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1. Introduction

In Iwaniec-Sarnak [IS] the percentage of nonvanishing of central values of
families of GL.2 automorphic L-functions was investigated. In this paper we examine
the distribution of zeros which are at or near s = y (that is the central point) for such
families of L-functions. Unlike [IS], most of the results in this paper are conditional,
depending on the generalized Riemann Hypothesis (GRH). It is by no means obvious,
but on the other hand not surprising, that this allows us to obtain sharper results on
the nonvanishing.

The density and the distribution of zeros near s = j for the L-functions of certain
families J^ have been studied recently in Katz-Sarnak [KS1, KS2]. The philosophy
and conjectures which emerge assert that for such families, the distributions of the
low lying zeros, when we order the L-functions by their conductors (see below), are

(1) Supported by NSF Grants DMS-98-01642, DMS-94-01571.
[ ) Supported by the American Institute of Mathematics.
v ) Supported by the Ambrose Monell Foundation and the Hansmann Membership by grants to the Institute for

Advanced Study.
[ ) Supported by a Sloan Foundation Fellowship.
v ; Supported by the Veblen Fund, Institute for Advanced Study.



56 HENRYK IWANIEC, WENZHI LUO, PETER SARNAK

governed by a symmetry group G(J^) associated with j^. In the case where we can
identify the function field analogues and compute the scaling limits of the corresponding
monodromies of the family, one arrives at such a symmetry G(J^). Examples where
this can be done and where the corresponding predictions can be verified are given in
[KS2]. One of our aims in this paper is to pursue these conjectures for the L-functions
associated with automorphic forms on GL.2 and in one case on GLs.

• The Density Conjecture. — Before stating our results we describe the goal in
general terms. Let J^ be a family of automorphic forms to be specified later. To any
fin. y we associate the L-function

00

(1.1) L(.,/)=^(»)^.
1

We assume that L(J, /) is entire and self-dual. The latter means that the corresponding
completed function A(J, /)=Loo(^, /)L(.y, f) satisfies a functional equation of type

(1.2) A(.,/)=£yA(l-.,/)

with £y= ± 1. We say the functional equation is even or odd according to £/= 1 or
—1. The sign £y has a considerable impact on the distribution of zeros ofL(.y, /) near
the central point s= -

Unless otherwise stated we assume that the Riemann hypothesis holds for each
L(.y, /) with/G ^ and for all Dirichlet L-functions (including the Riemann zeta-
function). Accordingly we denote the nontrivial zeros of L(J, f) by

(1.3) p /= j+^ .
They appear in complex pairs. By classical arguments of Riemann it follows that the
number of zeros with [^ bounded by an absolute large constant is of order log^y,
where Cf > 1 is a certain number assigned to / (which we call the analytic conductor
of/). We shall give the exact values of ^ in particular cases.

We shall investigate the "one-level59 densities (see [KS1], p. 405) of the low lying
zeros. To this end we define

(1.4) D(/;^)=^Aog^)
V

where ^{x) is an even function which vanishes rapidly as \x\ —> oo. Here, of course, Jf
are counted with the corresponding multiplicities. Throughout the paper (|) will be a
Schwartz class function for which the Fourier transform

(1.5) $(^)= F ̂ e-^dx
J —00
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has compact support so that (|)(̂ ) extends to an entire function. Since (|) is localized, the

scaling by — log cj- means that D(y; (|)) with varying (|) measures the density of zeros of
^,lv

L(J, /) which are with 0(1 / log Cf) of the central point s= ^.
In practice it is impossible to evaluate asymptotically the sum (1.4) for a single

L-function, because such a sum captures only few zeros (essentially a bounded number
of zeros). Therefore we consider various averages over fin S^ ordered by the conductor.
First we choose the finite subsets

(1.6) {/eJ^=Q}
and let Q^—> oo. Later, in order to get stronger results, we take the larger sets

(1.7) {/CJ^<Q}.

To unify the presentation of both cases we denote by ^"(Q) one of the two sets above,
and we consider the average (or expectation)

('.») ^(O^TO/S^-
We assume that S^ has plenty of independent forms (relative to conductors) so that
1^(0)1 ~" °° as Q.~^ oot ^ Ae family J^ is complete in a certain spectral sense, it
is reasonable to assume that E(^(Q);(|)) converges. Precisely, if(|)C «5^(R) with support
of (|) compact we may be able to show that

/CO

(1.9) lim E(J^(Q); (()) = (^)W(J^)(x)^ ,
Q—^oo -oo

where W(J^) is a distribution depending on j^. We shall refer to the above statement
(with W(J^) explicitly given) as the "Density Theorem95 for the family J^.

The numerous observations and results in [KS1], [KS2] suggest that W(J^)
depends on ^ through a symmetry group G(J^) so we shall be writing W(G) in
place of W(^"). For G a symmetry of type 0 (that is the scaling limit of orthogonal
groups 0(N)), or SO(even) (that is the scaling limit of SO(2N)), or SO(odd) (that is the
scaling limit ofSO(2N+l)), or Sp (that is the scaling limit of*S^(2N)), the corresponding
densities W(G) are determined in [KS1] on page 409. They are as follows:

(1.10) W(0)(^)=l+^),

sin ^TLX
(1.11) W(SO(even))(^) = 1 + —— ,

2KX

(1.12) W(SO(odd) )(x) = 1 - sm^- + W ,
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(1.13) w^X^l-81^.
2nx

Here 8o(x) is the Dirac distribution at ^=0.

• Statement of Main Results. — Throughout we assume that k is even and N
is squarefree, and we shall recall these assumptions occasionally but not always. Let
H^(N) denote the set of holomorphic cusp forms of weight k which are newforms of
level N (see the next section for more details). For any/ € H^(N) we define its analytic
conductor to be

(1.14) ^=^N.

We shall consider separately the subsets H^(N) and H^(N) of the forms/for which
£/-= 1 and £/-= — 1, respectively. In particular for N= 1 we have £/=^, so H^(1)=H^(1)
if k EE 0 (mod 4) and H^-(l) = H^(l) if k = 2 (mod 4). The whole space S^(l) is spanned
by H^(l), so

(1.15) [H^(l)|=dimS,(l)-^

as k —> oo. For N ^ 1 we have

(1.16) |H:(N)| - |H,-(N)| - j[H;(N)| - k-^- (p(N)

as AN —> oo (more precise asymptotics are given in Corollary 2.14). For these families
the expectation (see [KS1], page 18) is that G is orthogonal and that the subsets with
£y= 1, £y= — 1 are SO(even), SO(odd), respectively.

Our first results towards the Density Conjecture are

Theorem 1 .1 . — Fix any ^ C S^K) with the support </(|) in (-2, 2). Then, as N runs
over squarefree numbers we have

1 /*00

(L17) lim ̂ ^ ^ D(/; < ! > ) = / ^)W(SO(even))(^ ,
N^oo|H,(N)|^^ ^-oo

1 y*00
(L18) lim TFF^T S D(^<l>)= / WW(SO(odd))(^,N-^oo|H,(N)|^_^ ^-oo

1 /*°°(L19) lim TFTWJ^ ^ o^^)- / ^mo)(x)dx.N-.^|H,(N)|^^^ 7-^
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The first two results follow from Theorem 7.2, while the last one is deduced
from the first two by the asymptotics in (1.16).

Remark A. — Here the restriction N to squarefree numbers is made merely for
simplifications in the theory of newforms as well as in some technical arguments. It is
almost certain that the same densities W(G) as above will appear in the limit as the
level N runs to infinity over all integers. Note that for fixed k the ratio log cj-/ log |H^(N)|
tends to one.

Theorem 1.2. — Fix any (j) G ^(R) with the support of ̂  in (—\, 1). Then we have

1 />00

(1.20) lim . . . ^ D(/;^)=y^^)W(SO(even))(^.
^N^00 I k( ^ly-eH^N) °°

1 r°°
(1.21) lim _ — . ^ D(/^)=/ (^)W(SO(odd))(^

^oo|H,(N)|^_^ 7-oc

(recall that N runs over squarefree numbers and k runs over even numbers, and in the case N == 1
we assume k = 1 ± 1 (mod 4), or else the sets H^(l) are empty, respectively).

Theorem 1.2 follows from Theorem 5.1 of Section 5.
Note that for the test function in Theorem 1.2 we made a restriction which is

twice as strong as that in Theorem 1.1. This restriction has a natural source. The
point is that the conductor Cf=f^'N for the forms in the set H^(N), with N fixed, is
twice as large as the cardinality of the set (on a logarithmic scale). In the next theorem
we bring this ratio back to one by performing extra averaging over k. Put

(1.22) M^K^^IH^N)!,
k<£K.

(1.23) M-(K,N)=^|H,-(N)|,
k^K

and M^K^r^M^K^N) + M-(K, N). The last satisfies the asymptotics M*(K, N)
~ 2M+(K, N) ~ 2M-(K, N) as KN -^ oo.

Theorem 1.3. — Fix any <() € <y^K) with the support of ̂  in (—2, 2). Then we have

t1-24' ^ M^N) g J D(/-t) ' L WWeven) )(,)A .

(L25) ^M-^N)g^"(/;*)= /_>)W(SO(odd))( .̂
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and

1 r°°
(1-26) lim W^-M^E E D(/;<^)= / WV(0)(^.KN-oc M (K, N) ^KyeH^(N) 7-00

These results follow from Theorem 8.4 of Section 8.
Finally we consider the family H^ (N) of automorphic forms sym2{f), where f

is from H^(N) and sym2^) denotes the symmetric square representation associated
to / (see (3.14)). These are (after an application of Gelbart-Jacquet lifting [GJ])
automorphic forms on GLs. Shimura [Sl] was first to establish analytic properties
of the corresponding L-functions L(J, sym2^/)) (see the next section). For any/€ H^(N)
the sign of the functional equation is £ 2 ( / - ) = 1 . Examining the functional equation
(3.18) we define the analytic conductor of sym^^f} by

(1.27) c^=W, i f /CH^N) .

The symmetry group for this family appears to be the scaling limit of symplectic groups
Sp (see [KS2], page 19). We are able to verify the Density Conjecture in various ranges.Sp (see [KS2], page 19). We are able to ve]
First we proveT^irct \\Tf^ Ttrr^/f

Theorem 1.4. — Fix any ^ € ^R) with the support of^ in (—\, j). Then we have

(L28) lim \W^\ S D(symV);(»= F ^x)Vf{Sp){x)dx.^^|H,(N)|^^ J-oo

This result follows from Theorem 5.1.
Introducing further averaging over k (recall that k runs over positive even

numbers) we extend the range of test functions considerably, but not as much as
in Theorem 1.3. Precisely we prove the following

Theorem 1.5. — Fix any ^ G ̂ ^R) with the support of ̂  in (—9., n). Then we have

1 f°°
(L29) lim ^ ^ D(sym2(/);(^)= / ^)W(^)( .̂

K^oc M (K, ^} ̂  ̂ ^ J-oc

This result follows from Theorem 9.1.

Remark B. — Theorems 1.2 and 1.4 can be established without recourse to the
Riemann hypothesis for Dirichlet L-functions. The reason is that for (|) with support
of (() in (—1, 1) and (—- -) respectively, the main contribution comes only from the
diagonal term in the Petersson formula (2.8). However when we extend the support
of (|) beyond these segments, new non-diagonal terms contribute to the asymptotics
(such additional contributions occur in a similar context in [IS], and earlier in [DFI]).
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These terms arise from Kloosterman sums and are of an arithmetic nature. For an
evaluation of sums of Kloosterman sums we need uniform asymptotics for primes in
arithmetic progressions, and for the latter we apply the Riemann hypothesis for the
classical Dirichlet L-functions.

Remark C. — It is interesting that the Riemann hypothesis for the Dirichlet
L-functions does not help if one attempts to extend the range in Theorem 1.4. The
problem is that in the critical range of primes in question either the phase of the
Bessel function is too large in terms of k, or the modulus of Kloosterman sum is too
large in terms of N. For this purpose more relevant is the method of Vinogradov for
estimating sums over primes and related bilinear forms. His method, together with
WeyPs estimates for exponential sums, would probably allow for a small extension of
the range in Theorem 1.4 for N fixed. If k is fixed, then one needs a cancellation
of S ( p , p ' , c ) in a sum over primes p with a modulus c which is as large as p. This
can be established by Vinogradov's method together with Burgess5 estimates for short
character sums and the Riemann hypothesis for elliptic curves (Hasse's estimate). In this
way one could get a small extension of the range in Theorem 1.4 for k fixed. Because
the improvements are small we do not show the details. Our purpose in making the
above remarks is to point out interesting cases for which the classical techniques are
better than the Riemann hypothesis.

Remark D, — The extension of our density results to test functions ^{x) with ^{y}
having larger support is significant. To see the critical features we write by Plancherel
theorem

/oo /*oo

(1.30) ^x)^(G){x)dx= / $O')W(G)OQ(^ .
-00 J—00

Note that the Fourier transforms of 1, §0(^)5 (sin 2nx)/2nx are (in the sense of
distributions) So(^), 1, ^(jQ respectively, where T|(jQ is the characteristic function of
the segment [—1, I], more appropriately T|(j/)= 1, j, 0 for \y\ < l,j/= ± 1, \y\ > 1.
Hence the Fourier transforms of the densities for the groups 0, SO(even), SO(odd) are

(1.31) W(0)OQ=8oOQ+^ ,

(1.32) W(SO(even))(jQ = §o(j0 + ^(jQ ,

(1.33) W(SO(odd))(^) = §o(^) - ̂ 00 + 1 .

They all agree in —1 <y < 1, but split atj/= ±1. This means that in order to be able
to distinguish the families of automorphic L-functions of different parity by looking
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at the distribution of the low lying zeros one must use the test functions (|) with the
support of(|) larger than [—1, 1]. For the group G=Sp, we get

(1.34) W(^)(^)=So(^)-^)

which also has a discontinuity atj/= =b 1.

Remark E, — We note that the results in Theorems 1.1, 1.3, 1.5 go well beyond
the similar analysis of the pair and higher correlations for the zeros of the Riemann
zeta function (Montgomery [Mon], Hejhal [Hej], Rudnick-Sarnak [RS]). The analysis
in those works extends only as far as the diagonal terms being the main contribution to
the asymptotics. In particular, in as much as our results test the limit (1.9) beyond the
diagonal, we feel they lend strong evidence to the truth of the full Density Conjecture.

• Applications to the non-vanishing of central values. — There are applications of
Density Theorems for counting automorphic forms / in the relevant family j^ for
which the point s= j is a zero of L(J, /) of given order. Put

(1.35) ^(Q)=.^|{ye^(Q); ordL(., f)=m}\.
s=^

Clearly

00

(1.36) EA»(Q)=I.
w=0

On the other hand, by choosing test functions ^(x) such that ^{x) ^ 0, (|)(0) = 1 and the
support of(J)(j/) compact, one derives from (1.9) and (1.30) that

00

(1.37) ^mp^Q)<g+£
w= 1

for any e > 0, provided Q^ is sufficiently large, where

/oo

(1.38) g= ^)W(G)(j^.
-00

This yields the upper bound, j^(Q) < m~^{g-\- e) for any m ̂  1. Moreover, subtracting
(1.37) from (1.36), one gets the lower bound j^o(Q) > 1 — < ? — £ .

Somewhat better estimates follow along the above lines by breaking up the family
with respect to the parity of the functional equation. Indeed, if £/= 1 for all/C ^
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then the order of zero of L(J, /) at s= | is always even, so j^(Q) =0 if 2 f w, and one
gets

(1.40) ^(Q)>j(2-^-e).

If £y= - 1 for all/C ̂  then j^(Q) = 0 if 2\m, and one gets

(1-41) ^i(Q)>j(3-^-e).

