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Fix a base B > 1 and let ζ have the standard exponential distribution; the distribution of digits of
ζ base B is known to be very close to Benford’s law. If there exists a C such that the distribution
of digits of C times the elements of some set is the same as that of ζ, we say that set exhibits
shifted exponential behavior base B. Let X1, . . . , XN be i.i.d.r.v. If the Xi’s are Unif, then as N → ∞
the distribution of the digits of the differences between adjacent order statistics converges to
shifted exponential behavior. If instead Xi’s come from a compactly supported distribution with
uniformly bounded first and second derivatives and a second-order Taylor series expansion at each
point, then the distribution of digits of any Nδ consecutive differences and all N − 1 normalized
differences of the order statistics exhibit shifted exponential behavior. We derive conditions on
the probability density which determine whether or not the distribution of the digits of all the
unnormalized differences converges to Benford’s law, shifted exponential behavior, or oscillates
between the two, and show that the Pareto distribution leads to oscillating behavior.

Copyright q 2008 S. J. Miller and M. J. Nigrini. This is an open access article distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

1. Introduction

Benford’s law gives the expected frequencies of the digits in many tabulated data. It was
first observed by Newcomb in the 1880s, who noticed that pages of numbers starting with
a 1 in logarithm tables were significantly more worn than those starting with a 9. In 1938
Benford [1] observed the same digit bias in a variety of phenomena. From his observations,
he postulated that in many datasets, more numbers began with a 1 than with a 9; his
investigations (with 20,229 observations) supported his belief. See [2, 3] for a description
and history, and [4] for an extensive bibliography.

For any base B > 1, we may uniquely write a positive x ∈ R as x = MB(x) ·Bk, where
k ∈ Z and MB(x) (called the mantissa) is in [1, B). A sequence of positive numbers {an} is
Benford base B if the probability of observing a mantissa of an base B of at most s is logBs.
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More precisely, for s ∈ [1, B], we have

lim
N→∞

#{n ≤N : 1 ≤MB(αn) ≤ s}
N

= logBs. (1.1)

Benford behavior for continuous functions is defined analogously. (If the functions are not
positive, we study the distribution of the digits of the absolute value of the function.) Thus,
working base 10 we find the probability of observing a first the probability of observing a
first digit of d is log10(d+1)−log10(d), implying that about 30% of the time the first digit is a 1.

We can prove many mathematical systems follow Benford’s law, ranging from
recurrence relations [5] to n! [6] to iterates of power, exponential and rational maps, as well as
Newton’s method [7–9]; to chains of random variables and hierarchical Bayesian models [10];
to values of L-functions near the critical line; to characteristic polynomials of random matrix
ensembles and iterates of the 3x + 1-Map [11, 12]; as well as to products of random variables
[13]. We also see Benford’s law in a variety of natural systems, such as atomic physics
[14], biology [15], and geology [16]. Applications of Benford’s law range from rounding
errors in computer calculations (see [17, page 255]) to detecting tax (see [18, 19]) and voter
fraud (see [20]).

This work is motivated by two observations (see Remark 1.9 for more details). First,
since Benford’s seminal paper, many investigations have shown that amalgamating data from
different sources leads to Benford behavior; second, many standard probability distributions
are close to Benford behavior. We investigate the distribution of digits of differences of
adjacent ordered random variables. For any δ < 1, if we study at most Nδ consecutive
differences of a dataset of size N, the resulting distribution of leading digits depends very
weakly on the underlying distribution of the data, and closely approximates Benford’s law.
We then investigate whether or not studying all the differences leads to Benford behavior; this
question is inspired by the first observation above, and has led to new tests for data integrity
(see [21]). These tests are quick and easy-to-apply, and have successfully detected problems
with some datasets, thus providing a practical application of our main results.

Proving our results requires analyzing the distribution of digits of independent
random variables drawn from the standard exponential, and quantifying how close the
distribution of digits of a random variable with the standard exponential distribution is to
Benford’s law. Leemis et al. [22] have observed that the standard exponential is quite close
to Benford’s law; this was proved by Engel and Leuenberger [23], who showed that the
maximum difference in the cumulative distribution function from Benford’s law (base 10)
is at least .029 and at most .03. We provide an alternate proof of this result in the appendix
using a different technique, as well as showing that there is no base B such that the standard
exponential distribution is Benford base B (Corollary A.2).

Both proofs apply Fourier analysis to periodic functions. In [23, equation (5)], the
main step is interchanging an integration and a limit. Our proof is based on applying
Poisson summation to the derivative of the cumulative distribution function of the logarithms
modulo 1, FB. Benford’s law is equivalent to FB(b) = b, which by calculus is the same as
F ′B(b) = 1 and FB(0) = 0. Thus, studying the deviation of F ′B(b) from 1 is a natural way to
investigate the deviations from Benford behavior. We hope the details of these calculations
may be of use to others in investigating related problems (Poisson summation has been
fruitfully used by Kontorovich and Miller [11] and Jang et al. [10] in proving many systems
are Benford’s; see also [24]).
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1.1. Definitions

A sequence {an}∞n=1 ⊂ [0, 1] is equidistributed if

lim
N→∞

#{n : n ≤N,an ∈ [a, b]}
N

= b − a ∀[a, b] ⊂ [0, 1]. (1.2)

Similarly, a continuous random variable on [0,∞), whose probability density function is p, is
equidistributed modulo 1 if

lim
T→∞

∫T
0χa,b(x)p(x)dx
∫T

0p(x)dx
= b − a, (1.3)

for any [a, b] ⊂ [0, 1], where χa,b(x) = 1 for x mod 1 ∈ [a, b] and 0 otherwise.
A positive sequence (or values of a function) is Benford base B if and only if its

base B logarithms are equidistributed modulo 1; this equivalence is at the heart of many
investigations of Benford’s law (see [6, 25] for a proof).

