions about binary or other expansions:  $2012 = 2^{10} + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 2^3 + 2^2$ .

| Intro<br>00000 | Pre-reqs | Gaussianity<br>ooooooooooooooo | Gaps (Bulk)<br>○●○○○ | Kentucky and Quilts | Future / Refs<br>oo |
|----------------|----------|--------------------------------|----------------------|---------------------|---------------------|
| Main F         | Result   |                                |                      |                     |                     |

# Theorem (Distribution of Bulk Gaps (SMALL 2012))

Let  $H_{n+1} = c_1H_n + c_2H_{n-1} + \cdots + c_LH_{n+1-L}$  be a positive linear recurrence of length L where  $c_i \ge 1$  for all  $1 \le i \le L$ . Then

$$P(j) = \begin{cases} 1 - (\frac{a_1}{C_{Lek}})(2\lambda_1^{-1} + a_1^{-1} - 3) & :j = 0\\ \lambda_1^{-1}(\frac{1}{C_{Lek}})(\lambda_1(1 - 2a_1) + a_1) & :j = 1\\ (\lambda_1 - 1)^2 \left(\frac{a_1}{C_{Lek}}\right)\lambda_1^{-j} & :j \ge 2. \end{cases}$$

| Intro<br>00000 | Pre-reqs<br>000000 | Gaussianity<br>ooooooooooooooo | Gaps (Bulk)<br>○●○○○ | Kentucky and Quilts | Future / Refs |  |  |  |
|----------------|--------------------|--------------------------------|----------------------|---------------------|---------------|--|--|--|
| Specia         | Special Cases      |                                |                      |                     |               |  |  |  |

# Theorem (Base B Gap Distribution (SMALL 2011))

For base B decompositions,  $P(0) = \frac{(B-1)(B-2)}{B^2}$ , and for  $k \ge 1$ ,  $P(k) = c_B B^{-k}$ , with  $c_B = \frac{(B-1)(3B-2)}{B^2}$ .

## Theorem (Zeckendorf Gap Distribution (SMALL 2011))

For Zeckendorf decompositions,  $P(k) = 1/\phi^k$  for  $k \ge 2$ , with  $\phi = \frac{1+\sqrt{5}}{2}$  the golden mean.

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          |             | 00000       |                     |               |

**Proof of Bulk Gaps for Fibonacci Sequence** 

Lekkerkerker  $\Rightarrow$  total number of gaps  $\sim F_{n-1} \frac{n}{\phi^2+1}$ .



| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          |             | 00000       |                     |               |

#### **Proof of Bulk Gaps for Fibonacci Sequence**

Lekkerkerker  $\Rightarrow$  total number of gaps  $\sim F_{n-1} \frac{n}{\phi^2+1}$ .

Let  $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$ 

| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          |             | 00000       |                     |               |

#### **Proof of Bulk Gaps for Fibonacci Sequence**

Lekkerkerker  $\Rightarrow$  total number of gaps  $\sim F_{n-1} \frac{n}{\phi^2+1}$ .

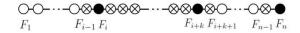
Let  $X_{i,j} = \#\{m \in [F_n, F_{n+1}): \text{ decomposition of } m \text{ includes } F_i, F_j, \text{ but not } F_q \text{ for } i < q < j\}.$ 

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$



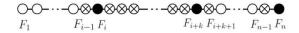






For the indices less than *i*:  $F_{i-1}$  choices. Why? Have  $F_i$  as largest summand and follows by Zeckendorf:  $\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$ .



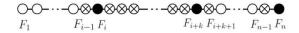


For the indices less than *i*:  $F_{i-1}$  choices. Why? Have  $F_i$  as largest summand and follows by Zeckendorf:  $\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$ .

For the indices greater than i + k:  $F_{n-k-i-2}$  choices. Why? Shift. Choose summands from  $\{F_1, \ldots, F_{n-k-i+1}\}$  with  $F_1, F_{n-k-i+1}$  chosen. Decompositions with largest summand  $F_{n-k-i+1}$  minus decompositions with largest summand  $F_{n-k-i}$ .







For the indices less than *i*:  $F_{i-1}$  choices. Why? Have  $F_i$  as largest summand and follows by Zeckendorf:  $\#[F_i, F_{i+1}) = F_{i+1} - F_i = F_{i-1}$ .