Recall that the integral (1.38) depends on the test function ^, and one should
make g as small as possible to get the best results. An analysis of the optimal choice
for this purpose involves extremizing a quadratic form subject to a linear constraint
and is carried out in Appendix A. The Fourier pair

^ ^(a^)2, ^)40-^) .!.!<.

yields quite good results. Using (1.31-1.34) and (1.42) we compute g=g{v) in various
cases. We get

(1.43) ^-^l forG=0.

f ^- if.<l
(1.44) ^)= <j ^ ^ forG=SO(even),

- - -^, if0 1
V 2lr

- + , , i f y ^ l
(1.45) g{»)= < v , forG=SO(odd),

' 1 + ^ , if^l

1 1
i f y ^ 1

(1.46) g{»)=!. v ^ 2 forG=Sp.

I W
i f y ^ 1

In particular for v=2 our estimates (1.37), (1.40), (1.41) yield
00

(1.47) I>A,(Q)<l+e, i f G = 0 ,
m=l

(1.48) />o(Q) > -̂  - e, if G = SO(even) ,
lb
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(1.49) j&i(Q) > 15 - e, if G = SO(odd).
Ib

We also have the results (1.20) and (1.21) for G=SO(even) and G=SO(odd) with v= 1
which yield po{Q) > \ ~ £ and p\{Q) > | — £, respectively. Moreover, the result (1.28)
for G= Sp with v= \ yields j&o(Q) > \ - £ and (1.29) with v= j yields

(1.50) ^(Q)>J^-^ i{G=Sp.

As shown in Appendix A the test function (1.42) is definitely not optimal when
v > 1 for the symmetries SO(even), SO(odd) and Sp. Consequently the corresponding
bounds above can be improved by an absolute positive constant. However, for G = 0
the function (1.43) is optimal. Nevertheless we can reduce the upper bound (1.47)
slightly by roundabout arguments. To this end we split the family according to £y= d= 1,
apply the improved version (1.47) to each subfamily separately (i.e. for the groups
SO(even), SO(odd)) and add up the results. The precise improvements obtained by
using the optimal test function is given in Appendix A. By the above estimates and
remarks we conclude

Corollary 1.6. — We have

(1.51) liminf ————|{/ € H:(N); L(1 /) f 0}| > \,
KN^oc |H^(N)[ ^ 4

(1.52) liminf ——^||{/ G H,-(N); L'(1/) f 0}| ^ 3

AN-^oo 1-rl^ (1N)| 2. 4

Fixing k, we have

(1.53) l i m i n f . — — . ^ ordL(. , /)<l,
N—— l^^l/eH^N)^

(1.54) liminf ————|{/ € H;(N); L(1 /) + 0}| > 9

N-»oo |H^(N)| i Ib

(L55) limmf TR^WI1^ e Hr(N); ̂ f} + ^1 > ̂  •N^oo \n-k (JN)! 2- lb

Corollary 1.7. — Fixing N we have

(1.56) liminf „ |{/ € H;(N); k ̂  K, L(1/) + 0}| > 9

K-.oo M (K, IN) 2; lb

(1.57) liminf _ _ — — — — | { / e H,-(N); /; < K, L'(1/) + 0}| > 15 .
K-.oo M (K, JN) / lb
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Corollary 1.8. — We have

(L58) ^-"f Ww^ e H:(N); L(^sym2(/)) + 0}' ̂  •
-For N ̂ <a?

(L59) ^"f M^N)'^ e ̂ (N); ^ ̂  K) L(^ sym2(/)) + ^1 > | •

Remark F. — The Density Conjecture would yield the true values (presumably)
for the above limits, that is the value |, for (1.53) and the value 1 for the other limits.

Remark G. — Various of the constants in the estimates for the limits in the above
Corollaries depend crucially on the extensions of the range of the support of $ beyond
the segment [— 1, 1] in our density theorems. Without these extensions one would, for
example, obtain for the limits (1.54) and (1.56) the weaker inequality liminf^ - in place
ofliminf> ^. In [IS] this weaker inequality is established unconditionally. Moreover
it is shown that improving this to anything bigger than |, is intimately connected to
the Landau-Siegel zero. Of course, in the above Corollaries such a question is not
an issue since we are assuming the Riemann Hypothesis (not only for the L-functions
associated with cusp forms, but also with the Dirichlet characters).

Remark H. — By now there are a number of unconditional results related to
Corollary 1.6. Kowalski-Michel [KM1] and Vanderkam [Van] established a positive
lower bound for (1.55) and later [KM2] their work led to a lower bound of 7/8 for
this case. Kowalski-Michel [KM2] also established an upper bound of 13/2 in (1.53)
and there are significant improvements in the recent joint works [KMV1], [KMV2],
[KMV3].

Remark I. — When specified to the family H^(N), the Density Conjecture as
well as the results of Corollary 1.6 have applications to the estimation of the ranks
of the Jacobians of the modular curves Xo(N), see [KS2] for a description of these
implications.

• Quasi Riemann Hypothesis. — Up to this point we freely assumed the Riemann
hypotheses for Dirichlet L-functions as well as for the automorphic L-functions of the
family in question. In what follows there will be no tacit assumptions of any Riemann
hypothesis. We restrict attention to the family of L-functions associated with Hecke
cusp forms for the modular group (i.e. L(J, /), where/G H^(l), k even). First note
that for (|) C ^(R) with (|) compact support (as we always assume) the sum (1.4), which
now is (see (1.19) with N=1)

D(/;(^)=E^f? log^-
Vf \ )
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makes sense irrespective of the Riemann hypothesis for L(s, f\ because (|) is entire (so
the sum (1.4) is well defined even if^is not real).

Theorem 1.3 provides separately asymptotics for two families broken up by the
parity of functional equations, and for this reason it relies on the Riemann hypothesis
for Dirichlefs L-functions. If we do not break this parity then we can quite easily
establish unconditionally a version of Theorem 1.3. For simplicity here we work with a
weighted average, rather than with (1.8). That is we maintain the arithmetical weights
L{\, sym2{f))~l which appear naturally in the Petersson formula. In fact some effort
was put into removal of these weights in the results previously stated.

Note that (see 10.7))

4-n2

(160) E,T-T E L-^symV^K+OO).
^K^ ^EH^l)

By Theorem 10.2 one gets

Theorem 1.9. — Fix any ^ G ̂ R) with the support of^ in (—2, 2). Then we have

i 4''n'̂  /*00

(1.61) lim ̂  ——— ^ D^L-^l.syinV))^ / ^)W(0)(^.
K-.OO iv ^K A; i /eH^(l) J~oo

This result, as well as all the strongest previously stated density theorems, are
restricted to the test functions (|) with the support of (|) in (—2, 2). Interestingly, extending
this range is closely related to estimates for some classical exponential sums over primes.
Precisely consider the following

Hypothesis S. — For any x ^ 1, c > 1, and a with (a, c) = 1, we have

(1.62) ^ ^AX^8

p<^x,p=a{c)

where £ is any positive number and the implied constant depends only on £.

Theorem 1.10. —Assuming Hypothesis S the formula (1.61) is valid for (b with the support
•̂ s- 00 00 -t-t

of^ in (-f, f).

This result follows from Theorem 10.3.
Some comments about Hypothesis S are in order. Firstly, what is needed in

order to extend the range (—2,2 ) is any bound in (1.62) of the type c^y^^ for
Q

some constant exponents A > 1 and a < ^. A nontrivial bound for the sum in
(1.62) was established by I. M. Vinogradov [Vin]. His exponent was a= - while the
standard density hypothesis for Dirichlet L-functions provides a bound with a= |. In
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fact Hypothesis S (or for that matter any estimate with a < |) is closely related to
basic questions about the distribution of zeros of Dirichlet L-functions (see Appendix
G and also [Fuj]).

Theorem 1.10 shows that the classical "GLi55 exponential sums (of analytic type)
as in Hypothesis S are intimately connected to GL.2 L-functions. In fact, remarkably
Theorem 1.10 (or any extension of the range (—2, 2)) strikes at the Riemann hypothesis
for GL.2 L-functions. For example, it implies the following quasi Riemann hypothesis.

Corollary 1.11. — Assume Hypothesis S and that the ^eros of any L(s,f)forf € H^(l)
are either real or on Rej =-. Then for k sufficiently large

(1.63) L(.,/)+0 i f , > ^ + e .

Remark J. — The above result is effective and thus in principle one could establish
it for all k with numerical verification. The assumption about the zeros of L(^, /) off
the critical line being real can probably be removed by considering two variable sums
in place of that in Hypothesis S. The analysis however is complicated, and will be left
for the future.

Remark K. — The implication of Corollary 1.11 that bounds on the classical
"GLi" sums in Hypothesis S imply a quasi Riemann hypothesis for GL2 L-functions
reminds one of the Lang-Weil Theorem [LW] which gives a quasi Riemann hypothesis
for zeta functions of varieties over finite fields by using the Riemann hypothesis for
curves. We add that our implication is very different to the direct relation between the
Riemann hypothesis for L(J, /) and cancellations in the sums

(1.64) ^{p)
p<^x

since the sum (1.62) does not mention any GL2 objects.

2. Basic automorphic forms

In this section we gather some standard facts about cusp forms for the Hecke
congruence group Fo(N) that are needed in this paper. We do not provide complete
proofs of all results, but in the less standard cases we indicate how to derive them from
available sources. For further background, we recommend the following text books [Sl],
[Miy], [Iwa], and the articles [AL], [Li], [PI]. Moreover we prove a few new results.
In particular, using our special orthogonal basis (see Proposition 2.6) we manage to
express neatly sums over newforms by complete sums of Petersson type (see Proposition
2.8 and Proposition 2.11).
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Throughout A:, N are positive integers, k even. The linear space SA;(N) of cusp
forms of weight k and level N is a finite dimensional Hilbert space with respect to the
Petersson inner product

(2.1) {f,g}= I /(&)V-2^.
JFo(N)\H

Every / G S^(N) has the Fourier expansion of type

(2.2) /(^)=f^(^)
i

where e(^)^e2n^z and df(ri) are complex numbers (the Fourier coefficients). For notational
convenience we introduce the normalized coefficients

(2J) ^'(^i^)2^"'^
where ||/||2 =(/,/). These (as proved by Deligne [Del]) satisfy

(2.4) V/(")«T(")

where T(w) is the divisor function and the implied constant depends onf.
Let ^^(N) be an orthogonal basis of S^(N), so we have

(2.5) |j^(N)| = dim S,(N) x v(N)k ,

where

(2.6) v(N) = [Fo(l): Fo(N)] = N I] (1 + 1).
/'IN ^

Given k, N we put

(2.7) AA,N(^= ^ ^(m)\|/y(7z).
/€^^(N)

This is basis independent; indeed A^N^? ^) is the yz-th Fourier coefficient of the m-th
Poincare series up to some normalizing factors. The key tool for averaging over cusp
forms is the following formula of Petersson [P2] (see also [Iwa]).

Proposition 2.1. — For any m, n > 1 we have

(2.8) A,, NM= 8(^7z)+2^ ^ ^S^^J,./4^^^-—^c^O(modN)
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where 8(m_, n) is the diagonal symbol of Kronecker, J^-i(x) is the Bessel junction and

(2.9) s^n-,^^'^"^-}
d{modc) \ c )

is the classical Kloosterman sum. Here Y^ restricts the summation to the primitive residue classes
and d denotes the multiplicative inverse of d modulo c.

By virtue of the following estimate (which is essentially due to A. Well)

(2.10) |S(m,7^)| ^(m,n,cYc^(c) ,

and by the crude bound for the Bessel function (recall that k ^ 2)

(2.11) J ,_ i (^)«minf l^^-^ ,
\ K /

it is clear that the series on the right side of (2.8) converges absolutely. For m, n
relatively small A^^(m, n) approximates to 8(m, n). Precisely we derive from (2.8).

Corollary 2.2. — For any m, n ̂  1 we have

(2.12) A,,NM=8(m^)

\(N)(m^N)T3((m^))/ mn V ^

N^((m,N)+(^N))^ \^nm+kN)
+0?-^^— ^^^^ ———— log2^

where the implied constant is absolute (Ts(^) denotes the corresponding divisor junction).

Proof. — First we prove a general bound for Kloosterman sums

/ c c V
(2.13) |S(m,^)|^(m,72^)min -——. -——- x(c).

\{m, c) (n, c ) }

This bound is somewhat stronger than (2.10), nevertheless it can be derived from
(2.10) as follows. By multiplicative properties of Kloosterman sums we can as-
sume that c:̂ " and n=p^. If a ^ p then S{m,p^^pa)=S{m,0',pa) is the Ra-

\_
manujan sum which is bounded by (myp^m, n, c)(c/(n^ c))2. Suppose a > P. Then
S(m,^;^a)=J&(3S(mJ&-^ l;^""13) if^|m, and the sum vanishes if p^ \ m. In the first

}_
case we get ^(m,^;^")! ^ (m, n, c){c/n, c)2^) by (2.10). Therefore we have that

j_
|S(m,^;<;)| ^ (m, n, c)(c/(n, ^))2T(^) for all m, n. Since we can interchange m with n
this completes the proof of (2.13).
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The crude bound (2.11) follows from the more precise estimates

(2.11') Jv^)<^(|^v|+v^ ,

,.u--) ^(j)"«^(^y,
if v > 0 and x > 0 (see [GR] and [Wat]). The latter implies

(2.1H J,-i(x) < 2-kx ,

k
if k ̂  2 and 0 < x ^ -.

0

Now we are ready to prove (2.12). The sum of Kloosterman sums in (2.8) is
bounded by

_\_ _ ] _ i— _\_
^ (m, n, c){{m, c) + (n, c)) ^c ^(^min^, \^mn/cK)k 3

c=0(modN)

^ (m, n, N)((m, N) + (n, N))"^"^^^"^ ,

where
00 i i /—

S= Y^{m, n, b^b~^(b}mm(\, ^mn/bkN)

/ .^T(A) . / ^nm\^F^p^^.^)-
d\{m, n) b= 1 V \ /

Here the sum over divisors of (m, n) is equal to T3((m, 72)), and the last sum over b is
bounded by

{ ^mn fVmn\2 \ f mn\2 ( r— ,^\~^ „
mln m\m) ̂ ^^[m) (V-4-^) ^s2—

Hence (2.12) foUows.
One can get slightly better results if mn <^ A^N2.

Corollary 2.3. — For any m,n ^ 1 ^A 1271 \/m^ ^ AN w^ A<z^

(2.12-) A,^^5^^0(-^ (OT^^ . l((^))) .
v 2 A N5((OT,N)+(n ,N) )2 /

^roo/^ — This follows along the above lines where we apply (2.11") in place of
(2.11).
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Next we express A^N(^ ^) in terms of Hecke eigenvalues of cusp forms which
are newforms in the sense of Atkin-Lehner theory [AL].

Letting H]^(M) be the set of newforms of weight k and level M we have the
orthogonal decomposition

(2.14) S,(N)= © © S,(L;/)
LM=N /eH^(M)

where S^(L;V) denotes the linear space spanned by the forms

f^)=^f{^) with^L.

Note that the forms ̂  need not be orthogonal (see Lemma 2.4), nevertheless they are
linearly independent. Therefore dimS^(L;/)=r(L) and

dimS,(N)= ^ T(L)|H^(M)|.
LM=N

A newform f of level M possesses a handful of properties. First of all f is an
eigenfunction of all the Hecke operators TM% defined by

w ™^?X.s/(^)-
( a ,M)= l

For^G H]^(M) we define ^/{n) to be the eigenvalues of TM(^);

(2.16) TM(»)/=M")/

for aU n > 1. We have af{n)=af{\)'kf(n)n(k-l)^ for aU n > 1. Hence ^(1) ^ 0, and we
can normalize the newforms by setting

(2.17) a / ( l ) = l .

Therefore for all n ^ 1

(2.18) af{n)=^{n)n{k~l)/2 .

