
         

Models of random regular graphs

N. C. Wormald

Summary This is a survey of results on properties of random regular graphs, to-
gether with an exposition of some of the main methods of obtaining these results.
Related results on asymptotic enumeration are also presented, as well as various
generalisations to random graphs with given degree sequence. A major feature in
this area is the small subgraph conditioning method. When applicable, this estab-
lishes a relationship between random regular graphs with uniform distribution, and
non-uniform models of random regular graphs in which the probability of a graph
G is weighted according to the number of subgraphs G has of a certain type. Infor-
mation can be obtained in this way on the probability of existence of various types
of spanning subgraphs, such as Hamilton cycles and decompositions into perfect
matchings. Uniformly distributed labelled random regular graphs receive most of
the attention, but also included are several non-uniform models which come about
in a natural way. Some of these appear as spin-offs from the small subgraph con-
ditioning method, and some arise from algorithms which use simple approaches to
generating random regular graphs. A quite separate role played by algorithms is
in the derivation of random graph properties by analysing the performance of an
appropriate greedy algorithm on a random regular graph. Many open problems and
conjectures are given.

1 Introduction

Random graphs first appeared in clever probabilistic proofs by Erdős of
the existence of graphs with special properties such as arbitrarily large girth
and chromatic number. These had not at that time been found constructively.
Much later, the study of random regular graphs took off, beginning with the
works of Bender and Canfield [5], Bollobás [10] and Wormald [118, 117]. This
has since been fuelled in part by applications in other areas such as computer
science. An interesting application occurs in biogeography, where random non-
negative integer matrices with given row and column sums are of interest. See
Wilson [113], for example.

This paper is a survey of that part of random graph theory in which the
degrees of vertices are restricted. Such work concentrates on regular graphs as
the most interesting examples, and the results on regular graphs often extend
easily to more general degree sequences. A d-regular graph is one with all
vertices of degree d. For d = 3 these are often called cubic graphs.

The asymptotic enumeration of objects of a given type frequently goes
hand in hand with the problem of generating the same objects uniformly at
random, and with finding some of the limiting probabilities in the resulting
probability space (see Jerrum and Sinclair [58]). However, the two problems
are not equivalent.
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The distinction between the approaches of exact and asymptotic enumera-
tion is important. Probably the first result on short cycles in random regular
graphs of degree at least 3 was the determination of the expected number of
triangles in random cubic graphs [114]. This was done by using recurrence
relations, and the asymptotic result 4

3
was obtained. However, this method of

exact enumeration followed by asymptotic analysis has not been able to reach
any further for the type of problems that we are concerned with here. For in-
stance, for the numbers of 2- and 3-connected cubic graphs there are recurrence
relations [116], but no asymptotic formulae have been obtained from these. A
more direct probabilistic approach, with an initially asymptotic viewpoint, can
do much more and leads to asymptotic enumeration results in any case. For
instance, many of the results in the book on random graphs by Bollobás [16]
can be translated this way. In spite of this, exact and asymptotic enumeration
turns out to be used rather heavily for some problems here, albeit indirectly
(for example, consider the proofs in Section 4.1).

Results on random regular graphs can of course be used to show that there
exist graphs with particular combinations of properties; for instance d-regular
graphs which are d-connected, have arbitrarily large girth, are Hamiltonian and
have no non-trivial automorphisms. There are other ways of getting regular
graphs with interesting properties in a constructive way, some of them quite
sophisticated (surveyed by Chung [26]), and these supply graphs with some of
the properties that can be found in random graphs. A notable exception is the
diameter, where the best known constructions are only within a factor c > 1
of that of a random d-regular graph.

However, the study of random regular graphs is recently blossoming, and
some pretty results are newly emerging, such as the almost sure property
that the edges can be partitioned into disjoint Hamilton cycles (when the
degree is even). This survey attempts to cover all the results, and show some
relationships between old and new.

1.1 Overview and notation

Early in this article we encounter the uniform model of random d-regular
graphs and various properties of it, in Section 2, and then uniform models
similar to regular graphs (such as bipartite) in Section 3. Extensions to random
non-regular graphs with given degree sequence are in the main mentioned at
the end of the appropriate subsection. For some properties the methods extend
easily in this way (short cycles, connectivity) but for others they seem not to
at all. For example, it is known that a large random 3-regular graph is almost
surely Hamiltonian, and so is a random 4-regular graph. However, present
methods seem not to be strong enough to show that a large random graph
with say half of its vertices of degree 3 and half of degree 4 is almost surely
Hamiltonian.