For the indices greater than i + k:  $F_{n-k-i-2}$  choices. Why? Shift. Choose summands from  $\{F_1, \ldots, F_{n-k-i+1}\}$  with  $F_1, F_{n-k-i+1}$  chosen. Decompositions with largest summand  $F_{n-k-i+1}$  minus decompositions with largest summand  $F_{n-k-i}$ .

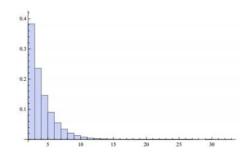
So total number of choices is  $F_{n-k-2-i}F_{i-1}$ .

| Intro<br>00000 | Pre-reqs   | Gaussianity<br>00000000000000 | Gaps (Bulk)<br>○○○○● | Kentucky and Quilts | Future / Refs<br>oo |
|----------------|------------|-------------------------------|----------------------|---------------------|---------------------|
| Deterr         | ninina P(k |                               |                      |                     |                     |

# Recall

$$P(k) = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} X_{i,i+k}}{F_{n-1} \frac{n}{\phi^2 + 1}} = \lim_{n \to \infty} \frac{\sum_{i=1}^{n-k} F_{n-k-2-i} F_{i-1}}{F_{n-1} \frac{n}{\phi^2 + 1}}.$$

Use Binet's formula. Sums of geometric series:  $P(k) = 1/\phi^k$ .



| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          |             |             |                     |               |
|       |          |             |             |                     |               |

## Kentucky Sequence and Quilts with Minerva Catral, Pari Ford, Pamela Harris & Dawn Nelson



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

 $[1,\ 2],\ [3,\ 4],\ [5,$ 



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8],



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

 $[1,\ 2],\ [3,\ 4],\ [5,\ 8],\ [11,$ 



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16],



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21,



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

[1, 2], [3, 4], [5, 8], [11, 16], [21, 32], [43, 64], [85, 128]



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

 $[1,\ 2],\ [3,\ 4],\ [5,\ 8],\ [11,\ 16],\ [21,\ 32],\ [43,\ 64],\ [85,\ 128]$ 

• 
$$a_{2n} = 2^n$$
 and  $a_{2n+1} = \frac{1}{3}(2^{2+n} - (-1)^n)$ :  
 $a_{n+1} = a_{n-1} + 2a_{n-3}, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4.$ 



- cannot take two elements from the same bin, and
- if have an element from a bin, cannot take anything from the first s bins to the left or the first s to the right.

Fibonaccis: These are (s, b) = (1, 1).

Kentucky: These are (s, b) = (1, 2).

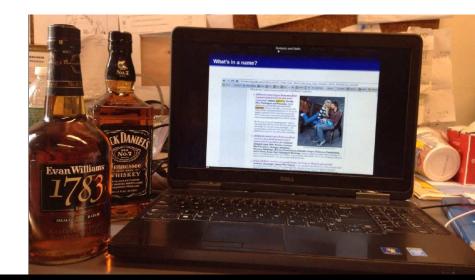
 $[1,\ 2],\ [3,\ 4],\ [5,\ 8],\ [11,\ 16],\ [21,\ 32],\ [43,\ 64],\ [85,\ 128]$ 

• 
$$a_{2n} = 2^n$$
 and  $a_{2n+1} = \frac{1}{3}(2^{2+n} - (-1)^n)$ :  
 $a_{n+1} = a_{n-1} + 2a_{n-3}, a_1 = 1, a_2 = 2, a_3 = 3, a_4 = 4.$   
•  $a_{n+1} = a_{n-1} + 2a_{n-3}$ : New as leading term 0.