The Hecke eigenvalues are multiplicative; precisely for any m, n ̂  1

(2.19) ^{m)^(n}= ^ ^W</2).
d\{m,n)

{d, M) = 1

By this multiplicativity the bound (2.4) improves itself to

(2.20) IM")1^(»)-
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A newform / of level M is also an eigenfunction of the involution WM which is
defined by

(2.21) (WM/)(^) = (^^/M)-y(- 1/^M).

For/GH^M) we put

(2.22) WH/=TV/

with r|y= ± 1. If M is squarefree then r|y can be expressed in terms of the Hecke
eigenvalue, precisely

(2.23) Tiy= |LI(M)^ (M)M172 .

Hence it follows that ^(M)=M~1. Actually it is also known that

(2.24) ^ {p)=p-{ if^|M.

We return to the decomposition (2.14). To complete the goal we need to select
an orthonormal basis in the space S^(L;/) for each newform/G H^(M). Such a basis
is determined by/up to a unitary transformation of the system {f^',i\L}. First of all
we need to compute the inner products {f\e^f\e^). From now on we assume that N
is squarefree.

Lemma 2.4. — Let N=LM be squarefree, ^\L, ^|L andf^ H^(M). Then

(2.25) {^M ̂ /(wr^^a/)
where £ =^2(^1. ^2)~2 (recall that v(£) is the multiplicative junction given by (2.65) and {f,g}
is the inner product given by (2.1)).

Proof. — For cusp forms of weight k= 2 the formula (2.25) was established by A.
Abbes and E. UUmo (see Lemma 3.2 of [AU]). We follow closely their arguments. We
begin by the inner product

(2.26) ^)={E^s)f(i^,f(^}

where E(^, s) is the Eisenstein series

(2.27) E(^)= ^ (Imy^.
yeroo\ro(N)

By the unfolding method

F(J)= /oo^-2(/l^l^(^^)^ .
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Inserting the Fourier expansion (2.2) we get

¥(s)={4n)l-k-r(s+k-l) EE af^W.n^-5 .
£lnl =^2"2

Introducing (2.18) and writing n^i"n, n^=i/n with f'=^/{£^t^ ^'^/(^i^)
we get

F^^T^-'-T^+A- l)(^l^2)(l-^)/2^1^2]~JR/(^^/;^)

where

R^r;.)= ̂ (^(r^--.n
Note that this depends only on £ ^ t ' t " (justifying our notation) and it factors into

( ^ \} (^-) n ( E w^^}.
v(n,^)=l / p\i ^0=0 /

For p\t (so j&fM) and a > 1 we have ^f(fia+i)=^f{p)^f{pa) - W~1)' Hence

oo oo

'EW^p^^p^ +p-r1 E^ (^-c" •
a=0 a=0

Multiplying these series we obtain

R^)=^)II(1 +j&-0-'L(.,/®/)
/'!<

where L(J, f®f) is the Rankin-Selberg L-function

(2.28) L(.,/<8)/)=f^^(»)^.
i

Finally, combining the above formulas we arrive at

(2.29) -F{s) = (^'-^-T^ + k - l)^!^)0"^!, ̂ :r

^wL(,,/0/)n(i+j&-r1.
/•!<

Taking the residue at s= 1 we obtain (2.25).
The formula (2.25) shows that all the forms ̂  with i\L have the same norm

(2.30) {f^,f\e} ={/,/).
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Moreover, since the residue of E(^, s) at s= 1 is equal to l/vol(ro(N)\H) (cf. [Sa]), it
foUows from (2.29) for ^ =£^ = 1 that

(2.31) (/,/) = (4Tc)-^r(A;)^v(N) Res L(.,/0/).
^ s=\

Next one can easily check by (2.19) that

(2.32) L{sJW=Z{sJ)^s)/W

where ^{s) is the local Riemann zeta function

(2.33) ^)= E ^-IK1-^)"1

m|M00 p\M

and Z(j,y) is defined by

(2.34) Z(,,/)=EW)^.

Therefore we have

(2.35) Res L(^/®/) = Z(l ,/)M/(p(M).
j = i

Inserting (2.35) into (2.31) we conclude

Lemma 2.5. — Iffis a newform of weight k and level M|N^ then

(2.36) (/,/>= (4,)-rW''̂ Z(l,/).

Now we are ready to select an orthonormal basis of S^(L;y), say

(2.37) H;(L;/)={/,;</|L},

where fd are suitable linear combinations of f\^ say

(2.38) /.=E^)^-
e\L

Denote §y(</i, ^)= 0, ,A)/(/,/). By (2.25) we get

§y(</,, </2)= EE l̂)^2)M^AW •
^ ^

Writing £i=a£',^= at" with (̂ , £ " ) = 1 we get

§ î, ̂ )= E EE ̂ (^/)^(^^/(^)^(^/)(^^/)l/2/v(r)v(^/).
a (^^^^i
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Next we relax the condition (£\ i " ) = 1 by Mobius inversion getting

s î, <4)= ̂ ^^(^(^-j))2^^(^/)^(^)^^7/v(^)
a b v ^^ / r

^{abn^n^/vn.i "
Collecting terms with ab = c we get

(2.39) 6f{d^d,)= ̂ f(c)y^c)y^(c) 5

.|L

where pf(c) is the multiplicative function given by

(-) p/..E^(^)2-^(>-^)2),
andj»(/(c) is the corresponding linear combination of the ^(^)'s,

(2.41) (̂,) = ̂  ̂ (rf)^ ̂ )^/v(^).
<|L

Using the Mobius inversion we transform (2.41) into

(2.42) x,{£) = E^WlW ̂ ^/v(^) •
.|L

We require 8y (^i, d^) to be the diagonal symbol, i.e. the matrix

(2.43) Y= (ĵ )-/p^J) , c\L, rf|L,

to be unitary. There are many interesting choices. We take for Y the identity matrix
getting

(2.44) x^)=^c)^{c)/v{c)^p^

if d=c£ and ^(^)=0 otherwise. For this choice we get

/ . \ i / 2
(2.45) /^) = —— ^ ̂ )v(.)-1^ (^-^V^).

vl/l ;/ c£=d

We have proved the following

Proposition 2.6. — Z^ N=LM be squarefree and f € H (̂M). TA^z ̂  ̂  {^;rf|L}
withfd(^) given by (2.45) is an orthogonal basis ofSh(L,f). Moreover, every fd has the same norm
(with respect to the inner product (2.1)) given by (2.36).
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Now we are ready to express Ak^{m^n) in terms of Hecke eigenvalues for
newforms of level M|N. First observe that if/(^) has the Fourier expansion (2.2)
with coefficient o/-(^), then so does^(^) with coefficients

^ ^^(^"E^^-^O).
l\n

Hence, using our particular basis (2.45) we arrive at

A,,^,")^)1-^-!) ̂  ^ ll/ir'E '̂1
LM = N/gH^(M) d\L

( ^ ^i), / yi, / "A/ T- n(^), / . , ,n \(E^^wy)^E^^(^y}
•̂  i |W •(. n |W

To simplify this expression we assume that (w, n^ N)= 1. Then (^i, ^2)== 1 80 c\^bi^
and ^2=^1 gi^i^g

^^^^ \- ^/(^Y^i^). ^ . ^ ̂ ^ .^^A^r ,J, 1^ v^^^^^y^t j € ^ O C ^ ^ = : f l ' '

^ i |m, ^9!"

Hence, using the formula (see the definition (2.40))

VJLYW2,^
^ P / W V v ^ y p^(B)

we find that

E^(E)(E)^(»,,W)

where

A^L)= E ̂ ^W©-
^ | (m,L)

Next we apply (2.19) showing that

t2-47) ^•^v^S^5^) •
S^KW, §L)
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Collecting the above evaluations together with (2.36) we obtain

(2.48) A^{m,n)= 12 y ^L y A,(^ L)A^, L)
kM ' ) ^-l)v(N)^(p(M)^ Py(L)Z(l,/) •

However, this formula can be expressed more naturally in terms of the local zeta
function

(2.49) ZN(^,/)= EM^" •
<|N°°

We compute by (3.14), (3.15) and (3.16) that

za n-JO-^rP^"1 ' ^^M
^ p ^ U ) - \ , , \ - i / , \ - iK1^1) (1-.1) ' ^^

Hence we get

(2.50) ZN(I ,/) = MN/(p(M)v(N)py (L).

Introducing (2.50) into (2.48) we conclude that for N squarefree and {m, n, N)= 1

(2.51) A,, ̂  n) = ———— ^ ^ A^m, L)A, {n, L)^1^ .
V^- 1^ LM=N/eH^(M) z( l^)

To achieve further simplifications we are going to assume that {mn, N^IN in
which case (2.51) becomes

Lemma 2.7. — Let N be squarefree, [m, n, N) = 1 ararf (wro;, N^IN. Then

/252) A.MfOT ^- 12 ^ V" WWW.f)(2.52) A,^, n)-^_ l)N^^v((^,L))Z(l,/) •

Now we proceed to convert (2.52) into formulas for sums over newforms. We
begin by considering the arithmetically weighted sums

(2.53) A^M= E WWZN(I,/)/Z(I,/)
/^(N)

where a=^, + , -. Note that Z^(l,/)=(l -j&-2)-1 if^|N by (3.14), (3.16), hence

(2.54) A^(^)=W2) E M^W/^l,/).
/eH^(N)

First, by (2.52) one can check directly (using Mobius inversion) the following
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Proposition 2.8. — Let N be squarefree, (m, N) = 1 and (n, N^N. Then

(2.55) <,(m, .)= k—— ^ ̂ ^ ^ r^M^2, .).
14 LM==N 'W ^)e\L00

Next, if (72, N) = 1 then by (3.5) we can write

(2.56) 2A^ ̂  72) = A^ ̂ m, n) ± ̂ (N)^A^ ̂ (^, ^N) .

Applying (2.55) we get

Proposition 2.9. — Let ̂  be squarefree and {mn, N) = 1. TA^z

(2.57) A^(m, TZ) = ^——N ^ ^ ^A,,M(^2, .)
^ LM=N^|L°°

, .kk — 1 /— y^ v^ |LI(M)M , o
^-24"^ E ET-T^M^.).

^1 LM=N^|L°° -(-VW

Inserting (2.12) into (2.55) we deduce

Corollary 2.10. — Let N be squarefree, (m, N) = 1 ̂  (^ N^IN. TA^z

(2.58) A^(m^)=^l(p(N)8(m^)

+0(^l/6(m7^)l/4(^ N)-l/2T2(N)T3((m, T?) ) log 2m7zN)

w/^r^ the implied constant is absolute,

Finally we consider the pure sums

(2.59) A^(")= E W
/€H^(N)

where o=*, + , -. If (TZ, N) = 1, we get by (3.5)

(2.60) 2A^ ̂ (n) = A^ ^(») ± ̂ (N)^4< ̂ ("N) .

Summing m^A^^m2, ») over all (w ,N)= l we remove the arithmetical weights
ZN(I ,/)/Z(1,/) completely getting by (2.55).

Proposition 2.11. — Let N be squarefree and {n, N ÎN. Then

nK\\ A* s \ k-1 \^ ^(L)M ^ _, „
(2.61) A^(»)=-.,- ^ ,-77-T^ 2^ OT A^M^2,?!).

1- LM=N '<'"' •"̂  (m,M)=l
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Here the innermost series over m converges by virtue of the holomorphy of the
symmetric square L-function (see the next section). The convergence, however, is not
absolute and for this reason the formula (2.61) is not quite practical, especially if one
expands each A^M^2? ^) into sums of Kloosterman sums by Petersson's formula (2.8).
The problem looks like that with character sums of large conductor in which case the
application of Poisson's summation would transform the sum into a worse position from
the point of view of estimation. Here the large m's reduce considerably the efficiency
of the Kloosterman sums expansion in the variable n. Moreover the terms with large
L can cause some loss of power. Therefore, to balance these losses, we split

(2.62) A^)=<^)+A^

where

(2.63) <^)=^—— ^ -^ ^ m-^^m\n)
14 LM=N - V V 7 ? —/ / (m, M ) = l

w^YUX

and ^°^{n) is the complementary sum. Here X, Y ^ 1 are two parameters at our
disposal. In applications we shall choose X and Y relatively small.

In the complementary sum ^°^(n) we express the terms A^ M^ 3 ^) back in terms
of Hecke eigenvalues for newforms, and then estimate ^°^(n) by using various bounds
for the eigenvalues and relevant L-functions (rather than for Kloosterman sums). We
also estimate sums of type

(2.64) ^ A^(^
(q,nN}=\

for some complex coefficients dq. We could get quite strong results (almost best possible)
for any coefficients, but of restricted support which is not acceptable. To allow a larger
support (practically unlimited) we are going to assume that the sequence ̂  = {dq) has
the following property;

(2.65) ^ ^{q)a^W
(?,"N)=1

for every ye H^(M) with M[N the implied constant depending only on e.
For example this property holds true for the two sequences

(2.66) a,=p-^\ogp, i£q=p^(^

(2.67) a,=p-^\ogp, ify=^Q
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with dq = 0 elsewhere. This follows from the Riemann hypothesis for L{s,f ) and
^s,sym2(f)) respectively, provided logQ < log AN. The above two examples are
all we use in this paper.

Lemma 2.12. — Let N be squarefree and (n, N^IN. Suppose the sequence ^ =(^)
satisfies (2.65). Then we have

(2.68) ^ A,°°N(̂  < (n, N)-1/2^^-1 + Y-^X^NXY)8

( ^ , w N ) = = l

^A^r^ ̂  implied constant depends only on e.

Proof. — By Lemma 2.7 we write

^N("^ S ——— E W
KLM=N ^^5 -'^^^/eH00^

L>X

+ E V^ID) ^ ^(^/KM;Y)KLM=N W. ̂ If^^
LsX

where

^(KM;^2!^ ^ ^•^(^2).
Z 'V 1 5 ^^ (m,KM)=l

m>Y

By the Riemann hypothesis for L(J, sym2(/)) we get

ry(KM;Y) < Y-^^^KMY)6.

Moreover we have \kf (ri)\ < ^(ri)(n, N)-1/2 by (2.20) and (2.24). Hence Lemma 2.12
follows by the hypothesis (2.65).

Taking one term q= 1 from (2.68) we get

(2.69) ^{n) < (n, N)-^kN(X-1 + Y-^X^NXY)6 .

On the other hand, applying (2.12) to every A^M(w2, n) in (2.63) we derive

<-) ^^{.-gi)}
^( '̂((^r '̂)
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where the first term exists only if n=m2 ^ Y2 and (n, N)= 1. Adding (2.69) to (2.70)
and choosing X=Y1/2 ̂ -^W^N3/7 we get

Proposition 2.13. — Let N be squarefree and (n, N^IN. Then

(2.71) A^(.) = ̂ 1̂  + 0 ((., NT'/V/W/3)

where the main term exists only if n = m2 and (n, N) = 1 and the implied constant is absolute.

In particular for n= 1 and TZ=N Proposition 2.13 gives us asymptotic formulas
for the number of newforms.

Corollary 2.14. — Let k ^ 2 be even and N be squarefree. Then

(2.72) |H^(N)| = ̂ <p(N) + 0((AN)2/3) ,

and for N =(= 1 we have

(2.73) IH^N)] = ̂ ^(N) + 0((AN)5/6).

Remarks. — Observe that A^ ^(^) captures squares (7z=m2), while A ^ N ( I ? ^ )
captures the diagonal (n= 1), provided n is small relative to the dimension. In view of
these features one can say that the set of newforms H^(N) is quite a partial selection
from a complete orthogonal basis of S^(N). However this picture changes drastically
for large n as the set H^(N) shows stronger orthogonality than any basis of S^(N) can
offer (in the asymptotic sense).

In our main applications the approximate formula (2.70) is not strong enough.
Applying Proposition 2.1 to every A^M(^2? ^) in (2.63) we get the exact formula in
terms of Kloosterman sums.