We use the following notations for the various error terms.

(1) Let E(x) denote an error of at most x in absolute value; thus f(b) = g(b) + E(x)
means |f(b) − g(b)| ≤ x.

(2) Big-Oh notation: for g(x) a nonnegative function, we say f(x) = O(g(x)) if there
exist an x0 and a C > 0 such that, for all x ≥ x0, |f(x)| ≤ Cg(x).

The following theorem is the starting point for investigating the distribution of digits
of order statistics.

Theorem 1.1. Let ζ have the standard (unit) exponential distribution

Prob
(
ζ ∈ [α, β]

)
=
∫β

α

e−tdt, [α, β] ∈ [0,∞). (1.4)

For b ∈ [0, 1], let FB(b) be the cumulative distribution function of logBζ mod 1; thus FB(b) :=
Prob(logBζ mod 1 ∈ [0, b]). Then, for allM ≥ 2,

F ′B(b)

= 1 + 2
∞∑

m=1

Re
(
e−2πimbΓ

(
1 +

2πim
logB

))

= 1 + 2
M−1∑

m=1

Re
(
e−2πimbΓ

(
1 +

2πim
logB

))
+ E
(

4
√

2πc1(B)e−(π
2−c2(B))M/ logB

)
,

(1.5)
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where c1(B), c2(B) are constants such that for allm ≥M ≥ 2, one has

e2π2m/ logB − e−2π2m/ logB ≥ e
2π2m/ logB

c2
1(B)

,

m

logB
≤ e2c2(B)m/ logB,

1 − e(π2−c2(B))M/ logB ≥ 1√
2
.

(1.6)

For B ∈ [e, 10], take c1(B) =
√

2 and c2(B) = 1/5, which give

Prob
(

log ζ mod 1 ∈ [a, b]
)

= b − a +
2r
π
· sin

(
π(b + a) + θ

)
· sin

(
π(b − a)

)
+ E
(
6.32 · 10−7),

(1.7)

with r ≈ 0.000324986, θ ≈ 1.32427186, and

Prob
(
log10ζ mod 1 ∈ [a, b]

)
= b − a +

2r1

π
sin
(
π(b + a) − θ1

)
· sin

(
π(b − a)

)

− r2

π
sin
(
2π(b + a) + θ2

)
· sin

(
2π(b − a)

)
+ E
(
8.5 · 10−5)

(1.8)

with

r1 ≈ 0.0569573, θ1 ≈ 0.8055888,

r2 ≈ 0.0011080, θ2 ≈ 0.1384410.
(1.9)

The above theorem was proved in [23]; we provide an alternate proof in Appendix A.
As remarked earlier, our technique consists of applying Poisson summation to the derivative
of the cumulative distribution function of the logarithms modulo 1; it is then very natural
and easy to compare deviations from the resulting distribution and the uniform distribution
(if a dataset satisfies Benford’s law, then the distribution of its logarithms is uniform). Our
series expansions are obtained by applying properties of the Gamma function.

Definition 1.2 (Definition exponential behavior, shifted exponential behavior). Let ζ have the
standard exponential distribution, and fix a base B. If the distribution of the digits of a set is
the same as the distribution of the digits of ζ, then one says that the set exhibits exponential
behavior (base B). If there is a constant C > 0 such that the distribution of digits of all
elements multiplied by C is exponential behavior, then one says that the system exhibits
shifted exponential behavior (with shift of logBC mod 1).

We briefly describe the reasons behind this notation. One important property of
Benford’s law is that it is invariant under rescaling; many authors have used this property
to characterize Benford behavior. Thus, if a dataset is Benford base B, and we fix a positive
number C, so is the dataset obtained by multiplying each element by C. This is clear if,
instead of looking at the distribution of the digits, we study the distribution of the base B
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logarithms modulo 1. Benford’s law is equivalent to the logarithms modulo 1 being uniformly
distributed (see, e.g., [6, 25]); the effect of multiplying all entries by a fixed constant simply
translates the uniform distribution modulo 1, which is again the uniform distribution.

The situation is different for exponential behavior. Multiplying all elements by a
fixed constant C (where C/=Bk for some k ∈ Z) does not preserve exponential behavior;
however, the effect is easy-to-describe. Again looking at the logarithms, exponential behavior
is equivalent to the base B logarithms modulo 1 having a specific distribution which is almost
equal to the uniform distribution (at least if the base B is not too large). Multiplying by a fixed
constant C/=Bk shifts the logarithm distribution by logBC mod 1.

1.2. Results for differences of orders statistics

We consider a simple case first, and show how the more general case follows. Let X1, . . . , XN

be independent identically distributed from the uniform distribution on [0, L]. We consider
L fixed and study the limit as N→∞. Let X1:N, . . . , XN:N be the Xi’s in increasing order.
The Xi:N are called the order statistics, and satisfy 0 ≤ X1:N ≤ X2:N ≤ · · · ≤ XN:N ≤ L. We
investigate the distribution of the leading digits of the differences between adjacent Xi:N ’s,
Xi+1:N − Xi:N . For convenience, we periodically continue the data and set Xi+N:N = Xi:N + L.
As we have N differences in an interval of size L, the average value of Xi+1:N −Xi:N is of size
L/N, and it is sometimes easier to study the normalized differences

Zi;N =
Xi+1:N −Xi:N

L/N
. (1.10)

As the Xi’s are drawn from a uniform distribution, it is a standard result that as N→∞, the
Zi;N ’s are independent random variables, each having the standard exponential distribution.
Thus, as N→∞, the probability that Zi;N ∈ [a, b] tends to

∫b
ae
−tdt (see [26, 27] for proofs).