In all this, we postpone detailed discussion of a general method called
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the small subgraph conditioning method until Section 4, because it requires
considerable development and has interesting ramifications for models with
non-uniform distribution. It is enough for now to know that this gives in-
formation on the distribution of random variables which count certain large
subgraphs in the uniform model of random regular graphs. The problem of
generating random regular graphs is considered in Section 5. We then visit
some other models with non-uniform distributions, and some models which do
not produce graphs with given degree sequence but are somehow similar. The
final farewell is with comments on unsolved problems.

Almost all of the models discussed here assume that the graphs concerned
have labelled vertices. Random unlabelled regular graphs can be accessed via
the labelled model by studying the order of the automorphism group of the
graphs (see Section 2.7).

For a non-negative integer j and real x, [x]j denotes x(x−1) · · · (x− j+1).
We use the notation P, E and Var for probability, expectation and variance,
sometimes subscripted as in PG to specify that the probability measure is as in
the probability space G. We say that an event Hn occurs a.a.s. (asymptotically
almost surely) if PHn → 1 as n → ∞, with any obviously necessary parity
restriction on n.

2 Uniform model for random regular graphs

We use Gn,d to denote the uniform probability space of d-regular graphs
on the n vertices {1, 2, . . . , n} (where dn is even). So sampling from Gn,d is
equivalent to taking such a graph uniformly at random (u.a.r.). We use |G| to
denote the number of elements of a uniform space G.

Another probabilistic space can be defined as follows. Suppose that dn is
even, and for non-triviality take d ≥ 1. Consider a set of dn points partitioned
into n cells v1, v2, . . . , vn of d points each. A perfect matching of the points
into 1

2dn pairs is called a pairing . A pairing P corresponds to a multigraph
(with loops permitted) G(P ) in which the cells are regarded as vertices and the
pairs as edges: a pair (x, y) in P corresponds to an edge (vi, vj) of G(P ) where
x ∈ vi and y ∈ vj. Since each graph (which we assume is simple; i.e. has no
loops or multiple edges) corresponds to precisely (d!)n pairings, a regular graph
can be chosen u.a.r. by choosing a pairing u.a.r. and rejecting the result if it
has loops or multiple edges. Non-simple graphs are not produced uniformly
at random since each for each loop the number of corresponding pairings is
divided by 2, and for each k-tuple edge it is divided by k!. This is the pairing
model of random regular graphs, given in this form first by Bollobás, but see
Section 2.1 for a description of pre-existing models. We denote the (uniform)
probability space of pairings by Pn,d. We can assume that the points are the
elements of {1, . . . , n} × {1, . . . , d}, so that G(P ) is induced by a projection.

The pairing model gives a basis for proving properties of graphs in Gn,d,
by doing computations in Pn,d, and conditioning on the event that the cor-
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responding multigraph has no loops or multiple edges. We call this event
“Simple”, and note that it is a function of n and d. Knowledge of the value
of PPn,d(Simple) permits the following simple exploitation of the connection
between Pn,d and Gn,d.

Lemma 2.1 Let H be an event (set of graphs) in Gn,d and H ′ the set of
pairings in Pn,d that correspond to graphs in H. Then

PGn,d(H) =
PPn,d(H

′)

P(Simple)
.

Proof This comes immediately from the uniformity of the two models, and
the fact that each graph corresponds to the same number of pairings.

A pairing can be selected u.a.r. in many different ways. In particular, the
points in the pairs can be chosen sequentially. At any stage, the first point
in the next random pair chosen can be selected using any rule whatsoever,
as long as the second point in that pair is chosen u.a.r. from the remaining
points. For example, one can insist that the next point chosen is the next
one available in any pre-specified ordering of the points, or comes from a cell
containing one of the points in the previous pair chosen (if any points such are
still unpaired). We use this idea several times in this article and so give it a
name: the independence property of the pairing model.