Proposition 2.15. — Let N be squarefree and {n, N^IN. Then

f274) A' M-^-1^^1 V- \- ^(L)M(2.74) A,^)--^-^ -^- ̂  ̂  ̂ ^

UX m^Y

o ' k v^ -io/ 2 \ T f^Km^/n\W ^ c {S(m\n^c)]k-\[———
<:=0(M) \ c )

where the first term is present only if n =m2 with m < Y and (n, N) = 1.
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3. Automorphic L-functions

For any/€ H^(N) the Hecke L-function is defined by

(3.1) ^sJ)=^{n)n-s.
i

This has an Euler product L(j,y)= Y[L,p{s,f) with the local factors
P

(3.2) L,{SJ) = (i - ̂ [p)p-5 + xcWr1

where %o denotes the principal character to modulus N. Define the local factor at
p=oo by

(») ^-W^)
Then the complete product A(^,/)=Loo(^,/)L(J,/) is entire and it satisfies the
functional equation

(3.4) A(s,f)=£fA{l-s,f)

with the root number ey=^r|y= ± 1, where T|y is the eigenvalue of the involution WN,
so by (2.23)

(3.5) £y=^n(N)^(N)N1/2.

The local factors of i.{s,f) factor further as

(3.6) L^,/)= (l - o^-y1 (l - PyQ^)"1

where Cff(p)^ P/(j&) are complex numbers with (ty(j&)4-py(^)==^y(^) and oc/-(j&)P/-(j&) = %o{p).
For j& f N we have a/(j&) = ̂ Ap\ whence |ocy(j&)| = |P/(^)| = 1 (the Ramanujan conjecture
[Del]). For all p and m ̂  0 we have

(3.7) MD- E a/(^P/(^r'.
0^£^m

The local factor at infinity factors as (by the duplication formula for the gamma
function)

(-' ^'=^'/(^(.+iTl)-(.+iTl)-
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For any^G H^(N) the Rankin-Selberg L-function is defined by
00

(3.9) ^s,f®f)=^{n)n-s.
1

This has the Euler product L(j,/(g)/)= Y[i,p(s,f®f) with the local factors
P

(3.10) L,(V0/) = (i - a; o^-r^i - ̂ {pMp}p-r\^ - pj o^-r1

(l-a^)P^)^).

Note that Lp(s,f0f) = (1 -j^'-1)-1 ifj&|N. The complete product is defined by

/ / ] V \ 2 ^
(3.11) A(V®/) = [^-J r(.)r(. + k - Ws^Wsr'UsJW.

This satisfies the functional equation (see [Li], Theorem 10)

(3.12) A(sJ^f)=A{l-sJ®f).

Closely related to the Rankin-Selberg L-function is
00

(3.13) Z(s,f)=^{n'2)n-5.
1

We have already referred to these functions in Section 2.
Next we define the symmetric square L-function by

(3.14) L(^ symV)) = ^(2.) ̂ (S^Z^/) .

This has the Euler product L(^, sym2(y))= IIL^, sym^/)) with
P

(3.15) L,(., symV)) = (1 - aj {p}p-T\^ - a/^P/^-T^ - PJ (j^-T1

i f j & t N and

(3.16) L^sym2(/))=:(l-^-l)-l

ifj&|N. Shimura [Sl] proved that L(J, sym2(/)) is entire (since/has trivial nebentypus).
In fact the complete product

(3.17) A(., ̂ \f))^r (-1-} r (slf^1} r (——k} N-L(., sym2^))

is entire and it satisfies the functional equation

(3.18) A(,, symV)) = A(l - s, sym\f))
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(which follows by (3.12), the functional equation for the Riemann zeta function and
the duplication formula for the gamma function).

Remarks. — Notice that the functional equation (3.18) has three gamma factors,
which is consistent with the fact that sym^/) is an automorphic form on GL(3), but
only two of these involve k. Therefore (as far as the conductor goes) sym^/) looks
rather like a form on GL(2) in the k aspect; it also looks like a form on GL(2) in the
N aspect. But for various estimations sym^/) is harder than^ because of lacunarity
of the involved Fourier coefficients.

For simplification (in a few minor places, see (4.23), (4.24)) we shall appeal to
analytic properties of

00

(3.19) Z{s,f0^=^{n'2)n-5.
1

This is essentially equal to the Rankin-Selberg L-function associated with sym^/) on
GL(3). That is

(3.20) Z(.,/®/) = L(., symV) ® symV) )V(.,/)

where V(j,/) is an Euler product which converges absolutely in Res > ^ while
L(J, sym2/ (g) sym2/) has analytic continuation to C save for a pole at s= 1 JP-SS].
Of course, the latter is expected to satisfy the Riemann hypothesis as well.

4. Explicit formulas

Let A(.s) = n Lp(s) be an Euler product with local factors of type
P

(4.1) L^)=(l - alO^-r1..^ - a,(j^-r1

where \0y{p)\ ^ 1 for all p ^ oo, and

(4.2) L^)=AQT Q + a} ...F Q + oj

with A ^ 0 a complex number, Q, > 0 and ai,...,o^ ^ 0. The condition |a^)| ^ 1
corresponds to assuming the Ramanujan conjectures hold for the automorphic form
of which A(s) is the standard L-function. For a treatment of the explicit formula in
general and without this assumption see [RS]. Suppose A(J) is entire of order one and
it satisfies the functional equation

(4.3) A(.)=eA(l-,)
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with e= db 1. Take a holomorphic function G(s) in the strip — l ^ R e j ^ 2 which
satisfies

(4.4) G(.)=G(1-.)

(4.5) ^G(J)< 1.

Let p = - + ry run over the zeros of A(s) with the corresponding multiplicity. All
of them are in the strip 0 < Re s ^ 1. By Cauchy's theorem for contour integrals and
by the functional equations (4.3), (4.4) we get

is0^./20^-~fT 2m J(2)

By A(J) = ]~[ Ly(,5) this splits into (the so called explicit formula)

(4.6) ]>>(p)=^H(j^
P P

where H(j&) are the corresponding local integrals. For p ^ oo we get by (4.1)

(4.7) H{p)= - 2f^ (^a]{p)}w\ogp
v=l v j /

where F(j/) is the inverse Mellin transform of G(s)

w F(•y>=2L•^)G(^'&•

For p = oo we get by (4.2)

(4.9) H(oo)=2F(l)logQ+^F,
j

where

^ ^^•/(^(r^)^
and^)=^/(^)/^(^).

We apply the above formulas for

^(H^)
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where R > 1 and ^{x) is an even function of Schwartz class whose Fourier transform
(|)(j/) has compact support. Then

^^(i®/^.
For this test function the explicit formula (4.6) becomes

(4-ll) ^(^) ̂ -^E(E^)>(^)^
where

(4.12) A=2$(0)logQ+^A,
J

with

(4.13) A,=^vL+ l+2^)(0(^.
J-oo ^ 4 logK/

By the approximate formula v(a + bi) + \y{a - bi) = 2v(ff) + 0(a-2^2) (which holds
for a, b real, a > 0, see (8.363.3) of [GR]) we derive

(4.14) A,. = $(0)v (a, + r) + 0( ((a, + 1) log R)-2).

Note that y (a + ^) = loga + 0(1) if a > ^, so

(4.15) A = $(0) log(ai ...a,Q2) + 0(1).

In particular for A(s)=A{s,f) with / € H^(N) we get from (3.8) that the
contribution to the explicit formula (4.11) of the local factor at the infinite place
is A/logR with

(4.16) A^^log^N + 0(1).

For A{s)=A{s, sym^/)) with/G H^(N) we get from (3.17) that

(4.17) A =$(0) log M+ 0(1).

^ Lemma 4.1. — Let ^ be an even junction of Schwartz class on R whose Fourier transform
(j) has compact support. Then for f^z H (̂N) we have

^ ^.^to^.^.oC0^)
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\^ ^-^f^P} ^SP
-^^^iogRj^logR

\^ f^ (^SP\ ^P_
-^^^^logR^-logR-

(4.19) D(s^V);^$(0)1^24,(0).o(l^^N)

vi , &t (^^ 210^
-SW^iogRj^iogR

Vn (-,•! i frf,,,,; /'Slog^'i 21og^-DW)-M/»)*^^^R,

where the implied constant depends only on the test junction (|).

Proof. — First we consider D(/;(|)). For all v > 0 we have | EaJ(j^)| ^ 2. Using
(3.7) we compute

^a,-(p)=a^p)+^{p)=^(p)

^ aj(^) = a; (/>) + Pj (?) = ̂ (/>2) - xo(y).

Moreover for J&JN we have Xu- (/>) =j&~1. Hence estimating all the terms with V > 3 and
the terms with v= 1, 2 for p\N trivially the explicit formula (4.11) simplifies to

^^-^(as
Va f*^ î  /'210^^ ^"g^+n /'î Wi

-]-;^t)-w[^)p^+o[-W^)J&IN
where ^(N) is the additive function defined by

(4.19') ^(N) = ̂ P~' ^ogP < log log 3N .
P\N

Next by the Prime Number Theorem

(4.20) E * (2}osf} ̂  = lw + 0 (-^'1 ' ^^logR^logR 21" ^logR,

These estimates yield (4.18).
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The arguments for D(sym2(/); (|)) are similar. I f j & f N w e use (3.7) getting

E a^) = ̂  W + ̂ AP)MP) + PJ W = MP2)

^aj(j&)=a;(j&)+aj(^)pj(^)+p;^)=^/)-^^

Ifp\N we use (3.16) getting E^j{P)=P~1 and EaJ(j&)=j&-2. Hence (4.19) follows from
(4.11) by the same trivial estimations.

We shall see that the first sums over primes in (4.18), (4.19), namely

(-) ^-^(S&-w ^=^(as-
contribute to the main terms of D(/; (|)) and D(sym2(/); ())), respectively. However, the
second sums over primes in (4.18), (4.19) are quite small. Indeed, by the Riemann
hypothesis for L(J, sym^/)) and L(J, sym^^^sym^/)) (see the last paragraph of the
previous section) it follows that

(4 9^ V 51 (^ (^SP} ^SP ^ ^gtog^N(4.23) ^ Mf X- [^) J^ « ̂ ^- ,

(4.24) E MP^ (2-^} 220^ « woskN
{ ) ^ /^ ;YV l ogR^ logR logR '

We use the individual estimates (4.23), (4.24), although they are conditional,
since we are anyway assuming the Riemann hypothesis for other purposes. However
we should emphasize that one can establish sufficiently good estimates on average
with respect to/without appealing to the Riemann hypothesis for L(J, sym^/)) and
L(J, sym^/) (g) sym^/)). For example this can be done by one of the following ways.
The first one is direct; one finds that (4.23), (4.24) are within the scope of the Petersson
formula (2.8), provided (|) is restricted as in the main theorems (no other conditions are
required). The second way is more involved, but it produces (4.23), (4.24) (on average
over/) for (|) with any compact support. This method uses crude estimates (rather
than the Riemann hypothesis) for higher symmetric power L-functions; specifically for
L(J, symV) ® symV)) in the case of D(/;(|)) and for L(J, symV) ® symV)) in the
case of D(sym (/); (|)). In the latter case the required estimate is not yet established so
the results are conditional. Nevertheless we present these arguments in considerable
generality in Appendix B, since they are useful in various contexts.



LOW LYING ZEROS OF FAMILIES OF L-FUNCTIONS 89

Employing (4.23) and (4.24) we have that

(4.25) ^-W^ . ̂  - P(/;»). 0 (-M)

(4.26) D /̂); +) = W^ - ̂ 0) - n/; *) + 0 (10 '̂)

where the implied constant depends only on the test function (|).
We still have a free hand to choose the scaling parameter R. By the above

analysis (at the infinite place) it seems that the natural choices are R=A^N and
R=A^N2 , which we call the analytic conductors of/and sym^/), respectively. However,
we prefer to locate R only up to a positive constant factor, i.e. we assume that

(4.29) R x ^N for /€ H^(N) ,

(4.30) R x W for symV) .

In this way we retain a slight flexibility which will help us to perform an averaging
over k in Section 8 (and perhaps over N if one so desired).

Note that the implied constants in (4.29), (4.30) do not affect the asymptotic
formulas (4.25), (4.26) (they are washed out by the existing error term), therefore these
formulas simplify to

(4.31) D(/;^)=EW-P(/;<^)-^o(l^|^),

(4.32) D(symV); <^) = E^) - P^/; ̂  + 0 f1^10^) ,
\ logAN j

where

(4.33) EW=$(0)+^<|)(0),

(4.34) E^^-^O).

We can write these functionals as

r°° ( 1 \
(4.35) EW= / ^) l+,8o(^) } d x

J—oo \ Z, I

and

/oo / i \
(4.36) Et2^ ^{x) l——5o(x) } d x .

'°° V /
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Remarks. — The integral representation (4.35) already exhibits part of the
expected distribution (see (1.10)) of low lying zeros of an individual L-function and
one might think that the contribution of P(/; (|>) is negligible. However, this is not true.
We shall see that the distribution does change (for very low lying zeros, precisely if the
support of(|)(j/) exceeds [—1, 1]).

5. Density theorems limited

In this section we give preliminary estimates of the sums

(5.1) J^)= ^ D(/;4>)
/€H^(N)

for a=*, + , —, and

(5.2) ^TW= E D(sym2(/)^).
/eH^(N)

By (3.5) the sums (5.1) with <J==L split into

(5.3) 2J9 fW = ̂  ̂ ) ± ̂  fw ,

where

(5.4) ^W=z^(N)^/N ^ ^(N)D(/;^).
/€H^(N)

We shaU treat J^^W^^W and ^f((|)) separately
First we insert (4.31) into (5.1) and use (2.72) getting

(5.5) ^ ̂ ) = ̂ -'-^(^EW - ̂ W + 0 ̂ (N)10^^^^^ TV-^VT. - ̂  - .-YV-; ^^

where

(5.6) ^W= ^ P(/;(^).
/eH^-(N)

Similarly we derive for N ^ 1 that (use |^r(N)[ =N~1/2)

(5.7) ^)=-^)+ofW<sl^),
\ logiN /
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where

(5.8) ^)=zV(N)^N ^ MN)P(/^).
/<=H^N)

Next we insert (4.32) into (5.2) and use (2.72) getting

(5.9) )̂̂ <p(N)E»)(t)+o(!̂ ) ,

where

(5.10) ^W= ^ P^).
/eH^(N)

It remains to evaluate ^\(^\ ^fW and ^f^). We write

(-) ^S^(a^,

(5.U) ^,^^^(^)^,

<5-13' ^S^&IS-

Throughout A^ ^(^) denotes the partial sum (2.63) with the cut-off parameters

(5.14) X=Y=(^N)£

where £ is a positive constant which is sufficiently small.
First we replace ^(n) by A^{n) in (5.11), (5.12), (5.13) with n=p,pN,p\

respectively. In each case this replacement produces an error 0(Axp(N)/log^N) which is
derived from the estimation (2.68). Then we apply the formula (2.74) for each A^ ^(n)
with relevant n. The first term of (2.74) does not appear if n=p, pN, and it equals
(k- l)(p(N)/12j& if n=p2. This term contributes to (5.13) at most 0(Axp(N)/logA;N).
Having made the above insertions we are left with the following;

(5.15) y^—— E ^(L)M E --' E c~l^m'c^o(^} '
I^ LM=N ( m , M ) = l ,=0(M) V^g'11^/LM=N ( m , M ) = l c=0(M)

ux m<^y

(,„ ^-.^ E ̂  E ".- E '-'^o (^) ,
14 LM=N v^ (^M)=l c=0(M) V^g'11^/

L<X OT^Y
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(5.17) )̂ = V E (̂L)M E OT-1 E ̂ OiV;.) + 012
(W\

LM=N ( m , M ) = l ^E=0(M) V10^71'1^/
UX w<Y

( w , M ) = l
w<Y

Here the terms Q^(w; ^) denote the following sums of Kloosterman sums

(5.18)

(5.19)

(5.20)

Q^WW^J^4^)^)^,

^-2n,W,^ (4^)^) S ,

^^-^^.^^.(^.(aS-

Interlude. — First we give quick estimates of Q^{m;c) by applying (2.13) for
individual Kloosterman sums and (2.11'") for the Bessel function. For the latter we must
secure the condition x ^ „, which translates into restrictions for the test function <)).
Suppose <|) has support in (—v, v), so the sums Q^{m, c) run over primes p ^ P = R'
with zf < v. Recall that m < Y and c = 0 (mod M), so c > M ^ NX~1. Therefore we
require

^TtXYP172 ^yfcN, i f o = * ,

127tXYPl/2<^Nl/2, i f o = # ,

127iXYP</N, i fo=(2) .