For uniformly distributed random variables, if we know the distribution of
logBZi;N mod 1, then we can immediately determine the distribution of the digits of the
Xi+1:N −Xi:N base B because

logBZi;N = logB

(
Xi+1:N −Xi:N

L/N

)

= logB
(
Xi+1:N −Xi:N

)
− logB

(
L

N

)
. (1.11)

AsZi;N are independent with the standard exponential distribution asN→∞; ifXi are
independent uniformly distributed, the behavior of the digits of the differences Xi+1:N −Xi:N

is an immediate consequence of Theorem 1.1.

Theorem 1.3 (Shifted exponential behavior of differences of independent uniformly
distributed random variables). Let X1, . . . , XN be independently distributed from the uniform
distribution on [0, L], and let X1:N, . . . , XN:N be Xi’s in an increasing order. As N→∞, the
distribution of the digits (base B) of the differences Xi+1:N − Xi:N converges to shifted exponential
behavior, with a shift of logB(L/N) mod 1.

A similar result holds for other distributions.
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Theorem 1.4 (Shifted exponential behavior of subsets of differences of independent random
variables). Let X1, . . . , XN be independent, identically distributed random variables whose density
f(x) has a second-order Taylor series at each point with first and second derivatives uniformly
bounded, and let the Xi:N ’s be the Xi’s in increasing order. Fix a δ ∈ (0, 1). Then, as N→∞ the
distribution of the digits (base B) of Nδ consecutive differences Xi+1:N − Xi:N converges to shifted
exponential behavior, provided that Xi:N ’s are from a region where f(x) is nonzero.

The key ingredient in this generalization is that the techniques, which show that
the differences between uniformly distributed random variables become independent
exponentially distributed random variables, can be modified to handle more general
distributions.

We restricted ourselves to a subset of all consecutive spacings because the normal-
ization factor changes throughout the domain. The shift in the shifted exponential behavior
depends on which set of Nδ differences we study, coming from the variations in the
normalizing factors. Within a bin of Nδ differences, the normalization factor is basically
constant, and we may approximate our density with a uniform distribution. It is possible for
these variations to cancel and yield Benford behavior for the digits of all the unnormalized
differences. Such a result is consistent with the belief that amalgamation of data from
many different distributions becomes Benford; however, this is not always the case (see
Remark 1.6). From Theorems 1.1 and 1.4, we obtain the following theorem.

Theorem 1.5 (Benford behavior for all the differences of independent random variables). Let
X1, . . . , XN be independent identically distributed random variables whose density f(x) is compactly
supported and has a second-order Taylor series at each point with first and second derivatives uniformly
bounded. Let theXi:N ’s be theXi’s in an increasing order F(x) be the cumulative distribution function
for f(x), and fix a δ ∈ (0, 1). Let I(ε, δ,N) = [εN1−δ,N1−δ − εN1−δ]. For each fixed ε ∈ (0, 1/2),
assume that

(i) f(F−1(kNδ−1) is not too small for k ∈ I(ε, δ,N)

lim
N→∞

max
k∈I(ε,δ,N)

min(N−(ε+δ/2),Nδ−1)
f(F−1(kNδ−1))

= 0, (1.12)

(ii) logBf(F
−1(kNδ−1) mod 1 is equidistributed: for all [α, β] ⊂ [0, 1]

lim
N→∞

#{k ∈ I(ε, δ,N) : logBf(F
−1(kNδ−1)) mod 1 ∈ [α, β]}
Nδ

= β − α. (1.13)

Then, if ε > max(0, 1/3 − δ/2) and ε < δ/2, the distribution of the digits of the N − 1 differences
Xi+1:N −Xi:N converges to Benford’s law (base B) asN→∞.

Remark 1.6. The conditions of Theorem 1.5 are usually not satisfied. We are unaware of any
situation where (1.13) holds; we have included Theorem 1.5 to give a sufficient condition of
what is required to have Benford’s law satisfied exactly, and not just approximately. In Lemma
3.3, we show with: Example 3.3 shows that the conditions fail for the Pareto distribution, and
the limiting behavior oscillates between Benford and a sum of shifted exponential behavior.
(If several datasets each exhibit shifted exponential behavior but with distinct shifts, then
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Figure 1: All 499 999 differences of adjacent order statistics from 500 000 independent random variables
from the Pareto distribution with minimum value and variance 1. (a) Observed digits of scaled differences
of adjacent random variables versus Benford’s law; (b) scaled observed minus Benford’s law (cumulative
distribution of base 10 logarithms).

the amalgamated dataset is closer to Benford’s law than any of the original datasets. This is
apparent by studying the logarithms modulo 1. The differences between these densities and
Benford’s law will look like Figure 1(b) (except, of course, that different shifts will result in
shifting the plot modulo 1). The key observation is that the unequal shifts mean that we do
not have reinforcements from the peaks of modulo 1 densities being aligned, and thus the
amalgamation will decrease the maximum deviations.) The arguments generalize to many
densities whose cumulative distribution functions have tractable closed-form expressions
(e.g., exponential, Weibull, or f(x) = e−e

x
ex).

The situation is very different if instead we study normalized differences:

Z̃i:N =
Xi+1:N −Xi:N

1/Nf(Xi:N)
, (1.14)

note if f(x) = 1/L is the uniform distribution on [0, L], (1.14) reduces to (1.10).

Theorem 1.7 (Shifted exponential behavior for all the normalized differences of independent
random variables). Assume the probability distribution f satisfies the conditions of Theorem 1.5 and
(1.12) and Z̃i;N is as in (1.14). Then, as N→∞, the distribution of the digits of Z̃i:N converges to
shifted exponential behavior.