In addition, the pairing model provides a simple mechanism for enumerat-
ing d-regular graphs asymptotically. Since the number of pairings, or perfect
matchings, of t points is

f(t) =
t!

(t/2)!2t/2
, (1)

the number of d-regular graphs on n vertices is precisely

|Gn,d| =
(dn)!P(Simple)

(dn/2)!2dn/2(d!)n
. (2)

Thus, an asymptotic formula for |Gn,d| can be found by estimating P(Simple).

The pairing model for random graphs with given degree sequence is an
immediate extension of the regular case: for a degree sequence d1, . . . , dn, the
cell vi contains di points, and a perfect matching of all the points is selected
u.a.r. Restricting to no loops or multiple edges produces u.a.r. graphs with
degree sequence d = (d1, . . . , dn). This uniform model of graphs we denote by
Gn,d. In all asymptotic statements about this model we assume d is restricted
to sequences with even sum.

We next discuss models for related combinatorial configurations, and then
outline results on properties of Gn,d.
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2.1 History of uniform models

The pairing model was first given in its simple explicit form by Bollobás
(beginning with [9]) and called the configuration model . (We prefer not to
refer to pairings as configurations since the latter has a broad meaning which
is useful in many contexts, for example in Section 4.2.) A little earlier, Bender
and Canfield [5] used a model in their enumeration of graphs with given degrees
which is implicitly a generalisation of the pairing model (see Section 4 of that
paper). The difference is that they use involutions in place of perfect matchings
of points, because they study 0-1 matrices with given row sums, which are the
adjacency matrices of graphs with given degrees, and as a result the entries of
the matrix on the main diagonal must be treated differently. (An entry 1 in
the main diagonal does not correspond to a loop in the pairing model, since a
loop uses up two points.) In addition, their analysis was made more general by
allowing the possibility to specify a limited number of edges to be forbidden.

Even earlier, Békéssy et al. [4] studied random 0-1 matrices with given
row and column sums by using essentially a more general model, in which the
points in the cells are arranged into classes of arbitrary specified sizes and
permuted at random. The argument in [4] gave asymptotically the number of
such configurations in which no two points in the same cell are of the same
class. In the general case, this gives a model of random bicoloured graphs
with given vertex degrees. On the other hand, in the special case that every
colour class has cardinality 2, this is very similar to the pairing model, the only
difference being that the edges of the graph are labelled. The results in [4] give
the number of pairings which induce no loops in the multigraph. Independently
of [5], the author’s PhD thesis [115] studied random regular graphs from the
point of view of unlabelling the edges in the model of multigraphs arising
from [4], which then becomes the pairing model. However, this model was
studied only indirectly in [115] because enumeration results on multigraphs
with loops were sought. Once achieved, these were built on to find the numbers
of simple graphs (with given degree sequence), as well as properties of such
random graphs. The methods used for all these variations of the model are
equivalent to those required to study the pairing model.

2.2 Related enumeration results

Of course results on probabilities in a uniform model are inextricably as-
sociated with enumeration results. Most computations in this paper aim for
asymptotic results: unless otherwise specified, all limits refer to n → ∞ with
n restricted to even integers if d is odd.

Of major interest is an asymptotic formula for the number |Gn,d| of labelled
d-regular graphs, which by (2) amounts to estimating P(Simple). Read [91]
gave an exact formula for |Gn,d| which is unfortunately too complicated to be
easily amenable to asymptotic evaluation for general d. For d = 3 however,
his analysis leads to the asymptotic expression (6n)!

288n(3n)!e2
, which is equivalent
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to (3) for d = 3. In addition, any number of terms in an asymptotic series
expansion for the number of cubic graphs can be obtained from his result.
However, the inelegance of his derivation dissuaded him from applying it to
larger d.

Bender and Canfield’s asymptotic formula for |Gn,d| can be stated as

P(Simple) ∼ exp

(
1− d2

4

)
for fixed d, (3)

where here and elsewhere in this paper a(n) ∼ b(n) means a(n) = (1+o(1))b(n)
as n → ∞ (with dn even, of course). Thus evaluating (2) using Stirling’s
formula gives the following.