(5.21)

(5.22)

(5.23)

We obtain

Q*̂ ) <2-APce- l/2,

C (̂m;.) <2-^-1/2,
(^{m;c) < 2-AP3/^-1/2 .

Hence

(̂<|)) < 2-AA2PN£-1/2 +A(p(N)/logyfcN ,

^f((|)) < 2-^?^ + Axp(N)/logyfcN ,

^\^ < 2-^P3/2NE-1/2 + Axp(N)/logAN .

We require S^^} be bounded by Axp(N)/log AN, so that these sums would have no
contribution to the main terms of ^^(<|>). Recalling (4.29) one can see that our
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requirements are satisfied i f y = l +logN/21og/:N, v= 1, y= 1/2, respectively. Therefore
we have proved

Theorem 5.1. — The Density Conjecture holds for the families H^(N), H^(N), H^(N)^r
fl/y/ test junction (^(x) of Schwart^ class whose Fourier transform ^(y) has support in (—v, v) with
v = 1 + log N/2 log AN, v = 1, v = 1 /2, respectively.

In the next section we estimate the sums ^^(<|)), S^^W-, ^TW more precisely.
We shall take advantage of the summation over primes which so far was hardly
exploited (except for the easy sum (4.20) and for technical simplifications in various
other places). Consequently we shall allow larger support of (|), and we shall see that in
the extended ranges the sums Q^^ (())), S^\ ((|)) do in fact contribute to the main terms
ofj§^((|)), ^TW. respectively

6. Sums of Kloosterman Sums

We are going to execute the summation over primes in (5.18), (5.19) and (5.20)
by means of the Riemann hypothesis for Dirichlet L-functions in the following form

E X(^) logj& = S^ + O^/^og ex)2) ,
p^x

where % is any character to modulus c, and 8^ is the indicator of the principal character,
the implied constant being absolute. For any integers m, n we have

^S{m,np;c)logp=—— E ( E %mm,an;c))(^Wogp\
p^x VW x (mod c) v a (mod c) / v p^x /

p\c

=—— E G^m)G^n){^x^O{x^ogcx)2)}
^W Y fmod c\X (mod c)

where

Gx(")= E XW-)
a (mod c)

,an,
c

is a Gauss sum. For the principal character this becomes the Ramanujan sum

RM= ̂  e{ttn)= E^-
a (mod <;) c d\{c, n)

By the orthogonality of characters we have

^ \G,{nf=^.
X (mod c)
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From the above formulas we conclude

Lemma 6.1. — For any integers m, n and x > 2 we have

(6.1) ^ S(m, np; c) \ogp = -̂ -R(m; c)R{n; c) + CW^/^og ̂ )2) .
p^x VW
p\c

If c and yz have a large common divisor, we can reduce the error term in (6.1)
by employing characters of a smaller modulus.

Lemma 6.2. — Let M be such that M\{c, n) and (M, m) = 1. Then

(6.2) ^ S(m, np, c) log? = —,R(m; .)R(;z;.) + 0 (^{^^og ex)2} .
pM\c

Here the main term vanishes unless (M^ c/M) = 1 in which case

«.3> ^^--^(^Y{^Y
Proof. — Put 6:=^M and n^n'M. The sum on the left side of (6.2) is equal to

—— E ( E X(^S^.^^)(E^)log^
'tW X (mod ^/) v a (mod c') / v p^x /

=— E H^X^G.^G^m'XS^+O^/^og^)2)}
W / (mod cQ

= ——|Li(M)xo(M)R(m; .QR^;.') + O^Q^/^og^)2)

by the same arguments which were used to prove (6.1). Here, of course, the main terms
must agree with that in (6.1) so this formula completes the proof of (6.2) and (6.3).

Similarly we derive

Lemma 6.3. — For any integer m and x ^ 2 we have

(6.4) ^S{m\p^c)e (2nlp} logp=s^c)x-^ 0^(c)cx^gcxf)
p^ \ c )
p\c

where Sm(c) is the multiplicative function given by Sm{p) = - 1 if p\m, s^{pa)=0 if p\m, a ^ 2,
^{P) ={p- I)-1 ifp \ m, s^} = 0 ifp \ m, 2 f a, a ^ 3, ̂ a) =pa/2 if p \ m, 2|a.
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Proof, — The sum in (6.4) is equal to

— E T.(x)EWog^— E T^XS^+O^/^og^)2)},
'PW Y fmod c\ b<x ^PW Y rmod c\X (mod c) j&^x X (mod c)

where

T»(X) = E X^2,^^)
a (mod c) \ c /

= EE X(^
^(a+m)2

= E X(a-m)G,(a2).
a, a? (mod c) \ / a (mod c)

For the principal character % = %o we get a sum of Ramanujan sums

T.(xo) = E ^^ E ^ f - ) ^ E ic)=

(b,m)=\

c\ b

(a-m,c)=l *|c \ / (a-m,c)=\(a—m, c)= 1
b\a^

=(P(,) Y ^(^-L y \== (P(̂ m(̂ ) .^L} Z^ ^ \ h I (S)(K\ z^
b\c \0 / ^\D) a (mod b)a (mod b)

b\a2b,ni)=\

To estimate T^(^) for all characters we write

<PW,(X)= E£x((a-^)G,(fl2)
a, Z» (mod c)

by changing variables a —^ ab, d —> db2 and summing over b (mod c), {b, c) = 1. Hence

E l^ool ^ — E E E x((^-^)|G^2)^m\^)\ -^
X (mod c) ^V\^) a (mod c) % (mod c) ' b (mod c)vw,

1/2

^^ F E E x((^-^w
Yfl (mod c) % (mod c) ^ (mod c)

^(P(^))1/2.

Here ^) is the number of solutions to (a — b\ni)b\ = (a— b^m)b^ (mod c) in a, b\, b^
(mod c) with (&i^2? c) = 1- This congruence can be written as (a— m[b\ + b^))(b\ — b^) =. 0
(mod ^), whence it is easy to see that

^E^^E*1^^)-
g\c b^=b^ (mod g)
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Hence

— E |T.(X)1^).
W X (mod c)

This completes the proof of Lemma 6.3.

The multiplicative function Sm(c) in the main term of (6.4) vanishes unless c=ab2

with {a, b) = 1, a squarefree and {b, m) = 1, in which case

(6.4Q ^)=^((.^))^((^,.
(p(̂ )

For the modulus c of the above type the condition c -= 0 (mod M) with M squarefree
and (m,M)=l determines uniquely the factorization M=MiM2 such that Mi \a and
Ms | b.

In the formulas (6.1), (6.2), (6.4) the conditions p \ c, pM \ c can be dropped
because these missing terms are absorbed by the existing error terms. Next we remove
the terms with p \ N by trivial estimation. Moreover, we change \ogp into p'^^logp
by partial summation. In particular we get the following relations

(6.5) ^ S(m2, p; ̂  = 2^R(m2; ̂ /2 + O )̂8)

^

by Lemma 6.1,

(6.6) ^ S(m2, ĵ N; c)}ogp= 2^R(m2; A)R(L; b)x^ + 0(W)
jKx VT W)
jfrfN

where LM = N, c= &M and the main term exists only if (A, M) = 1 by Lemma 6.2, and

(6.7) ^ S(m2, p2; c)e (2mp) log? = s^c)x + 0^'\cxf)
p^ \ c )
^N

by Lemma 6.3.

Remark. — To the Kloosterman sum S(m2, p2, c) we attached the additive char-
acter e{2mp/c). This character emerges from the phase of Bessel functions ]k-i{4nmp/c)
in the Petersson formula in the context of the symmetric square L-functions (see
Section 9); it fits nicely to the angle of the particular Kloosterman sum.

Now we are ready to estimate the sums Q^(m',c). Suppose (J)(j/) has support in
{—v,v) so that the sums Q^(m',c) run over primes p < P=R^/ with some -0' < v. By
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(5.18) and (6.5) we get

97

^^-iSZ00!2^^^0^}
/4u^\ /log_\
\ c ) VogR;

(6.9)

J/- i

Here the first term equals (by partial integration and a change of variable.)

, ,.,u(^R(m2;^ [°° ^(Mfy!^\,
V^(OT; c) = 2i ———,—T,- / JA-U.W 2—.—_— dy.

(p(c)mlogR Yo \ logR /
(6.10) V;(m;.)=

The error term is bounded by

( v (4-nm^x f^m^x\
c [ c ' h \ c Jk-1 [~———) + J.-, (4^) }} dx

=2^P)£ f(|J,_i(j')| + \]k-v{y)\y-'}dy
Jo

where ^=4-nm^/P/c. Using the recurrences 2J(,(»=Jv-i(j>')-Jv+iO') and 2vJy-lJv(Jy)=Jv-l(J')+
Jv+i(j') this is bounded by c{cVfyk{^z, where

(6.11) y^)=^-1 !\\]k-2{y}\ + IJ.-i(j')! + |J^)|) .̂
JO

For any k > 2 and ^ > 0 we have (see (2.11'))

(6.12) Y,^) < r1/2

Moreover we have (see (2. II'"))

(6.13) Y^) < 2-\ if 3^ ^ .̂

Define y )̂ = 2-A; if 3^ ̂  A: and y )̂ = A;"1/2 otherwise so y (̂̂ ) < ^(z) for any A; > 2 and
^ > 0. By the above estimates we conclude that

(6.14) Q^(m; c) = V;(m;.) + O^mP^W)

where V^(m;c) is given by (6.10) and ^=4-nm^/P/c, the implied constant depending
only on £.

Similarly we derive by (5.19) and (6.6) that

(6.15) Q (̂m;.) = Vf(m;.) + O^^mUP/N)1/2^^)
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where

<6-16' ^^^'^^p-^t2108^"^)^
with c=bM, LM=N and ^ = ̂ nm^/PN/c, the implied constant depending only on £.

Remarks. — For very large c we can do better by applying (2.13). Indeed for
a=*, + , — we derive

(6.17) Q^(m;,) < 2-/:T(^-1/VLP

by (2.11"'), provided c > 127cAy7z(N + P). Hence we can refine the error terms in (6.14),
(6.15) by writing (KN)^og2c)~2 in place of (dN)8. This slight refinement will help to
resolve the convergence problem in the forthcoming summation over c.

7. Density theorems extended

We proceed with the asymptotic evaluations of 6^\^) and ^f (())).
First notice that the main term in (6.14) is absorbed by the error term, because

the integral in (6.10) is bounded by Jk{^- Therefore

(7.1) Q^(m;.) < Y^P^WOog 2c)-2.

Assume (5.21). Then (7.1) holds with Y^)=2-A: giving

(7.2) ^)<A(p(N)/logA;N

by (5.15). Therefore there is no essential contribution to ^\(^) of the sum over primes
^). We get

(7.3) ^^{w^O)^!^)}

by inserting (7.2) into (5.5), provided (5.21) holds. This last condition holds if $ is
supported in (—y, v) with

(7.4) z^OogANVlog^N.

We have proven

Theorem 7.1. — The Density Conjecture holds for the family Hj^(N) for any test junction
^(x) of Schwart^ class whose Fourier transform (|)(j/) has support in (—v, v) with v given by (7.4).

Next we estimate 6^((|)). This time we do not impose the condition (5.22),
because it limits the support of $ to (-1, 1), that case having already been established
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in Theorem 5.1. Consequently we use (6.12) in the whole range (so one should
not expect sharp estimates in the A-aspect). By (5.16), (6.15) (with (^N)8 replaced by
{kN)^og2c)-2) and (6.16) we derive

(7-5) ^w^— E ^- E m-2 E R^^m2;^^)-1
u LM=N v^ (m,M)=l {b,M)=\

L<X m^Y

F^ (̂..̂ ^ ,̂̂ ,̂/̂
By the definition (1.5) and the formula (see (6.561.14) of [GR])

ZOO / L. J. \ / L \

J.-.W^T^/r^)

we find that the integral in (7.5) equals

r^i n^L^ni-^^^ ^ 1 ^(^^^L^.4>(^logR) ——— —,————dx
/-co v & ' { b ^ / N ) r^+2nix)
/ 4>(^logR) ——— —,————dx

J-oo v & \1>^NJ r^+2Kix)

(after changing x —> A;logR). Next we interchange the integration over x with the
summation over b, however for the convergence we introduce a parameter e > 0
getting

^ ^ /•~ /^TtOTiA4'1"]^-?^)/•~ /^TtOTiA4'1"]^-?^)
--1 ^logR)x(e+4^) 2K-) —————d.^/ =l im/ ^logR)x(e+^) 47—— _ 2 , . .^ jo e^o J-oo \ vN y r(j + 2?î )

where

X(^)= ^ R^^R^2;^^)-1^.
(*,M)=1

Using the multiplicativity of Ramanujan sums, we compute

X(^) = ̂  + 1)̂  + l)-la„L(^)P(., L)(I - s)

where

a^) = n fi - ̂ f i + 1 )tiH ^A (^-i^y(^-l^J

P^) =n^+1)-/.irf
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We need %{s) for s <€ (logR)"1. For this purpose the Laurent expansion of %{s) near
s=0 is useful

^+1) =^-1+0(1)

^+1)-1 =^{1+0(|^(M))}

a,{s) =5(^l)+0(Hlogrf)

(3,(1-,) =v(rf){l+0(Hlog^}

where ^(M) is given by (4.19') so ^(M) < log log 3M, and §(</, 1) is the diagonal symbol.
Gathering the above approximations we get

X(J) = (^8(mL9 1) + ° (^ ̂ (̂ ĝ 3N)) •

Moreover we have (use (8.322) of [GR])

Hence we deduce that

Ef ^^D^lin.r^R)^)4""^
k 70 N e^O ^-oo \ ^7C / £ — ^TCZ^
Ef=8(»L,l)^lin,r . . __ ,

h Jo JN e-»o J-oo \ 4it / e —

/(p(M)log(wLlog3N)\+0
\ M logR ) '

Let A=A?N/167C2 so that the last integral becomes

r00 dx
- \ (|)(A:logR)sin(2^1ogA)-^———

J-oo 4nx + ze'—00

/•oo/00 ^
+ (|)(£^logR) COs(27C£^logA)———————.

-oo (4'nxY + 1^T^)2

Now we can take the limit as e —> 0 getting

/"^.infa^^+'wr ° ° (- ^)sin 2
^00 \^/oo \ logR/ 4itA; 4

For R ̂  ^N this is half of

f00 , , sin 2nx . 1 , . - / 1
O^^0^
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Introducing this into (7.5) we arrive at

(7.6) )̂ = - k——^ ( F W^dx - ̂ (O))
14 Y «^—oo 47U^ 4 y

^(W^+w'/'w).
Here the second error term is absorbed by the first one if P <$; AN^AN)"3^ which is
satisfied if (|) is supported in (—y, v) with

<"> -^
This value of v is smaller than that in (7.4) for 6^\(fs^. Adding, or subtracting ^^((|>)
from ^?^((|)) we get

(7.8) ^ ̂  = ̂ (P(N) ̂ (o) + ̂ ^o) ± y_^ c )̂81!!?^
. ̂  ^^.loglog^N\+0 Axp(N)-

logAN y

This asymptotic formula translates into

Theorem 7.2. — The Density Conjecture holds true for the families H (̂N), H (̂N) with
the densities W(SO(even) ){x\ W(SO(odd) ){x) given by ( 1 . 1 1 ) , (1.12) respectively, for any test
function ^(x) of Schwark class whose Fourier transform fy{y) has support in {—v, v) with v given
by (7.7).