Remark 1.8. Appropriately scaled, the distribution of the digits of the differences is universal,
and is the exponential behavior of Theorem 1.1. Thus, Theorem 1.7 implies that the natural
quantity to study is the normalized differences of the order statistics, not the differences
(see also Remark 3.5). With additional work, we could study densities with unbounded
support and show that, through truncation, we can get arbitrarily close to shifted exponential
behavior.

Remark 1.9. The main motivation for this work is the need for improved ways of assessing
the authenticity and integrity of scientific and corporate data. Benford’s law has been
successfully applied to detecting income tax, corporate, and voter fraud (see [18–20]); in
[21], we use these results to derive new statistical tests to examine data authenticity and
integrity. Early applications of these tests to financial data showed that it could detect errors
in data downloads, rounded data, and inaccurate ordering of data. These attributes are not
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easily observable from an analysis of descriptive statistics, and detecting these errors can help
managers avoid costly decisions based on erroneous data.

The paper is organized as follows. We prove Theorem 1.1 in Appendix A by using
Poisson summation to analyze F ′B(b). Theorem 1.3 follows from the results of the order
statistics of independent uniform variables. The proof of Theorem 1.4 is similar, and given
in Section 2. In Section 3, we prove Theorems 1.5 and 1.7.

2. Proofs of Theorems 1.3 and 1.4

Theorem 1.3 is a consequence of the fact that the normalized differences between the order
statistics drawn from the uniform distribution converge to being independent standard
exponentials. The proof of Theorem 1.4 proceeds similarly. Specifically, over a short enough
region, any distribution with a second-order Taylor series at each point with first and second
derivatives uniformly bounded is well approximated by a uniform distribution.

To prove Theorem 1.4, it suffices to show that if X1, . . . , XN are drawn from a
sufficiently nice distribution, then for any fixed δ ∈ (0, 1) the limiting behavior of the order
statistics of Nδ adjacent Xi’s becomes Poissonian (i.e., the Nδ − 1 normalized differences
converge to being independently distributed from the standard exponential). We prove this
below for compactly supported distributions f(x) that have a second-order Taylor series
at each point with the first and second derivatives uniformly bounded, and when the Nδ

adjacent Xi’s are from a region where f(x) is bounded away from zero.
For each N, consider intervals [aN, bN] such that

∫bN
aN
f(x)dx = Nδ/N; thus, the

proportion of the total mass in such intervals is Nδ−1. We fix such an interval for our
arguments. For each i ∈ {1, . . . ,N}, let

wi =

{
1, if Xi ∈

[
aN, bN

]

0, otherwise.
(2.1)

Note wi is 1 with probability Nδ−1 and 0 with probability 1 −Nδ−1; wi is a binary indicator
random variable, telling us whether or not Xi ∈ [aN, bN]. Thus,

E

[
N∑

i=1

wi

]

=Nδ, Var

(
N∑

i=1

wi

)

=Nδ ·
(
1 −Nδ−1). (2.2)

Let MN be the number of Xi in [aN, bN], and let βN be any nondecreasing sequence tending
to infinity (in the course of the proof, we will find that we may take any sequence with
βN = O(Nδ/2)). By (2.2) and the central limit theorem (which we may use as wi’s satisfy
the Lyapunov condition), with probability tending to 1, we have

MN =Nδ +O
(
βNN

δ/2). (2.3)

We assume that in the interval [aN, bN] there exist constants c and C such that
whenever x ∈ [aN, bN], 0 < c < f(x) < C < ∞; we assume that these constants hold for
all regions investigated and for all N. (If our distribution has unbounded support, for any
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ε > 0, we can truncate it on both sides so that the omitted probability is at most ε. Our result
is then trivially modified to be within ε of shifted exponential behavior.) Thus,

c ·
(
bN − aN

)
≤
∫bN

aN

f(x)dx =Nδ−1 ≤ C
(
bN − aN

)
, (2.4)

implying that bN − aN is of size Nδ−1. If we assume that f(x) has at least a second-order
Taylor expansion, then

f(x) = f
(
aN
)
+ f ′
(
aN
)(
x − aN

)
+O
((
x − aN

)2)

= f
(
aN
)
+ f ′
(
aN
)(
x − aN

)
+O
(
N2δ−2).

(2.5)

As we assume that the first and second derivatives are uniformly bounded, as well as f being
bounded away from zero in the intervals under consideration, all Big-Oh constants below are
independent of N. Thus,

bN − aN =
Nδ−1

f(aN)
+O
(
N2δ−2). (2.6)

We now investigate the order statistics of the MN of the Xi’s that lie in [aN, bN]. We
know

∫bN
aN
f(x)dx = Nδ−1; by setting gN(x) = f(x)N1−δ, then gN(x) is the conditional density

function for Xi, given that Xi ∈ [aN, bN]. Thus, gN(x) integrates to 1, and for x ∈ [aN, bN],
we have

gN(x) = f
(
aN
)
·N1−δ + f ′

(
aN
)(
x − aN

)
·N1−δ +O

(
Nδ−1). (2.7)

We have an interval of size Nδ−1/f(aN) + O(N2δ−2), and MN = Nδ + O(βNNδ/2) of
the Xi lying in the interval (remember that βN are any nondecreasing sequence tending to
infinity). Thus, with probability tending to 1, the average spacing between adjacent ordered
Xi is

Nδ−1/f(aN) +O(N2δ−2)
MN

=
(
f
(
aN
)
N
)−1 +N−1 ·O

(
βNN

−δ/2 +Nδ−1), (2.8)

in particular, we see that we must choose βN = O(Nδ/2). As δ ∈ (0, 1), if we fix a k such
that Xk ∈ [aN, bN], then we expect the next Xi to the right of Xk to be about t/Nf(aN) units
away, where t is of size 1. For a given Xk, we can compute the conditional probability that
the next Xi is between t/Nf(aN) and (t + Δt)/Nf(aN) units to the right. It is simply the
difference of the probability that all the other MN − 1 of the Xi’s in [aN, bN] are not in the
interval [Xk,Xk + t/Nf(aN)] and the probability that all other Xi in [aN, bN] are not in the
interval [Xk,Xk + (t + Δt)/Nf(aN)]; note that we are using the wrapped interval [aN, bN].