Theorem 2.2 (Bender and Canfield [5]) For fixed d

|Gn,d| ∼
√

2e(1−d2)/4

(
ddnd

ed(d!)2

) 1
2
n

. (4)

This was found independently in [115], and then Bollobás [9, 10] gave the
pairing model proof and showed that the formula applied for d = d(n) ≤√

2 log n− 1. A version of this proof of (3) is in the next section.
From (3) it follows that P(Simple) is bounded below for fixed d, a fact

which combined with Lemma 2.1 immediately yields the following. First, for
an event H in Pn,d, define G(H) to be the event in Gn,d containing precisely
all simple graphs of the form G(P ) for some P ∈ H.

Corollary 2.3 Let d ≥ 1 be fixed, and let H be an event which is a.a.s. true
in Pn,d. Then G(H) is a.a.s. true in Gn,d.

McKay [72] used switchings (as described in Section 2.4) to extend the
range of d in (3) to d = o(n1/3). McKay and Wormald [81] then used a new
sort of switching to find the formula for d = o(

√
n):

P(Simple) = exp

(
1− d2

4
− d3

12n
+O

(
d2

n

))
. (5)

Corollary 2.4 (McKay and Wormald [81]) For d = o(
√
n) the number of

d-regular graphs on n vertices is

(dn)!

(1
2dn)!2dn/2(d!)n

exp

(
1− d2

4
− d3

12n
+O

(
d2

n

))
.

McKay and Wormald also obtained a formula for d ≈ cn [80] which may have
consequences for quite dense random regular graphs:

|Gn,d| ∼
√

2
(
2πnλd+1(1− λ)n−d

)−n/2
exp

(−1 + 10λ− 10λ2

12λ(1− λ)

)
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where λ = d/(n − 1), provided d = d(n) is an integer-valued function such
that, for n sufficiently large, dn is even and min{d, n− d− 1} > cn/ log n for
some c > 2

3
.

The formulae mentioned in this section have their counterparts for graphs
with given degree sequences, the most widely applicable being in [81] and [80].
These formulae allowed McKay and Wormald [82] to create a useful model
of the degree sequence of a random graph in G(n, p). Since it has proved so
useful, the Bender–Canfield formula for bounded degrees di is included here:

|Gn,d| ∼
(2m)!e−λ−λ

2

m!2m
∏n

i=1 di!
(6)

where 2m =
∑
di and λ = 1

2m

∑(
di
2

)
.

2.3 Short cycle distribution

The number of short cycles in random regular graphs of small degree has an
asymptotically Poisson distribution, as is the usual rule with the sum of many
nearly independent rare events. (This effect is called the “Poisson paradigm”
by Alon and Spencer [3].) The usual method of proving this uses an asymptotic
version of the fact that a Poisson variable is determined by its moments. This
method is presented here, saving a much more powerful (in the case of regular
graphs) switching method for Section 2.4.

We say that a set of variables Xi = X
(n)
i , for i in some finite set I, defined on

a sequence of probability spaces indexed by n, are asymptotically independent
Poisson with means λi if their joint distribution tends to that of independent
Poisson variables whose means are fixed numbers λi. To be precise,

lim
n→∞

P

(∧

i∈I
{Xi = ri}

)
→
∏

i∈I
e−λi

λrii
ri!

(7)

for every fixed set of non-negative integers ri, i ∈ I. (Recall that n is restricted
to even numbers in all limits if d is odd.) Throughout this section, we use Z(λ)
to denote a Poisson random variable with expectation λ.

Theorem 2.5 (Bollobás [10], Wormald [115, 118]) For d fixed, let Xi = Xi,n

(i ≥ 3) be the number of cycles of length i in a graph in Gn,d. For fixed
k ≥ 3, X3, . . . , Xk are asymptotically independent Poisson random variables

with means λi = (d−1)i

2i
.

This was derived in [10] using the pairing model, and independently in [115,
118] essentially from (6).

Theorem 2.5 plays a major role in the results on Hamiltonicity and related
properties (see Section 4.2). As mentioned above, we also need to calculate lim-
iting probabilities in the pairing model conditional on the event Simple. For
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this, a crucial step is the determination of P(Simple) asymptotically. Since
loops and multiple edges are cycles of length 1 and 2, the short cycle dis-
tribution in the multigraphs corresponding to pairings provides a convenient
common generalisation of P(Simple) and the distribution in Gn,d. This leads
to the following result, which was first derived in full by Bollobás.