8. Averaging over the weight

First we explain the features which allow us to extend the range of the Density
Theorems 7.1 and 7.2. We begin by the error terms in (6.1) and (6.2). These terms
are relatively small, so we have treated them crudely by use of partial summation and
the magnitude of the Bessel function alone. The problem is that for x ^> k the Bessel
function Jk-i(x) behaves like e ^ / ^ / x (and slightly differently in the transition range),
and we may regard ]k^{4^i^/mn/c) as a continuous analog of the Kloosterman sum
S(m, n\ c) (see an interesting case in [CI]). Therefore, in this range the oscillating factor
e^-^mn/c) should be better treated by arithmetical means such as characters. We shall
see this precise oscillating behaviour after averaging over k,
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Proposition 8.1. — Fix a real valued junction h € ^(R^ and K > 1. For a =0, 2 flW
^ > 0, ̂  Aaz^

(8-1) ^ A f^——) J^) =W - zW,
k=aW \ iv /

z^r^

^^(i)"0^}
-i(^)+^"'(^+o(^•

^=^(.-./.,(I)).o(^
with

(8.2) «^r*^/-*,h{^u)W= • ' v '
JO \/271M

the implied constants depending only on h.

Proof. — See Lemma 5.8 of [Iwa]. The important point is that h^(x\ g^(x) do
not depend on a, precisely we have

h^(x) = - 2 i K [ 1i{tK)sm{xsm2nt)dt,
f00 ^

h(tK)sm(xsm\
—00

roo
[x) = - ̂ K / A^K) cosf,

f—oo

J —00

/oo

gK(x) =-2K h(tK)cos{xcos2nt)dt.
-00

Corollary 8.2. — Let the conditions be as in Proposition 8.1. Then

2E4^)J.-.W-*(^0^,)
lr=(}(9\ \ r^ I \^1 V KJ ]k=0{2)

2E •'* ^1 J.-,w - - ̂ im (-y« f^))+o (-),
A;==0(2) V 1 ^ / V ^ V \2-K ) ) \^ )

where^=^.

Remarks. — The osciUating term ^h{K2/2x) does not appear in the first formula
while the leading term h{x/K) is absent in the second formula. Since h(v) is a Schwartz
function, the oscillating term is significant only if x 3> K2.
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Let K ^ 3 and N be a positive squarefree number. Put

94 f k — 1 \
(8.3) ^°(K,N)= ^ ——A —— S IW)

^EC^)71 A \ Jv //€H^(N)

for G=*, + 5 —. Recall that the inner sum in (8.3) is the averaged density which was
considered in the last three sections. Here and hereafter we maintain the same notation
for all relevant quantities, and we suppress the subscript k after the averaging over the
weight is performed. For example (8.3) becomes

94 ( i - — i \
(8.4) ^ '(K, N)= ^ ——h —— J^(N).

k=0{2)K~ i \ ^ /

Remember that for N= 1 the sets Hj^(l) are empty unless k ̂  3±1 (mod 4) respectively,
in which cases they are H^(l). In any case the sum ̂  °(K, N) should be naturally
normalized by

94 f k — 1 \
(8.5) A°(K, N) = ^ ——h —— |H?(N)|.

^=0(2) K~ l \ Iv /

By Corollary 2.14 we get (for all N, but consider the case N = 1 separately)

(8.6) A°(K, N) = A(0)K(p(N) + 0( (KN)273).

The asymptotic formulas for ^^((()) which were established for all k extend to
^ °(K, N) by linearity as far as the main terms are concerned. The early error terms
remain the same after averaging. However the later error terms which resulted from
estimates for individual Bessel functions can be now improved (in the k aspect) due
to the explicit formula (8.1) for the sum of Bessel functions. The improvements in
question appear in estimates for Q (̂(|)) and Q^((|>) (the asymptotics for other terms are
valid for any (|) without conditions on the support of (|) except for being compact).

First we consider ̂  *(K, N). For this we have ^J^_i(^) in (5.18) replaced by the
sum

(8.7) I(.)=E2^f^1) 3k-,(x).
fe=0(2) V /

with x = 4-Km^/p/c. Assuming

(8.8) P172 < K^RN)"46

we have x <€ K2"6, so by Corollary 8.2

(8.9) I{x) < ^K-4
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in the range of summation in (5.18). Moreover using the formula 2J^_i(^)=J^-2(^)—J/i(^)
we find by (8.1) that

41 )̂ = ^ 4^(^—1)[J,-2(^)-J^)]
A;=EO(2) v /

^H^^H^)-^)
if x <$; K2"8. We will only need the bound

(8.10) I^)«K-1.

By (6.9) with ^J^-i^) replaced by l{x) we get

,H(^R(m2;.) rTr^f?10^74^^^
^^^logRyo I(^2 logR ;^

+o(^p)£^(|I/(^)|+|I(^)|J-l)^)
\ .A) /

where ^=4-nm^/P/c. By (8.9) and (8.10) we deduce that

(8.11) Q^(m; c) < K-lmPl/2(KN)e(log2^)-2.

Actually we also use directly (2.13) for very large c to refine (cKN)8 into (KN)8 (log26:)~2

as we did for (7.1). Note that (8.11) is like (7.1) with y^) ̂  k~^, which is sharper by
a factor of A"1/2 than the bound (6.12) (we are in the range ^ <€ K2"^ so (6.13) is not
available). Inserting (8.11) into (5.15) and using the assumption (8.8) we arrive at

(8.11') S^\^) < K(p(N)/ logKN.

This estimate shows that the sums over primes S^\(^) do not contribute to the main
term of ̂  *(K, N). We are left with

(8.12) ^ '(K, N) =A(0)K(p(N)^(0) + |̂ (0)} + 0 (^(N)^^)

provided P satisfies (8.8). This last condition holds if(|)is supported in (—2, 2). In view
of (8.6), (4.33) and (4.35) we can state the formula (8.12) as

Theorem 8.3. — Let ^ be a Schwart^ junction with the Fourier transform ^ supported in
(-2, 2). Then

<-> ^<~)-"(̂ )
where the implied constant depends only on the test junction (|).
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Similarly we consider ^& ^K, N). This splits into

(8.14) 2^ ^K, N) = ̂  "(K, N) ± ̂  ^K, N),

where ̂  *(K, N) has been treated above and ̂  ^K, N) corresponds to ^f(<|>) with
^J/fc-i(^) replaced by the sum

(8.15) j(^)= ^2A^——K_i(;c)
A=0(2) V iv /

with x=4-nm^/pN/c (see (5.19)). By Corollary 8.2

(8.16) ^(^O^).

Hence, following the arguments which led us to (7.6), we arrive at

(8.17) ^ = - A(0)K(p(N) f F ̂ -"^dx - ̂ (O))
\^^—oo Z,KX Z, j

+ o ̂ (N)10!̂  + K-'P'/^KN)6) .

Here the second error term is absorbed by the first one if P1/2 <C K^KN)"48, this
condition coincides with (8.8). Adding, or subtracting (8.17) from (8.12) we can state
the results as

Theorem 8.4. — Let ^ be a Schwart^ junction with the Fourier transform ^ supported in
(-2, 2). Then

^ l^ ^ ^K. N) r°° . /loglogKN\
(8-18) A±^ ^ = / ^ ̂ w ^ ̂ + 0 , ^ ,A1^, N) J-oo \ logKLN j

where W^) = W(SO(even) \x\ W-(^) =W(SO(odd))(^ and the implied constant depends only
on the test junction (|).

9. The symmetric square

In this section we are going to evaluate asymptotically

94- f k — 1 \
(9.1) ^(K,N)= S ———h (———} E D(symV);<D).

^0(2)^ l \ Jv //eH^(N)



106 HENRYK IWANIEC, WENZHI LUO, PETER SARNAK

Recall that the innermost sums ̂  ^((j)) were treated in Section 5, but only for a small
range of support of (|), the result being

(9.2) ^^^^{w-iw.oCi^)}

if<|»is supported in (-j, ^). Our goal is to establish a formula for ̂  ̂ {K, N) which
is valid for <)) with the support of $ in (—v, v) for v strictly larger than one (in the K
aspect). The key point of having v > 1 is that an additional contribution enters in (9.2).
This will come from the sums (5.20) which we are able to evaluate more precisely due
to an important feature of the sum of Bessel functions (8.7).

Gathering together (5.9), (5.17), 5.20) we obtain

^ (^(K, N) =A(0)K(p(N) f$(0) - ̂ (0)}

(9.3) _^).o(K,(N)1^^)

where

(9.4) ^)= ^ a(L)M ^ m-1 ^ c-Wm;c),
LM=N (m,M)=\ c=0(M)

UX m^Y

(9.5) ^\m;c)=2^S^,p^l (4nmp) $ f10^) 210^.
^ \ c ) vos^j V?logR

and I{x) is the sum of Bessel functions (8.7). By Corollary 8.2

(9.6) ^-^•"{^OQ}'0^)-

Inserting (9.6) into (9.5) and estimating the error terms by means of (2.10) we get

(9.7) (^\m; c} = - 2K (^} T(^;.) + 0 (K-V^P^KN)6)
log K \ m / \ /

where

/QQ\ -r/ \ Y^c/ 2 -2 NT 1^ f2mP\ f CK2 \\^ f loSP\logP(9.8) T(m;^)= ^S(m2^2;6:)Im \^e[-—\n[ ——— \\^[ -^- ^-.
^ ' l ^ / \Snmpj \ VogR/ /?^N

Since h(v) < ^-A for any A ^ 0 (with the implied constant depending on A) we estimate
the contribution of primes p ^ Po = cK3/mVi trivially by O^H^), where H ^ 1 will
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be chosen soon. In the remaining range Po < p < P we apply (6.7) getting by partial
summation (recall that h^[v) is of Schwartz class)

)̂-(<^" {?.« (̂ ) } $ (̂ ) ̂ " (-H- . ̂ W).

Since c < mHPK-2 the above error term is < ̂ (^^K^P^H-^ + ^H2/^).
Taking H=P6 this is bounded by (^-^(^^K-^KNP)66). The integral ̂  can
be extended to Jo00 up to the same error term as above. Putting

(9.9) h\v) = Im(^)) = °̂° h!—— sin L - ̂  ^

we have shown that

T(»;^,.Mf*. (^) f (^) ̂  0«-^og2.)-'r'P(KN).).

for any £ > 0. Inserting this into (9.7) we arrive at

(,.io) (̂«;.)= - 2 K ("V^ r** (^-} * f108-) *
' ' ^ ' ' logR \mj " J o \Snmy} \\ogR] y

+ C^K^cr^KN)6 + f^K^c-^cKN)^.

Next inserting (9.10) into (9.4) we get

(9.11) ^) = ̂ ^K E ^(L)M E --3/2 f S ( K L } $ f10'2) ̂^ ; w logR d^N (.Xi yo VS^^^logR^
L^X m<Y

+ O^K-2? + N-1/2K-4P3/2)(KN)E)

where

(9.12) S(w)= E ,-l/2^(^*(^).
c=0 (mod M)

Note that the series (9.12) depends on m and M. By (6.4')

(9.13) S(.)= E E' ^^^^^^ E ^M,M2.)
MiM2=M ( < z , M i ) = = l (p(flMi)4/flMi (^ , amMi)= l

where ^b restricts the variable a to squarefree numbers.
First we give a trivial estimate for S{w). Using h*{v) <€ (1 + v)~1 we get

^ A^MiM^) < (oMiM^)-1/2.
(&, amM^) = 1
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Hence

(9.14) S(w) < ̂ -^M-1 1] (\ + ̂
^|wM \ ^/

Next we give a more precise treatment ofS(w). The innermost sum in (9.13) runs
over positive integers b with (A, f lmMi)=l . Extending this summation to all integers
we write

E ^=1 E ^-l^wi^Mi)
( & , a w M i ) = l '" Aez ^

(b,amM^=\

where the subtracted term comes from &=0. Note that A*(0)= — Tl"1/2^) by (9.9).
Accordingly S{w) splits into

(9.16) S(^) = ̂ T^) + ̂ (O)^!, m)
2, ^V^

where T(w) is defined by (9.13) with the innermost sum replaced by

(9.17) ^ h^ab^M^w)^ ^ ^^^(a^^MiM^).
^ez a|flwMi &eZ

( A , f l O T M j ) = l

For the sum over all b C Z we apply the Poisson formula

^/^2-L2A/r A / r 2 ^ - 1
(9.18) ^ ̂ (a^^MiM^) == ———-== ̂  A . ,___ ,

bez cxM2 ̂ /aMi w ^ez \ ocM2 ̂ /flMi ̂  y

where A(^) is the Fourier transform of A*(y2). By (9.9) we have

h(t) = F h\v^e(yt)dv
J —00

/2 /*00 / />00 / 7l;\ \
=2\ - / A(%) ( / sin ( %V — - ) cos(2TO^)</MV n Jo \j-oo \ 4y /

4 /*00 Af^ / />00 \
= —7= / —— ( / (sin v2 — cos v2) cos(2nvt/u)dv} du

^/n Jo u Wo v / ' )

= 2^/2 f °° ̂  sin (^Kt/u^du

by (3^691.5) and (3.691.7) of [GR]. Note that A(0)=0. Moreover this formula shows
that h(t) < |^|-A with any A > 0. Using this bound with A= 1 + 6 we derive from
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(9.18) that

^^(a^MiM^) < (a^MiM^)6.
&ez

Inserting this into (9.17) we get

^ A^MiM^) < T^mMiXwYMfM^)0.
&6Z

( & , f l w M ^ ) = l

Next inserting this into (9.13) we get

(9.19) T{w) < T2(m)(mM^)e

for any 9 with 0 < 9 < |. Finally we obtain by (9.16)

(9.20) S{w) = ——=h{0)6{l, m) + 0^{m}{mMJwf\
2^/K v

Now we are ready to complete the evaluation of ^^((j)) by applying the estimates
(9.14), (9.20) in different ranges of the integral in (9.11). We use (9.14) for w=K2/SKmy
with 871772̂  < ^2, say, showing that this part contributes to SP^^f) at most

^^ v^ log log 3N
t9-21' NioiR < iJk^^-

In the remaining range Snmy > ̂  we use (9.20) showing that this part contributes to
(̂<j))

(922) w ^ ufDM r^(^A ̂ +0^ f^V^( ) logR ̂  ̂ ) ^2 ^ liogRj 7 ° te ̂  ) •
ux

Here we have E^(L)M=(p(N) + 0(NX-1/2) and

/>00- /loff y\ rfy /l00

A ^ f^ --(logR)/ , <KJ^.2̂ \logR/ J/ J2 log ̂ / logR

We choose ^ = KN and R = KW getting

(9.23) ^) = - A(0)K(p(N) f^ ^y)dy + 0 (KN10^10^)

+0((K-2P + N-^K^P^XKN)8).

The first error term above is admissible and it does not depend on the support of
(|)(j/). If ^[y) is supported in (—y, v), then P^KN)2^ with ii < v. Hence the second
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error term in (9.23) is bounded by KN/logKN if

(9.24) ,,logK^
21ogKN

Note that

r^dy= ̂ (o) - l [ l $(^= ̂ (o) - r ̂ "^dx
^l z- ^ ^-\ 4 J-oo 2.KX

by PlanchereFs theorem. Finally introducing (9.23) into (9.3) we conclude that

(9.25) ^^\K,N)=k(0)K^)r fl-^^^+ofKN1^10!^)
J-oo \ 2.KX ) ^ logKN y

provided $ is supported in (-y, v) with z/ given by (9.24). Dividing by A^K, N) =A*(K, N)
(see (8.3) and (8.6)) we can state the result as

Theorem 9.1. — Let k, N ̂  positive integers, k even, N squarejree. Let ^ be a Schwark
junction with the Fourier transform $ supported in (—v, v) with v given by (9.24). Then

O-26' ^^"^of^)
where the implied constant depends only on the test junction (|).