Some care is required in these calculations. We have a conditional probability as we
assume that Xk ∈ [aN, bN] and that exactly MN of the Xi are in [aN, bN]. Thus, these



10 International Journal of Mathematics and Mathematical Sciences

probabilities depend on two random variables, namely, Xk and MN . This is not a problem in
practice, however (e.g., MN is tightly concentrated about its mean value).

Recalling our expansion for gN(x) (and that bN − aN = Nδ−1/f(aN) + O(N2δ−2) and
t is of size 1), after simple algebra, we find that with probability tending to 1, for a given Xk

and MN , the first probability is

(
1 −
∫Xk+t/Nf(aN)

Xk

gN(x)dx
)MN−1

. (2.9)

The above integral equals tNδ + O(N−1) (use the Taylor series expansion in (2.7) and note
that the interval [aN, bN] is of size O(Nδ−1)). Using (2.3), it is easy to see that this is a.s. equal
to

(
1 −

t +O(Nδ−1 + βNN−δ/2)
MN

)MN−1

. (2.10)

We, therefore, find that as N→∞, the probability that MN − 1 of the Xi’s (i /= k) are in
[aN, bN] \ [Xk,Xk + t/Nf(aN)], conditioned on Xk and MN , converges to e−t. (Some care
is required, as the exceptional set in our a.s. statement can depend on t. This can be
surmounted by taking expectations with respect to our conditional probabilities and applying
the dominated convergence theorem.)

The calculation of the second probability, the conditional probability that the MN − 1
other Xi’ that are [aN, bN] not in the interval [Xk,Xk + (t +Δt)/Nf(aN)], given Xk and MN ,
follows analogously by replacing t with t + Δt in the previous argument. We thus find that
this probability is e−(t+Δt). As

∫ t+Δt

t

e−udu = e−t − e−(t+Δt), (2.11)

we find that the density of the difference between adjacent order statistics tends to the
standard (unit) exponential density; thus, the proof of Theorem 1.4 now follows from
Theorem 1.3.

3. Proofs of Theorems 1.5 and 1.7

We generalize the notation from Section 2. Let f(x) be any distribution with a second-order
Taylor series at each point with first and second derivatives uniformly bounded, and let
X1:N, . . . , XN:N be the order statistics. We fix a δ ∈ (0, 1), and for k ∈ {1, . . . ,N1−δ}, we consider
bins [ak;N, bk;N] such that

∫bk;N

ak;N

f(x)dx =
Nδ

N
=Nδ−1, (3.1)
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there are N1−δ such bins. By the central limit theorem (see (2.3)), if Mk;N is the number of
order statistics in [ak;N, bk;N], then, provided that ε > max(0, 1/3 − δ/2) with probability
tending to 1, we have

Mk;N =Nδ +O
(
Nε+δ/2), (3.2)

of course we also require ε < δ/2, as, otherwise, the error term is larger than the main term.

Remark 3.1. Before we considered just one fixed interval; as we are studying N1−δ intervals
simultaneously, we need ε in the exponent so that with high probability, all intervals have
to first order Nδ order statistics. For the arguments below, it would have sufficed to have an
error of size O(Nδ−ε). We thank the referee for pointing out that ε > 1/3 − δ/2, and provide
his argument in Appendix B.

Similar to (2.8), the average spacing between adjacent order statistics in [ak;N, bk;N] is

(
f
(
ak;N

)
N
)−1 +N−1 ·O

(
N−(ε+δ/2) +Nδ−1). (3.3)

Note that (3.3) is the generalization of (1.11); if f is the uniform distribution on [0, L], then
f(ak;N) = 1/L. By Theorem 1.4, as N→∞, the distribution of digits of the differences in each
bin converges to shifted exponential behavior; however, the variation in the average spacing
between bins leads to bin-dependent shifts in the shifted exponential behavior.

Similar to (1.11), we can study the distribution of digits of the differences of the
normalized order statistics. If Xi:N and Xi+1:N are in [ak;N, bk;N], then

Zi;N =
Xi+1:N −Xi:N

(f(ak;N)N)−1 +N−1 ·O(N−(ε+δ/2) +Nδ−1)
,

logBZi;N = logB
(
Xi+1:N −Xi:N

)
+ logBN − logB

(
f
(
ak;N

)−1 +O(N−(ε+δ/2) +Nδ−1)).

(3.4)

Note we are using the same normalization factor for all differences between adjacent order
statistics in a bin. Later, we show that we may replace f(ak;N) with f(Xi:N). As we study all
Xi+1:N −Xi:N in the bin [ak;N, bk;N], it is useful to rewrite the above as

logB
(
Xi+1:N −Xi:N

)
= logBZi;N − logBN + logB

(
f
(
ak;N

)−1 +O
(
N−(ε+δ/2) +Nδ−1)). (3.5)

We have N1−δ bins, so k ∈ {1, . . . ,N1−δ}. As we only care about the limiting behavior, we
may safely ignore the first and last bins. We may, therefore, assume that each ak;N is finite,
and ak+1;N = bk;N . (Of course, we know that both quantities are finite as we assumed that
our distribution has compact support. We remove the last bins to simplify generalizations to
noncompactly supported distributions.)