Theorem 2.6 (Bollobás [10]) For d fixed, let Xi = Xi,n (i ≥ 1) be the num-
ber of cycles of length i in the random multigraph coming from a pairing in
Pn,d. For k ≥ 1, X1, . . . , Xk are asymptotically independent Poisson random

variables with means λi = (d−1)i

2i
.

A Corollary of this is (3), obtained by considering the event X1 = X2 = 0.
Before proceeding further, the reader deserves an explanation as to why

small connected subgraphs other than cycles are not examined here. It is
because unless they are trees or unicyclic, they do not exist (a.a.s., unless
d is permitted to grow as a function of n, in which case the analysis gets
more difficult; see Section 2.4). The following result has been explicitly or
implicitly given since the first examinations of random regular graphs, and is
easily proved by estimating the expected number of subgraphs of the given
type in Pn,d.
Lemma 2.7 For fixed d and any fixed graph F with more edges than vertices,
G ∈ Gn,d a.a.s. contains no subgraph isomorphic to F .

Thus, the neighbourhood of a random vertex in a huge random d-regular graph
looks just like part of an infinite tree. It follows from the lemma that a.a.s. no
two cycles of bounded length are joined by a path of bounded length.

Proof of Theorems 2.5 and 2.6 The plan is quite simple, following the
method of moments. In this, the joint factorial moments of X1,n, . . . , Xk,n

are shown to tend in the limit to those of the independent Poisson variables
Z(λ1), . . . , Z(λk). That is, for every sequence of fixed non-negative integers
r1, . . . , rk,

lim
n→∞

E

(
k∏

i=1

[Xi,n]ri

)
→

k∏

i=1

λrii . (8)

Theorem 2.6 follows from this by a well-known result (see Lemma 2.8). The-
orem 2.5 comes from Theorem 2.6 by Lemma 2.1.

To compute the left hand side of (8), for each 1 ≤ i ≤ k distinguish the
pairs of points corresponding to an ordered set of ri cycles of length i. The
required value is the number of pairings with such distinguished pairs, divided
by the total number f(dn) of pairings. Letting s = r1 + 2r2 + · · · + krk, the
number of ways to choose the s distinguished pairs in the correct configuration
for the desired cycles is asymptotic to

(d(d− 1)n)s∏k
i=1(2i)riri!
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if exactly s different vertices are involved in the pairs, and is O(ns−1) otherwise
(since the vertices can be chosen in this many ways, and given the vertices,
the distinguished pairs can form only a finite number of configurations). The
cycles of each length can be ordered in

∏k
i=1 ri! ways, and the pairing can then

be completed in
f(dn− 2s) ∼ f(dn)/(dn)s

ways, by (1). Multiplying these together gives the right side of (8), as re-
quired.

That proof required the following multivariate generalisation of Brun’s
sieve, which is an implication of the Bonferroni inequalities (see [3] for exam-
ple). This generalisation is well known in probability theory (see Chung [27])
and is given without explicit proof in [16]. We show here how it follows from
Brun’s sieve in a quite elementary way. This proof mimics the structure of
the proof of Theorem 2.5 given in [118]. It is included especially because it
uses alterations of probability measure, which will appear again in Section 4.1.
Without loss of generality we could assume that the Xi,n are indicator variables
for random events.

Lemma 2.8 Let λ1, . . . , λk be some set of fixed non-negative reals, and let
X1,n, . . . , Xk,n be non-negative integer random variables defined on the same
space Gn for each n. If (8) holds for each fixed set of non-negative integers
r1, . . . , rk, then the variables X1,n, . . . , Xk,n are asymptotically independent
Poisson with means λi.

Proof This is by induction on k; for k = 1 it is Brun’s sieve, so assume k > 1.
We take two cases: firstly λk = 0. Then (8) with r1 = · · · = rk−1 = 0 and

rk = 1 gives EXk → 0, and so (7) holds whenever rk 6= 0. On the other hand,
it holds for rk = 0 by the inductive hypotheses.