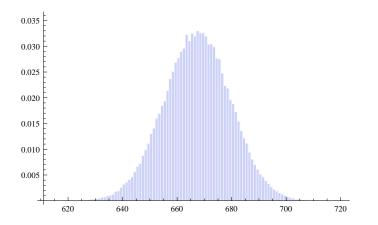


| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          |             |             | 0000000             |               |
|       |          |             |             |                     |               |

### What's in a name?

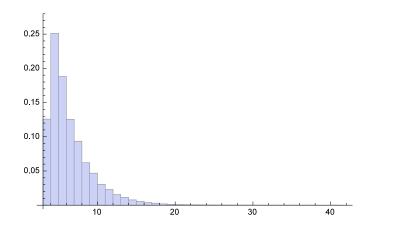


| Intro | Pre-reqs  | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|-----------|---------------|-------------|---------------------|---------------|
| 00000 | 000000    | 0000000000000 | ೦೦೦೦೦       | ○○●○○○○○○           | oo            |
| Gauss | ian Behav | /ior          |             |                     |               |



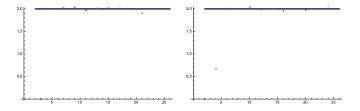
**Figure:** Plot of the distribution of the number of summands for 100,000 randomly chosen  $m \in [1, a_{4000}) = [1, 2^{2000})$  (so *m* has on the order of 602 digits).

| Intro | Pre-reqs | Gaussianity    | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|----------------|-------------|---------------------|---------------|
| 00000 | 000000   | oooooooooooooo | ০০০০০       |                     | oo            |
| Gaps  |          |                |             |                     |               |



**Figure:** Plot of the distribution of gaps for 10,000 randomly chosen  $m \in [1, a_{400}) = [1, 2^{200})$  (so *m* has on the order of 60 digits).

| Intro | Pre-reqs | Gaussianity     | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-----------------|-------------|---------------------|---------------|
| 00000 | 000000   | ooooooooooooooo | ೦೦೦೦೦       | ○○○○●○○○○           | oo            |
| Gaps  |          |                 |             |                     |               |



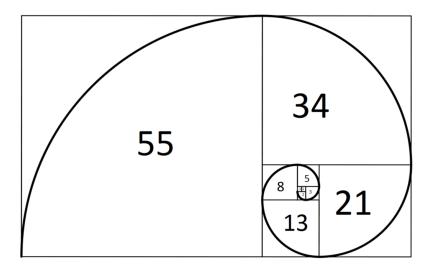
**Figure:** Plot of the distribution of gaps for 10,000 randomly chosen  $m \in [1, a_{400}) = [1, 2^{200})$  (so *m* has on the order of 60 digits). Left (resp. right): ratio of adjacent even (resp odd) gap probabilities.

Again find geometric decay, but parity issues so break into even and odd gaps.

| Intro  | Pre-reqs    | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-------------|---------------|-------------|---------------------|---------------|
| 00000  | 000000      | 0000000000000 | ೦೦೦೦೦       | ○○○○○●○○○           | oo            |
| Fibona | acci Spiral |               |             |                     |               |

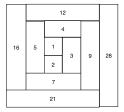


| Intro  | Pre-reqs    | Gaussianity                          | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|-------------|--------------------------------------|-------------|---------------------|---------------|
| 00000  | 000000      | ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০ | ೦೦೦೦೦       |                     | oo            |
| Fibona | icci Spiral |                                      |             |                     |               |

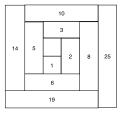


| Intro | Pre-reqs | Gaussianity | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|-------|----------|-------------|-------------|---------------------|---------------|
|       |          |             |             | 000000000           |               |

### The Fibonacci (or Log Cabin) Quilt: Work in Progress



1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 28, ...



1, 2, 3, 5, 6, 8, 10, 14, 19, 25, 33, ...

- $a_{n+1} = a_{n-1} + a_{n-2}$ , non-uniqueness (average number of decompositions grows exponentially).
- In process of investigating Gaussianity, Gaps,  $K_{\min}, K_{ave}, K_{max}, K_{greedy}$ .

| Intro<br>00000 | Pre-reqs | Gaussianity<br>oooooooooooooo | Gaps (Bulk)<br>00000 | Kentucky and Quilts | Future / Refs |
|----------------|----------|-------------------------------|----------------------|---------------------|---------------|
|                |          |                               |                      |                     |               |

#### Average Number of Representations

- *d<sub>n</sub>*: the number of FQ-legal decompositions using only elements of {*a*<sub>1</sub>, *a*<sub>2</sub>,..., *a<sub>n</sub>*}.
- $c_n$  requires  $a_n$  to be used,  $b_n$  requires  $a_n$  and  $a_{n-2}$  to be used.