Let F(x) be the cumulative distribution function for f(x). Then,

F(ak;N) =
(k − 1)Nδ

N
= (k − 1)Nδ−1. (3.6)
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For notational convenience, we relabel the bins so that k ∈ {0, . . . ,N1−δ − 1}; thus F(ak;N) =
kNδ−1.

We now prove our theorems which determine when these bin-dependent shifts cancel
(yielding Benford behavior), or reinforce (yielding sums of shifted exponential behavior).

Proof of Theorem 1.5. There are approximately Nδ differences in each bin [ak;N, bk;N]. By
Theorem 1.4, the distribution of the digits of the differences in each bin converges to shifted
exponential behavior. As we assume that the first and second derivatives of f are uniformly
bounded, the Big-Oh constants in Section 2 are independent of the bins. The shift in the
shifted exponential behavior in each bin is controlled by the last two terms on the right-
hand side of (3.5). The logBN shifts the shifted exponential behavior in each bin equally. The
bin-dependent shift is controlled by the final term

logB
(
f
(
ak;N

)−1 +O
(
N−(ε+δ/2) +Nδ−1)) = −logBf(ak;N) + logB

(
1 +

min(N−(ε+δ/2),Nδ−1)
f(ak;N)

)
.

(3.7)

Thus, each of the N1−δ bins exhibits shifted exponential behavior, with a bin-
dependent shift composed of the two terms in (3.7). By (1.12), f(ak;N) are not small compared
to min(N−(ε+δ/2),Nδ−1), and hence the second term logB(1+ (min(N−(ε+δ/2),Nδ−1)/f(ak;N)))
is negligible. In particular, this factor depends only very weakly on the bin, and tends to zero
as N→∞.

Thus, the bin-dependent shift in the shifted exponential behavior is approximately
−logBf(ak;N) = −logBf(F

−1(kNδ−1)). If these shifts are equidistributed modulo 1, then the
deviations from Benford behavior cancel, and the shifted exponential behavior of each bin
becomes Benford behavior for all the differences.

Remark 3.2. Consider the case when the density is a uniform distribution on some interval.
Then, all f(F−1(kNδ−1)) are equal, and each bin has the same shift in its shifted exponential
behavior. These shifts, therefore, reinforce each other, and the distribution of all the
differences is also shifted exponential behavior, with the same shift. This is observed in
numerical experiments (see Theorem 1.3 for an alternate proof).

We analyze the assumptions of Theorem 1.5. The condition from (1.12) is easy-to-
check, and is often satisfied. For example, if the probability density is a finite union of
monotonic pieces and is zero only finitely often, then (1.12) holds. This is because for
k ∈ I(ε, δ,N), F−1(kNδ−1) ∈ [F−1(ε), F−1(1 − ε)], and this is, therefore, independent of N
(if f vanishes finitely often, we need to remove small subintervals from I(ε, δ,N), but the
analysis proceeds similarly). The only difficulty is basically a probability distribution with
intervals of zero probability. Thus, (1.12) is a mild assumption.

If we choose any distribution other than a uniform distribution, then f(x) is not
constant; however, (1.13) does not need to hold (i.e., logBf(ak;N) mod 1does not need to
be equidistributed as N→∞). For example, consider a Pareto distribution with minimum
value 1 and exponent a > 0. The density is

f(x) =

{
ax−a−1 if x ≥ 1,
0 otherwise.

(3.8)
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The Pareto distribution is known to be useful in modelling natural phenomena, and for
appropriate choices of exponents, it yields approximately Benford behavior (see [16]).

Example 3.3. If f is a Pareto distribution with minimum value 1 and exponent a > 0, then f
does not satisfy the second condition of Theorem 1.5, (1.13).

To see this, note that the cumulative distribution function of f is F(x) = 1− x−a. As we
only care about the limiting behavior, we need only to study k ∈ I(ε, δ,N) = [εN1−δ,N1−δ −
εN1−δ]. Therefore, F(ak;N) = kNδ−1 implies that

ak;N =
(
1 − kNδ−1)−1/a

, f
(
ak;N

)
= a
(
1 − kNδ−1)(a+1)/a

. (3.9)

The condition from (1.12) is satisfied, namely,

lim
N→∞

max
k∈I(ε,δ,N)

min(N−(ε+δ/2),Nδ−1)
f(ak;N)

= lim
N→∞

max
k∈I(ε,δ,N)

min(N−(ε+δ/2),Nδ−1)

a(kNδ−1)(a+1)/a
= 0, (3.10)

as k is of size N1−δ.
Let j =N1−δ − k ∈ I(ε, δ,N). Then, the bin-dependent shifts are

logBf
(
ak;N

)
=
a + 1
a

logB
(
1 − kNδ−1) + logBa

=
a + 1
a

logB
(
jN1−δ) + logBa

= logB
(
j(a+1)/a) + logB

(
aN(1−δ)(a+1)/a).

(3.11)

Thus, for a Pareto distribution with exponent a, the distribution of all the differences becomes
Benford if and only if j(a+1)/a is Benford. This follows from the fact that a sequence is Benford
if and only if its logarithms are equidistributed. For fixed m, jm is not Benford (e.g., [6]), and
thus the condition from (1.13) fails.

Remark 3.4. We chose to study a Pareto distribution because the distribution of digits of a
random variable drawn from a Pareto distribution converges to Benford behavior (base 10)
as a→ 1; however, the digits of the differences do not tend to Benford (or shifted exponential)
behavior. A similar analysis holds for many distributions with good closed-form expressions
for the cumulative distribution function. In particular, if f is the density of an exponential
or Weibull distribution (or f(x) = e−e

x
ex), then f does not satisfy the second condition of

Theorem 1.5, (1.13).