Remarks. — For v=v{K, N) given by (9.24) we have z<K, N) —^ j as K -^ oo and
N is fixed.

10. Further improvements and a quasi Riemann hypothesis

Extending the density theorems for (|) with the support of $ larger than (—2, 2)
does not seem to be within reach of Riemann hypothesis for automorphic L-functions.
In this section we do not assume any unproved hypothesis except for a bound for
certain exponential sums over primes in arithmetic progressions.

Hypothesis S. — For any x ^ 1, c ^ 1 and a with (a, c) = 1 we have

(10.1) ^ .f^)^^
^ \ c I

p=a (mod c)

where a, A are constants with A ^ O , j < a ^ | and £ is any positive number, the
implied constant depending only on e.
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We believe Hypothesis S is true with A = 0 and a = - (see Appendix G), however
the critical fact is that one may have (10.1) with a < |. With this estimate we are
going to establish the desired extension of the Density Theorems.

For simplicity of exposition we restrict our consideration to the modular group,
i.e. we take N=1. In this special case the whole space S^=SA:(I) is spanned by the set
H^=H^(1) ofHecke eigencuspforms. By (2.3), (2.18), (2.36) and (3.14) the trace

(10.1) A^(w, 72) = ̂  \y^m)^{n)
f^k

becomes

(10.2) A^,n)=^-E ^^ .
A:-l^L(l,symV))

As in Section 8 we perform averaging over k of type

(10.3) J9 (m, n)= ̂  2h (^) A,(w, n)
Kk even

where the weight function h{u) is smooth of compact support in R^ Notice we do not
break the averaging into classes k = a (mod 4) (see (3.4) and (3.5)) as here we are not
interested to capture the sign of the functional equation

(10.4) (27i)-T (k—^- + s} L(.,/) = iW-T (k^- - s} L(l - .,/).

Also we do not remove the arithmetical weights L(l, sym^/))""1 (which are quite
natural from the point of view of spectral theory). Our goal is to evaluate asymptotically
the following sum

(10.5) J?(K)= ^ -^ht'——1-} ̂ D^L-^l.symV)),
k even K ~ 1 \ A / f^

where (|) is a test function of Schwartz class with (|) supported in (—y, v). Our goal is
to allow v > 2. It is natural to normalize ̂  (K) by dividing by

4^2 / L._ i \
(10.6) B(K) = ^ ——h ——— E L-'(l, symV)).

k even K ~ i \ K / f^

We have

2ir2
(10.7) A,(l, 1) = ——— E L-'(l, symV)) = 1 + 0{2-k)

K l /€H,
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by Corollary 2.3, which yields

(10.8) B(K)=A(0)K+0(1).

Here and hereafter the implied constants may depend on A. We shall assume that
A(0) + 0.

The Petersson formula (see (2.8))

A,(m, ri) = 8(m, ri) + 2nik f^ S(m, n, .)J,_i (^^\
c= 1 \ /

yields

(10.9) ^5 (m, ri) = S(m, 7z)H + 2n T ̂ (m, TZ; ̂ )I (4n^}
c^ \ c )

where

(10.10) H= ^ ̂ ——^ =A(0)K+0(1)
k even \ iv /

and I(x) is the corresponding sum of Bessel functions (see (8.7)) for which we have

(10.1D i(^-J^(y«(J^o(^)

by Corollary 8.2, where h(v) is given by the Fourier integral (8.2). Using (2.10) to
estimate the error terms we arrive at

Lemma 10.1. — For any positive numbers m, n we have

(10.12) ^5 (m, ri) =A(0)K5(m, ri) + 0(8(m, n} + (m^^K-4)

1/2, N-i/4^ T ^ v^ i/2o/ x f2\/mn\ ( cK2 \\
-n^mn) ^K Im ^ E ̂ l/2S(m, n; c)e -v—— h ——= .

V c"\ \ c ) \^Vrrm) f

Ifmn <^ K4"5 the last term involving h(v) can be deleted (because it is absorbed by the second error
term),

Now we are ready to evaluate ^(K). To this end recall the formula (4.31)
(for N= 1 and R=K2 , see (4.29)). This result is essentially unconditional, except for
the secondary estimate (4.23) which was deduced assuming the Riemann hypothesis
for L(J, sym^/)). In this section we do not make use of any Riemann hypothesis, so
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we provide an unconditional proof of (4.23) on average over/C HA: in Appendix B.
Precisely we shall show that if (|) has compact support (no matter how large)

(10.13) E L-U symV))^^ f^) ̂  « k
/CH, p V<W P

where the implied constant depends on (|).
Inserting (4.31) into (10.5) we get

(10.14) J8 (K) =A(0)K{$(0) + ^(0)} - ̂  + 0 ̂ K10^0^)
i \ logK )

where

(10.15) ^S ,̂,)̂ )̂ .

It remains to estimate S^{^} (there will be no contribution to the main term).
First we record an immediate result for test functions (|) with $ supported in (—2,2) .
In this case p runs up to P < K4-5 so J 9 ( p , 1) < j^K-4 by Lemma 10.1 giving
(̂(|)) <^ 1. Therefore we established the following

Theorem 10.2. — Let ^ be a Schwart^ Junction with the Fourier transform (() supported in
(-2, 2). Then

(io.i6) ^r^ox^of'f0^)
B(K) J-oo \ logK /

where the implied constant depends only on the weight and the test junctions h, <)).

Next we appeal to Hypothesis S. By (10.12) and (10.15) we derive

^XPK^+K^-'/^IS^ l;c)|

v. (2VP} J CK2 ̂  ( ^p \10^5/(——M8^M21ogKj,37T
' J&= )̂

The Fourier integral (8.2) implies that both h(v) and h'(v) are rapidly decaying. Therefore
applying Hypothesis S with exponents a, A we derive

(10.17) ^) < PK-4 + p"+A/2+5/8^-2A-9/2^

If (|) is supported in (—v, v), then P=K2^/ with vf < v so taking

(10.18) ., 8A+22

' 8a + 4A + 5
we find that the bound (10.17) is 0(K). This, together with (10.14), yield
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Theorem 10.3. — Assume Hypothesis S with exponents A ^ 0 and - < a ^ |. Then the
formula (10.16) is valid for (j) with the support of ̂  in (—v, v) where v is given by (10.18).

Notice that v= v{a, A)= 2 +4(3 - 4a)(8a+4A+ 5)-1 > 2 , i f a < |. For a=| and
A = 0 we get v= ̂ .

As an example we take the test function

(10.19) W= (s-mmv\^
\ TVC\X )

with 0 < TI < v, its Fourier transform being

(10.20) ^)=^(1-1^1)

if \y\ s$ r| and $(jy)=0 if |jy| >Tl. For this choice Theorem 10.3 reads

(10•21) ^^(tK2)^^(M^^)2L-(•••ymv))

-(i^-^™)-
Now suppose all zeros of all L,(s,f) are either real or lie on the critical line (that

is the Riemann hypothesis with possible exceptions for real zeros). In other words Jf
is either imaginary or real. This assumption ensures that all terms of the sum (10.21)
are real and non-negative. Dropping all but one term we derive that

-̂ ^H,,,̂

(here we could put k=K as soon as k is selected). This inequality is interesting for
py-= n + T^f > y , since it implies

^(2p^i) ̂  L(l, sym^^X^logA;)2 « ̂ +£.

Hence py- < ^ + - + £ for any e > 0, provided k is sufl
can choose r| arbitrarily close to v showing that py ̂  P + £, where

3-4a

Hence py < ^ + ^ + £ for any e > 0, provided k is sufficiently large in terms of £. We
can choose r| arbitrarily close to v showing that py ̂  P + £, where

^ _ An
(10.22) p ^ l - 3 4 " .v / • 11+4A

For a= | and A=0 we get P= ̂ . This establishes
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Corollary 10.4. — Assume Hypothesis S with exponents A ^ 0 and - ^ a ̂  |. Assume
all the ^eros ofl^s,f)for any Hecke cuspform f with respect to the modular group are either real
or lie on the critical line. Then L(^/) =(= 0 if s > ?+ efor any £ > 0 and all k ̂  ko, where the
constant ko =Ao(£^, a^ A) is effectively computable.

Appendix A: A related extremal problem

In previous Sections we faced particular instances of the following extremization
problem. We are given a weight W(x) on R whose Fourier transform W(^) is known
only partially, say in the interval [—2,2]. The problem is to determine

r ° °
/ ^{x)W{x)dx

J—oo

(A-1' ^-^o——'
the infimum being taken over all (|) ^ 0 for which support (())) C [—2,2]. We assume
further that (|) C ^(R). Examples of W(x) are the densities in (1.10) to (1.13).

In Section 1 (1.42) we used the test function

(A.2) ^)=
/sin 2nx \
\ 2^ )

in (A.I). We show below that it yields almost but not optimal results.
As it stands (A.I) looks like a linear program problem. However as is pointed out

by Gallagher [Gal] it follows from a theorem of Ahiezer and the Paley-Wiener theorem
that the admissible functions (|) in (A.I) coincide with (or have the form) (|)(^)= |A(^)[2

where h is an entire function of exponential type 1 and h € L2^). That is

(A.3) $©=(^i)©

where

(A.4) g^)=^), support {g) C [-1, I], g € L^-l, 1].

By the Plancherel Theorem the problem (A.I) is equivalent to minimization of

t^)(g-g}^j-t(A.5) R(^)=—
/ {g-g}{^
J-2

with respect to g € L2 [— 1, 1]. For what we have in mind W(^) takes the form

(A.6) W=§o+m©
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for 12; [ ^ 2, m© being a real piecewise continuous function on [—2, 2] which moreover
is even in ^. This is the form of the problem which we examine.

Define the self-adjoint operator K: L^—l, 1] —> L^—l, 1] by

r.1

M= / m[x—
'-i

(A.7) K^)= ( m(x-My)dy.*/ — i
The functional R takes the form

(A»\ R^ ((I+K)^g)^ ^^"K^jyr-
So the minimization problem is that of a quadratic form subject to a linear constraint.
Since W ^ 0, R{g) ̂  0 for any ̂  and so I+K ^ 0. Now K is compact and self-adjoint
so it has eigenvalues ^jj= 1,..., with |̂ | —> 0. From the above we have —1 ^ Xy, for
j= 1, 2, ....

It may happen that — 1 is an eigenvalue or equivalently that the finite dimensional
kernel N= ker(I + K) ^ {0}. In this case if there is g C N such that {g, 1} =1= 0, then
clearly R( g) = 0, and the minimization in question yields the value 0.

If we are not in this singular case (which will happen if ,̂1 > — 1 which is what
occurs in our applications), then ker(I + K) is orthogonal to 1. Hence by Fredholm
theory, 1 G Image(I + K). That is there is an ̂  € N-1 such that

(A.9) ( I+K)/o=l .

Moreover since I + K > 0 on N^ we see that

(A.10) A=((l4-K)/o,/o)=(l, /o)

is positive.

Proposition A.I. — In the nonsingular case

(A.11) inf R(^)=-
^L2[-l,l] A

and it is attained by fo which satisfies (A.9), Moreover if^ > —\, then this minimi^ is unique
(in fact the solution to (A.9) is unique).

Proof. — Let g € L^-l, 1] with the normalization (\,g}=A (which we can
assume when (1, g) =(= 0). Then writing g=/Q + A, we have (A, 1) = 0, i.e.

(A.12) (A,(I+K)/o}=0.
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Hence

_( /o+^( I+K)( /o+^)

_ 1 (h,d+K){h)} (^(I+K)(/o)) 1
~ A A2 ' A2 ^ A -

So as long as we are not in the singular situation, the minimizer is given by
(A.9), which is a standard Fredholm equation of the second kind. It can be solved in
a number of ways.

We can now answer our main question:

Corollary A.2. — The junction given in (A.2) is optimal if and only if

j m(x-y)dy

is independent of x.

Proof. — If (|) is as the above, the corresponding g is constant on [—1, 1]. Now
g=fo is constant according to (A.9), iff the constant function is an eigenfunction of K.
This is equivalent to the statement of the corollary.

We apply Corollary A.2 to our weights in (1.10) to (1.13). Firstly, since the
property

r ° °
I ^{x)W{x)dx=.0

J——00

with (|) ^ 0 and (|) C L\R) implies that (|) = 0, it follows that ^i > —1 (in the
corresponding eigenvalue problem). That is (I + K) is invertible. Hence we don't have
to worry about the singular case, and the unique minimizer ^/o satisfies the equation

(A.13) ( I+K)/o=l .

The functions m for our densities are as follows:

(A.14) m(SO(even))©=jl^_^^©

m(SO(odd))(i;) =l--jl^i^)

<W=-|,I[-i,i]©

0)©=|.
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According to Corollary A.2 in all cases except the last (i.e. for 0), the function
m(^) is not constant on [—2, 2] and it follows that except in the last case the function
(A.2) is not the minimizer. This establishes the comments prior to Corollary 1.6.

It is not difficult to determine the extremal functions for the m's in (A. 14).
J. Vanderkam first pointed out to us these functions which he obtained by a direct
analysis of the functional (A.I) (private communication in 1998).

We must solve the equation (A. 9), that is

(A.15) MX) + [ { m{x -ymy)dy = 1,
J-\

where m is any one of the functions in (A. 14). Since m is even and the solution ^/o is
unique, it follows that fo is an even function of x. In particular for SO(even) it satisfies

(A.16) n / / oC^+ . / /o0^+/o(^)=l,1 //oWj'+1 /' /oW+/o(^=/o 2 Jo2, JQ 4 JO

for 0 ^ x < 1. For SO(odd) it satisfies

(A.17) 3 //oC^ - L f /o0^ +/oM = 1,
2, JQ 4 JO

for 0 < x ^ 1. Trying trigonometric functions (i.e. Fourier series) one finds that

cos(J - ̂ )
(A. 18) /o W = . 4 , 0 ^ ̂  1,

V^smy+sm^)

solves (A.16), while its even extension to [—1,1] solves (A.15). Applying (A. 10) and
Proposition A.I then yields the minimum. A calculation then shows that

3 + cos(1)
(A.19) inf(SO(even)) = ————— = 0.8645...

8

Similarly one finds that

cos(| + K—)
(A.20) MX)=

asm^^slii^)'

for 0 ^ x ^ 1, solves (A.17). It leads to the value

5 + cos(1)
(A.21) infl;SO(odd)) = ————- =1.1145...

8

In particular these solutions allow us to conclude that
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(a) (1.54) and (1.56) of Section 1 hold with > ^ replaced by

13-o<)
^ —————- =0.5678...

16

(b) (1.55) and (1.57) of Section 1 hold with > -|| replaced by

19-cot(^)
> —————-=0.94275...

16

(c) (1.53) of Section 1 holds with < 1 replaced by

4 + cot(^)
^ —————=0.9895....

8

Appendix B: Estimates for sums of eigenvalues

Let S^ be a subset of H^(N) and v be a positive integer. For any/, g e S^ we
put

00

(B.I) ^\s,fx g) = ̂ {n^n^.
1

Suppose Z^(j,yx g) has analytic continuation to Re s > 1 — a and it satisfies

(B.2) |Z^Jx^Z|^

on the line Re j= 1 —a for almost all/, g G S^S , the number of exceptional pairs being
0(H), where H= |J^ | > 1 and Z > 1. Moreover a=a(v) > 0, d=d{v) > 0 and the
implied constant in 0(H) depending only on v.