| n                          | d <sub>n</sub> | Cn          | b <sub>n</sub> | an     |
|----------------------------|----------------|-------------|----------------|--------|
| 1                          | 2<br>3         | 1           | 0              | 1      |
| 2                          | 3              | 1           | 0              | 2      |
| 3                          | 4              | 1           | 0              | 2<br>3 |
| 4                          | 6              | 2           | 1              | 4      |
| 2<br>3<br>4<br>5<br>6<br>7 | 8              | 2<br>2<br>3 | 1              | 5      |
| 6                          | 11             | 3           | 1              | 7      |
| 7                          | 15             | 4           | 1              | 9      |
| 8                          | 21             | 6           | 2<br>3         | 12     |
| 9                          | 30             | 9           | 3              | 16     |

**Table:** First few terms. Find  $d_n = d_{n-1} + d_{n-2} - d_{n-3} + d_{n-5} - d_{n-9}$ , implying  $d_{\text{FQ};\text{ave}}(n) \approx C \cdot 1.05459^n$ .

|                  | Future / Refs |  |  |  |  |  |  |
|------------------|---------------|--|--|--|--|--|--|
| Groody Algorithm |               |  |  |  |  |  |  |

 $h_n$ : number of integers from 1 to  $a_{n+1} - 1$  where the greedy algorithm successfully terminates in a legal decomposition.

| n  | an  | h <sub>n</sub> | $\rho_n$ |
|----|-----|----------------|----------|
| 1  | 1   | 1              | 100.0000 |
| 2  | 2   | 2              | 100.0000 |
| 3  | 3   | 3              | 100.0000 |
| 4  | 4   | 4              | 100.0000 |
| 5  | 5   | 5              | 83.3333  |
| 6  | 7   | 7              | 87.5000  |
| 10 | 21  | 25             | 92.5926  |
| 11 | 28  | 33             | 91.6667  |
| 17 | 151 | 184            | 92.4623  |

**Table:** First few terms, yields  $h_n = h_{n-1} + h_{n-5} + 1$  and percentage converges to about 0.92627.

| Intro<br>00000 | Pre-reqs<br>000000 | Gaussianity<br>೦೦೦೦೦೦೦೦೦೦೦೦ | Gaps (Bulk)<br>00000 | Kentucky and Quilts | Future / Refs |
|----------------|--------------------|-----------------------------|----------------------|---------------------|---------------|
|                |                    |                             |                      |                     |               |

Future Work and References



| Intro  | Pre-reqs | Gaussianity   | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |
|--------|----------|---------------|-------------|---------------------|---------------|
| 00000  | 000000   | 0000000000000 | ೦೦೦೦೦       |                     | ●○            |
| Future | Research | ı             |             |                     |               |

## **Future Research**

- Generalizing results beyond PLRS, signed decompositions, higher dimensions....
- Other systems such as *f*-Decompositions of Demontigny, Do, Miller and Varma.



| Intro      | Pre-reqs | Gaussianity                          | Gaps (Bulk) | Kentucky and Quilts | Future / Refs |  |
|------------|----------|--------------------------------------|-------------|---------------------|---------------|--|
| 00000      | 000000   | ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০ | ০০০০০       |                     | ○●            |  |
| References |          |                                      |             |                     |               |  |

### References

 Beckwith, Bower, Gaudet, Insoft, Li, Miller and Tosteson: The Average Gap Distribution for Generalized Zeckendorf Decompositions. The Fibonacci Quarterly 51 (2013), 13–27.

http://arxiv.org/abs/1208.5820.

 Bower, Insoft, Li, Miller and Tosteson: Distribution of gaps in generalized Zeckendorf decompositions, preprint 2014. http://arxiv.org/abs/1402.3912.

 Kologlu, Kopp, Miller and Wang: On the number of summands in Zeckendorf decompositions, Fibonacci Quarterly 49 (2011), no. 2, 116–130.

http://arxiv.org/pdf/1008.3204.

 Miller and Wang: Gaussian Behavior in Generalized Zeckendorf Decompositions, to appear in the conference proceedings of the 2011 Combinatorial and Additive Number Theory Conference. http://arxiv.org/pdf/1107.2718.pdf.