Modifying the proof of Theorem 1.5 yields our result on the distribution of digits of
the normalized differences.

Proof of Theorem 1.7. If f is the uniform distribution, there is nothing to prove. For general f ,
rescaling the differences eliminates the bin-dependent shifts. Let

Z̃i:N =
Xi+1:N −Xi:N

1/Nf(Xi:N)
. (3.12)
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In Theorem 1.5, we use the same scale factor for all differences in a bin (see (3.4)). As we
assume the first and second derivatives of f are uniformly bounded, (2.5) and (2.6) imply
that for Xi:N ∈ [ak;N, bk;N],

f
(
Xi:N

)
= f
(
ak;N

)
+O
(
bk;N − ak;N

)

= f
(
ak;N

)
+O
(

Nδ−1

f(ak;N)
+N2δ−2

)
,

(3.13)

and the Big-Oh constants are independent of k. As we assume that f satisfies (1.12), the error
term is negligible.

Thus, our assumptions on f imply that f is basically constant on each bin, and we may
replace the local rescaling factor f(Xi:N) with the bin rescaling factor f(ak;N). Thus, each bin
of normalized differences has the same shift in its shifted exponential behavior. Therefore all
the shifts reinforce, and the digits of all the normalized differences exhibit shifted exponential
behavior as N→∞.

As an example of Theorem 1.7, in Figure 1 we consider 500,000 independent random
variables drawn from the Pareto distribution with exponent

a =
4 + 3
√

19 − 3
√

33 + 3
√

19 + 3
√

33
3

(3.14)

(we chose a to make the variance equal 1). We study the distribution of the digits of
the differences in base 10. The amplitude is about .018, which is the amplitude of the
shifted exponential behavior of Theorem 1.1 (see the equation in [23, Theorem 2] or (1.5)
of Theorem 1.1).

Remark 3.5. The universal behavior of Theorem 1.7 suggests that if we are interested in the
behavior of the digits of all the differences, the natural quantity to study is the normalized
differences. For any distribution with uniformly bounded first and second derivatives and a
second-order Taylor series expansion at each point, we obtain shifted exponential behavior.

Appendices

A. Proof of Theorem 1.1

To prove Theorem 1.1, it suffices to study the distribution of logBζ mod 1 when ζ has
the standard exponential distribution (see (1.4)). We have the following useful chain of
equalities. Let [a, b] ⊂ [0, 1]. Then,

Prob
(
logBζ mod 1 ∈ [a, b]

)
=

∞∑

k=−∞
Prob

(
logBζ ∈

[
a + k, b + k

])

=
∞∑

k=−∞
Prob

(
ζ ∈
[
Ba+k, Bb+k

])

=
∞∑

k=−∞

(
e−B

a+k − e−Bb+k
)
.

(A.1)
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It suffices to investigate (A.1) in the special case when a = 0, as the probability of any
interval [α, β] can always be found by subtracting the probability of [0, α] from [0, β]. We
are, therefore, led to study, for b ∈ [0, 1], the cumulative distribution function of logBζ mod 1,

FB(b) := Prob
(
logBζ mod 1 ∈ [0, b]

)
=

∞∑

k=−∞

(
e−B

k − e−Bb+k
)
. (A.2)

This series expansion converges rapidly, and Benford behavior for ζ is equivalent to the
rapidly converging series in (A.2) equalling b for all b.

As Benford behavior is equivalent to FB(b) equals b for all b ∈ [0, 1], it is natural to
compare F ′B(b) to 1. If the derivatives were identically 1, then FB(b) would equal b plus some
constant. However, (A.2) is zero when b = 0, which implies that this constant would be zero.
It is hard to analyze the infinite sum for FB(b) directly. By studying the derivative F ′B(b), we
find a function with an easier Fourier transform than the Fourier transform of e−B

u − e−Bb+u ,
which we then analyze by applying Poisson summation.

We use the fact that the derivative of the infinite sum FB(b) is the sum of the derivatives
of the individual summands. This is justified by the rapid decay of the summands (see, e.g.,
[28, Corollary 7.3]). We find

F ′B(b) =
∞∑

k=−∞
e−B

b+k
Bb+k logB =

∞∑

k=−∞
e−βB

k

βBk logB, (A.3)

where for b ∈ [0, 1], we set β = Bb.
Let H(t) = e−βB

t
βBt logB; note β ≥ 1. As H(t) is of rapid decay in t, we may apply

Poisson summation (e.g., [29]). Thus,

∞∑

k=−∞
H(k) =

∞∑

k=−∞
Ĥ(k), (A.4)

where Ĥ is the Fourier transform of H: Ĥ(u) =
∫∞
−∞H(t)e−2πitudt. Therefore,

F ′B(b) =
∞∑

k=−∞
H(k) =

∞∑

k=−∞
Ĥ(k) =

∞∑

k=−∞

∫∞

−∞
e−βB

t

βBt logB · e−2πitkdt. (A.5)

Let us change variables by taking w = Bt. Thus, dw = Bt logB dt or dw/w = logB dt. As
e−2πitk = (Bt/ logB)−2πik = w−2πik/ logB, we have

F ′B(b) =
∞∑

k=−∞

∫∞

0
e−βwβw ·w−2πik/ logB dw

w

=
∞∑

k=−∞
β2πik/ logB

∫∞

0
e−uu−2πik/ logBdu

=
∞∑

k=−∞
β2πik/ logBΓ

(
1 − 2πik

logB

)
,

(A.6)
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where we have used the definition of the Γ-function

Γ(s) =
∫∞

0
e−uus−1du, Re(s) > 0. (A.7)

As Γ(1) = 1, we have

F ′B(b) = 1 +
∞∑

m=1

[

β2πim/ logBΓ
(

1 − 2πim
logB

)
+ β−2πim/ logBΓ

(
1 +

2πim
logB

)]

. (A.8)

Remark A.1. The above series expansion is rapidly convergent, and shows the deviations of
logBζ mod 1 from being equidistributed as an infinite sum of special values of a standard
function. As β = Bb, we have β2πim/ logB = cos(2πmb) + i sin(2πmb), which gives a Fourier
series expansion for F ′(b) with coefficients arising from special values of the Γ-function.