Proposition B.I. — Let the conditions be as above. Then for any complex numbers a? with
\a?\ ^ 1 we have

i2

E E ̂  (^v)a? < (zx-ar + H-l + X~2)1A HX^ogX)^^
/e^ '^x

^r a/y/ integer r > 2, ̂  implied constant depending only on v.

jRwo/^ — By Holder's inequality our sum, say S, satisfies

y/^H-/2-' S EW)J-
/ej8' ^x '
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By the rnultiplicativity of ^/(^v) we have

( \
E W)^ = E W>n + 0(^(v + iyNX-1)

{p^X ) y^N

where

^=H2^) E ^r'^A
/'i •••/',="

/'p...,/^x

for n ^ N = X^ and the error term is the contribution of relevant numbers which are
not squarefree. Note that \dn\ ^ y!. Hence

S^2 < r!^/2-1 ̂  ^ CfWi + 0(^(v + 1)W/2NX-1)
y^N fe^

with 1^-1 = 1. Next by Gauchy's inequality

S' < ̂ W-^ ̂  ̂  V(/ x )̂ + r^v + ̂ 'HT^X-2,
/,^^

where

V^x^^^co^W^)

and G){n) is a smooth majorant of the characteristic function of the interval 1 ̂  n ̂  N,
for example w(n) = ̂ l-n/N. We have

VC/x^N^ogN^

by the estimation ^{n^T^n^ ^ T2^) for any/,^ C ^^. However, if (Y,^) is not an
exceptional pair, then it follows by contour integration and the crude bound (B.2) that

VC/x^XZN1-01.

These estimates yield

y < ̂ H^N^ZN1-01 + HN^ogN^} + r\v + l)2rHrN2X-2.

This completes the proof of Proposition B.I.

Corollary B.2. — Let H :̂ be the set of Hecke cusp forms with respect to the modular group.
For any complex numbers a? with \a?\ < 1 we have

(B-3) E | E ̂ >p2« ̂ (icgx)-10^10^
feHk' ̂ x
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provided X satisfies

(B.4) (log^V^ < X ^ exp(kl/tes}oek) .

Proof. — From Proposition B.I we obtain the bound

(^-'x-"'' + r' + x-^^Ax^ogX)8

where a, A are absolute positive constants. This yields (B.3) in the range (B.4) on
taking r= 2 + [A log A/a log X].

Proof of (10.13). — The partial sum of (10.13) with \2Ttp ^ k satisfies

'——E^2 ,l)$f^) l^f«2-^4712 w v0^/ P
because A^(j&2, 1) <^ 2~kp by (2.12'). The remaining partial sum satisfies

EL-'tl.symV^EW^)10^*
/€H^ \2np>k V0^71/ //

by applying (B.3) and the bound L~\l, sym^/)) < log A; of [HL]. Adding these
estimates we get (10.13).

Appendix C: Comments on Hypothesis S

Due to the striking consequences of Hypothesis S we shed some light on its
genesis. We present the heuristic arguments which led us to (1.62). Also by considering
such sums in a broader context we show that such hypotheses can be quite delicate.
Indeed a closely related sum is shown to be of size ^3/4 (recall that improving on |
is crucial for the applications). For simplicity we make no restriction of the relevant
exponential sums to residue classes a (mod c).

We begin by considering general sums of the type

(C.I) S,(X)=^<-2^)(")
n \ /

where ^(x) is a fixed smooth function compactly supported on R"^, y ,X are positive
parameters and (dn) is an arithmetically defined sequence of complex numbers satisfying

(C.2) an<^n\ £ > 0 .
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Tacidy we assume that X and yX are large, because otherwise the exponential factor
e(—2^/nq) plays no significant role. Assume that the associated zeta function

(C.3) A(.)=f>^-

has a holomorphic continuation to Re (s) > ̂  except for a possible pole of finite order
at s = 1. Assume further that

(C.4) A^)^!8, ifRe(J)=a

for any ^ < a < 1 and any £ > 0, the implied constant depending on a and £. We
have

^(x)=^ I A(^)B(^+ResA(.)B(.)z.m J(o) s=\

where B(J) is given by the Mellin integral

r°° ( Y \ i—
B{s)= Jo ^(xn"2^^"1^

This can be evaluated asymptotically by the method of stationary phase. If s = a + it,
then one has a significant contribution to the integral only for t x ->/qK in which case

(C.5) B(.) = (1 - i)^ (———} (———}2S + ... .
V t ^WqXJ \2ne^/qKJ

Here and later the dots indicate that the remaining terms are very small or are
insignificant for our analysis. Now

/ |B( |̂ « (yX^X0

J(G)

whence taking a close to ^ yields

(C.6) S,(X) < y1/^3/4^ .

(The pole at s= 1 does not contribute significantly to Sy.)
The basic question is: can one improve on the exponent | ? One can try to shift

the contour to the left of a= j. This requires a modified form of (G.4), and can be
done if A(s) is an L-function with one gamma factor (i.e. Dirichlet L-function) but it
just fails if A(J) is an L-function with two gamma factors (i.e. a GL^/Q^ L-function).
The simplest example of the first case is

(I) ^=1, A(.)=^).
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For examples of the latter case we take

(II) ^=T(7Z), A(.)=^)

and

(III) an=Un), A{s)=L(sJ).

Here x{n) is the divisor function and K(n) are the normalized Fourier coefficients of a
fixed cusp form / of weight k ^ 12 for the modular group SL(2, Z)

f^=f^^n)nk-^e{n^.
n= 1

We will treat these examples additively by Fourier rather than Mellin transforms.
The Mellin transform is nevertheless quite revealing for the above sequences

when restricted to primes. That is for

(PI) an=A(n), A(s)=^-{s)

(PII) On = T%A(7Z), A(S) = ̂ {S) + ...

(PHI) an = ^)A(TZ), A(.) == ——(.,/) + ... .
-Lj

In these cases assuming the Riemann Hypothesis for the corresponding zeta functions
one shows (G.4) for 0 < ( J < 1 , < 7 = ) = . . Passing the integration through the poles on
Re (s) = - we obtain

1 -i ^Tc^172 / v2 \ / v ^2ry

(C.,) S.(X)^E(^) ^K^) +--

Here the effective range of summation is those zeros of height yx (yX)1/2.
Estimating (C.7) trivially recovers (G.6). Therefore an improvement of the

exponent | (for q fixed) amounts to getting cancellations in the sums

^ sfe^f-
yx^C v v ' /

For later we note that this is a Weyl sum pertaining to the equidistribution of (q= 1)

(C.8-) ^^ ̂  1)

(the rest of the Weyl sums related to this sequence can also be given in terms of related
sums over primes). Based on the analysis below we will see that there is cancellation
in (G.8) (i.e. power savings) for (PI) and (PII), but not for (PHI).
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Returning to (I), (II) and (III) we establish approximate formulae (a'la Poisson)
for the sums S^(X).

Case I. — Applying Poisson summation and evaluating the resulting Fourier
integrals by stationary phase, we obtain

(C.9) E<-2^(^) =(1 4-^2^^^^-3/^^ ^

This is a special case of Van der Gorput's method (see [Tit]). For q ̂  X1^ the right
hand side of (G.9) is negligible, otherwise estimating it trivially yields

(C.10) S,(X) « (yX)1/4 .

Cases II and III are similar, we deal with III only.

Case IIL — We appeal to the Voronoi type summation formula
00 00

(C.I 1) ^ Hm)F{m) = ̂  Hn)G{n)
m= 1 n= 1

where G{jy) is a Hankel type transform of ¥(x) given by
/»oo _

(C.12) G(j/)=2^y F(^_i(47c^)^.

/ ^ \
In particular if F(x) =e{—2^/xq)^ ( _ _ j and we apply the asymptotic expansion of the

Bessel function J^-i(z) as ^ —^ oo, we get

V3/4 / _ \

(C.13) G(^) = ̂ -B (-2^C(^ - ̂ )) + ...

where

(C.14) B(^)=^(l-^1/2^)

and B € ^(R) is its Fourier transform.
Clearly G(j/) is small unless y is in the short interval

(C.15) ^ -y<^/X.

Combining the above gives the approximate formula

(C.16) S^X-S^)^) =X3/4^^) B (-2^X (^- y^)) "-l/4+•..
m \ / ^ v v ^ ^

where £ is given in (C.14).
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For q a positive integer, n=q occurs in (G.I 6) and applying the trivial bound
G(n) <^ ^"^X3/4 for the remaining terms we arrive at

(C.17) ^Um)e (-2^) ̂ (-} = ̂ X3/4^) + 0 ((^X)1/4-) .

Here

1 _ » /»oo

(C.18) B(0)=^——/ <K^-1/4^.
2. Jo

Hence it is clear that we cannot improve the exponent | in (G.6) for any fixed q with
\{q) =(= 0 and (|) with B(0) =)= 0. In the sequel we normalize the test function (|) so that

(C.19) B(0)=l .

We are ready to consider the sums (PI), (PII) and (PHI). As we will see the
automatic assumption that oscillatory sums over primes cancel to order square root of
the number of terms can be false. We find it much safer to rely on the randomness
in the Mobius function p,(m). We therefore derive estimates for exponential sums over
primes from the more reliable estimates for similar sums against p,(m). We need the
following:

Hypothesis A. — For any positive integer t < X we have

(C.20) ^ ii{m)e(-2^em) < X^8

w^X

with any £ > 0.

Hypothesis B. — Fix a cusp form / as above, then for any positive integer i ^ X

(C.21) V n(m)^m)<-2V^m) ̂ X^v g
w^X

with any e > 0.

We write the von Mangolt function as follows

(C.22) A(TZ) = - ̂  \Ji(m) log m = A\n) + A^) .
m\n

where A\ri) denotes the partial convolution restricted by m ^ M and A^) is the
complementary part. Here M is a parameter which we choose later.
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Consider first the sums (PI). According to (C.22) the sum

(C.23) S(X)=^A(^-2^)^>)
n \ /

splits into S(X) = S^) + S#(X). Now

^(X) =^A\n)e{-2^(^\
n \ /

= - E^^E^v^^)
m<M < \ A /

= - (i + <)E^-3/2 E ̂ xiog^/^V-^) +...
h m-SM \ h / \" x/

by (G.9). In this sum, h < MX-1/2 and m x AX'/2. By GRH for L(J, /) with / (mod K)
the inner sum is O^X'/4^). Hence

(C.24) S^) < MX6 .

In order to estimate S'^fX) we reverse the order of summation and apply Hypothesis A
getting:

S )̂ = E E ̂ )(log^)<-2^CT)(|)f^)
t m>M \ /

< E r'^x1/2^ < M-^x^6.
<<X/M

Adding this to (C.24) and taking M=X2/3 we obtain the estimate for (PI) (on
Hypothesis A),

(C.25) E A(»)<-2^)<1) ( n } < X2/3"6.EA(»)<-2^)<t)[^«X2/3+e.
^ \ /

Thus though Hypothesis A does not yield (at least along these lines) our expected
exponent j in (C.25), it does go below the critical exponent of | (which is what is
needed in the applications).

We skip (PII) and go to (PHI) which yields a somewhat surprising result. Again
we split the sum

(C.26) S(X) = ̂  Hn)A{n)e{-2^ (^\
n \ /
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into ^(X) + S )̂. We arrange S )̂ as

8^)= E^l(w)(logw)E^m)<-2v^)(l)f^) •
m^M ^ \ ̂  )

Using the multiplicativity of the Hecke eigenvalues,

^E^g)^)
we can write the inner sum as

127

E = E^(^) Ew-2^f^).
£ d\m \u / a \ ̂  /

m

d\m \^/ a

Now for the inner sum if we apply (C.I 7) we get

(C.27) ^ = ̂ x3/4 + OpC1/4^)
a

and this gives

^^x^E^f^W+opc1/3-).
£ d\m am \a /

Hence

(C.28) S^) = X3/^^ + 0(MX1/4+£)

where

(0.., z^.^ll("^(E<^-)).
If instead of applying (C.I 7) for the a sum in (C.27) one applies (C.I 6) with H{ri)
given in (C.I 4), one can obtain a better estimate for the remainder if we assume the
following hypothesis.

Hypothesis C. — For 0 < Ai ^ X, and 0 < |Ai| ^ X

^ Vi{m)Hm)Hh,m + ̂ ) < X^2^ .
m^X

Remarks. — Note that this is a more standard (as compared with A and B)
arithmetical sum. Also in order to estimate the remainder in S^(X) successfully, we
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only need Hypothesis G with the exponent ^ replaced by 1 — S, for 8 > 0. This would
lead to (G.23) with error term 0(r5/4-8/6).

The corresponding improvement in (G.28) is

(C.28') ^(X) = X^Z(M) + C^M^X1/4^).

Again to estimate S^(X) we reverse the order of summation and apply Hypothesis B
getting

s^(x) ^-EE^^g^^M-s^^f^)
£ m>M \^/

< E r^x1/2^ < M-^X^ .
^<X/M

Adding this bound to (C.28') and taking M=X3/4 we conclude that (under Hypothesis
B and Hypothesis G)

(C.30) S(X) = X^Z(M) + O^5/8^).

It remains to evaluate Z(M). To this end consider the series

^P^ TU V^ ̂ ^^m^^ ^(C.31) L(.)=E^ E^MW .
m= I \ d\m \ / /

We have

rn \^^^^ Y^ ^.2. N^ î ^2^-^r^) 2^ —r^)
rf w (m,</)=l m

=nf i -^+^ l Q(^/)11 I ^ ^ I r^\j ( . ^^p \ P5 Ps+l ) ^)L(^symY)

where Q^,/) is given by an absolutely convergent Euler product in Re(J)=a > ^
Hence shifting the contour and using the Riemann Hypothesis for L(s, sym2/) we get
that

z ( M ) = 1 ( L'^+^^z+onvr-1/2)
2,m J(i) s

where

-Q^Z)_=nfi-^
L(l,sym2/) V V P

^ ^-—^n i--^ + o .
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Inserting this in (G.30) yields our main analysis of (PHI):

(C.33) ^ ̂ )A%<-2^ (-} = ZX3/4 + OpC5/8^).
n \ /

Thus according to (G.25) and (G.33) there is cancellation beyond the exponent
^ for (PI), but not for (PHI). This is quite surprising at first glance and indicates how
delicate such sums over primes can be. Note that we can also view the sum (C.25) as
(C.33) with Un) replaced by r(^) because r(j&) = 2. Moreover ^(ri) are Fourier coefficients
of a modular form; precisely of ^E(^, s) at s= j, where E(^, s) is the Eisenstein series
for SL,2(Z). Since x{n) satisfies a summation formula similar to (C.ll) and obeys the
same multiplicativity law as K(n), one also has (C.30) with K(ri) replaced by r(7z). The
corresponding series

^n(>-^)
has a zero of order four at s = 1 (rather than order 1 as in the cuspidal case) and hence
Z = 0. So these different analyses of the equivalent sums PI and PII yield consistent
results.

Further confirmation of the above analysis has been provided by numerical
experiments by Rubinstein [R]. Rather than examining PI and PHI he experiments
with the equivalent dual sums (G.8) and (G.8') for p = |, + ry the zeros of ^(s) and
L(J,A),A the weight 12 cusp form for SI^Z). He finds that for ^(s\ the numbers

y Y2—log(_—) are very well distributed modi, while for L(J, A) the same sequence is

badly distributed mod 1.
Indeed it appears, and an analysis with the Mobius function as in this Appendix

confirms, that if p = ^ + iy are the zeros of L(j,/),/a cusp form on GL^/Q, then

-IM )̂
is well distributed mod 1 iff A is not the reciprocal of a positive integer.

Acknowledgement — We would like to thank S. J. Miller, P. Michel, and the referee
for their careful reading and comments on this paper. Thanks also to B. Conrey and
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