We can improve (A.8) by using additional properties of the Γ-function. If y ∈ R, then
from (A.7), we have Γ(1 − iy) = Γ(1 + iy) (where the bar denotes complex conjugation).
Thus, the mth summand in (A.8) is the sum of a number and its complex conjugate, which is
simply twice the real part. We have formulas for the absolute value of the Γ-function for large
argument. We use (see [30, page 946, equation (8.332)]) that

∣∣Γ(1 + ix)
∣∣2 =

πx

sinh(πx)
=

2πx
eπx − e−πx . (A.9)

Writing the summands in (A.8) as 2Re(e−2πimbΓ(1 + 2πim/ logB)), (A.8) becomes

F ′B(b) = 1 + 2
M−1∑

m=1

Re
(
e−2πimbΓ

(
1 +

2πim
logB

))
+ 2

∞∑

m=M

Re
(
e−2πimbΓ

(
1 +

2πim
logB

))
. (A.10)

The rest of the claims of Theorem 1.1 follow from simple estimation, algebra, and
trigonometry.

With constants as in the theorem, if we take M = 1 and B = e (resp., B = 10) the
error is at most .00499 (resp., .378), while if M = 2 and B = e (resp., B = 10), the error is
at most 3.16 · 10−7 (resp., .006). Thus, just one term is enough to get approximately five digits
of accuracy base e, and two terms give three digits of accuracy base 10. For many bases, we
have reduced the problem to evaluate Re(e−2πibΓ(1 + 2πi/ logB)). This example illustrates
the power of Poisson summation, taking a slowly convergent series expansion and replacing
it with a rapidly converging one.

Corollary A.2. Let ζ have the standard exponential distribution. There is no base B > 1 such that ζ
is Benford base B.

Proof. Consider the infinite series expansion in (1.5). As e−2πimb is a sum of a cosine and a
sine term, (1.5) gives a rapidly convergent Fourier series expansion. If ζ were Benford base B,
then F ′B(b) must be identically 1; however, Γ(1 + 2πim/ logB) is never zero for m a positive
integer because its modulus is nonzero (see (A.9)). As there is a unique rapidly convergent
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Fourier series equal to 1 (namely, g(b) = 1; see [29] for a proof), our F ′B(b) cannot identically
equal 1.

B. Analyzing N1−δ intervals simultaneously

We show why in addition to ε > 0 we also needed ε > 1/3 − δ/2 when we analyzed N1−δ

intervals simultaneously in (3.2); we thank one of the referees for providing this detailed
argument.

Let Y1, . . . , YN be i.i.d.r.v. with E[Yi] = 0, Var(Yi) = σ2, E[|Yi|3] < ∞, and set SN =
(Y1 + · · · + YN)/

√
Nσ2. Let Φ(x) denote the cumulative distribution function of the standard

normal. Using a (nonuniform) sharpening of the Berry-Esséen estimate (e.g., [31]), we find
that for some constant c > 0,

∣∣Prob
(
SN ≤ x

)
−Φ(x)

∣∣ ≤ cE[|Y1|3]
σ3
√
N(1 + |x|)3

, x ∈ R, N ≥ 1. (B.1)

Taking Yi = wi −Nδ−1, where wi is defined by (2.1), yields

SN =
MN −Nδ

√
Nδ(1 −Nδ−1)

,

σ2Nδ−1(1 −Nδ−1),

E
[∣∣Yi
∣∣3] ≤ 2Nδ−1.

(B.2)

Thus, (B.1) becomes

∣∣∣∣∣
Prob

(
MN −Nδ

√
Nδ(1 −Nδ−1)

≤ x
)

−Φ(x)

∣∣∣∣∣
≤ 3cN−δ/2

(1 + |x|)3
, (B.3)

for all N ≥N0 (for some N0 sufficiently large, depending on δ).
For each N, k, and ε consider the event

AN,k,ε =

⎧
⎪⎨

⎪⎩

Mk;N −Nδ

√
Nδ(1 −Nδ−1)

∈
[
−Nε,Nε]

⎫
⎪⎬

⎪⎭
. (B.4)

Then, as N→∞, we have

Prob

(
N1−δ⋂

k=1

AN,k,ε

)

−→ 1, (B.5)
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provided that

N1−δ∑

k=1

Prob
(
Ac
N,k,ε

)
−→ 0, (B.6)

as N→∞. Using (B.3) gives

Prob
(
Ac
N,k,ε

)
≤ 6cN−δ/2

(1 +Nε)3
+ 2
(
1 −Φ

(
Nε))

≤ 6cN−δ/2−3ε +

√
2
π
N−ε exp

(
− N

2ε

2

) (B.7)

(e.g., [32]). Thus, the sum in (B.6) is at most

6cN1−3δ/2−3ε +

√
2
π
N1−δ−ε exp

(
− N

2ε

2

)
, (B.8)

and this is O(1) provided that ε > 0 and ε > 1/3 − δ/2.
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