So now assume λk > 0. Let G ′n denote the probability space obtained from
Gn by weighting the probability measure according to [Xk,n]rk . Let P′ and E′

denote probability and expectation in G ′n, whereas P and E refer to Gn. Then
for any event R and variable X in Gn,

P′(R) =
E([Xk,n]rk | R)P(R)

E[Xk,n]rk
, E′(X) =

E(X[Xk,n]rk)

E[Xk,n]rk
. (9)

Thus from (8)

E′
k−1∏

i=1

[Xi,n]ri →
∏k

i=1 λ
ri
i

λrkk
=

k−1∏

i=1

λrii .

So by the inductive hypothesis, X1, . . . , Xk−1 are asymptotically Poisson in
G ′n with means λi. The same is true in Gn. So if R is the event that X1 =
r1, . . . , Xk−1 = rk−1, we have P′(R) → Π =

∏k−1
i=1 P(Z(λi) = ri), and also

P(R)→ Π. Hence from the left equation in (9),

E([Xk,n]rk | R)− E[Xk,n]rk → 0.
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But from (8) E[Xk,n]rk → λrkk , and so

E([Xk,n]rk | R)→ λrkk .

That is, in the probability space obtained from Gn by conditioning on the event
R = Rn, the factorial moments of Xk,n tend to those of Z(λk). Hence another
application of Brun’s sieve implies that Xk,n is asymptotically Poisson with
mean λk in this conditional space. Now

P(X1 = r1, . . . , Xk = rk) = P(Xk = rk | R)P(R)

→ P(Z(λk) = rk)
k−1∏

i=1

P(Z(λi) = ri)

as required.

Results on the short cycle distribution for G ∈ Gn,d which generalise those
given above were obtained in [10] and [118].

2.4 The switching method: subgraphs, eigenvalues and spanning trees

The switching method enables us to prove results about subgraphs of G ∈
Gn,d when d, or the size of the subgraph, grows much more quickly than is
permitted in the proofs of Theorems 2.5 and 2.6 given above. It often applies
for d = o(nc) where c is some “reasonable” number like 1

2 .
We define a simple switching in a pairing P to be the replacement of two

pairs {p1, p2}, {p3, p4} by {p1, p3}, {p2, p4} or {p1, p4}, {p3, p2}. This induces
a switching of two edges of the corresponding graph, and early switching re-
sults analysed this operation directly on graphs without reference to pairings.
McKay [69] introduced switchings to the random regular graph scene to obtain
general upper and lower bounds on the probability of a subgraph occurring.
In [68] he used the method to obtain bounds on the probabilities of cycles
of various (unbounded) lengths occurring in G ∈ Gn,d. It follows that such G
a.a.s. satisfies a certain condition which, as McKay showed in [67], implies that
the distribution of eigenvalues of G tends towards a fixed function, which he
determined. The argument exploits a connection between the eigenvalues and
the cycle distribution via the number of closed walks of length k (noting that
this is the trace of the kth power of the adjacency matrix, which is of course
the sum of the kth powers of the eigenvalues). The same connection was used
by Broder and Shamir [24] to obtain an asymptotic almost sure upper bound
on the second-largest eigenvalue in absolute value, for d even. This bound was
decreased by Friedman [39] to 2

√
2d− 1 + 2 log d+ c′ holding with probability

1−O(n−c), where c′ depends on c.
In [70] McKay used another eigenvalue connection, the matrix tree theorem,

in a similar way to show that if a sequence of regular graphs Gi on ni → ∞
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vertices satisfies a certain asymptotic condition on numbers of cycles then the
number of spanning trees in Gi is (cd + o(1))ni where

cd =
(d− 1)d−1

(d2 − 2d)
1
2
d−1

.

The required condition is shown, using the switching results, to be true a.a.s.
for G ∈ Gn,d, implying that the nth root of the number of spanning trees
in G is a.a.s. asymptotic to cd (by which we mean it is a.a.s. in the interval
(cd − ε, cd + ε) for all ε > 0). McKay also proved a variety of stronger versions
and other variations of these statements.

The main power of switchings is the ability to obtain accurate estimates of
very small probabilities. As an example, we illustrate with a use of the more
modern switchings introduced in [79] and [81] which turn out to give results
more easily and stronger than using simple switchings as in McKay [71, 72].
The following result is part of the proof of (5) (giving an asymptotic formula
for |Gn,d|) for d = o(n1/3) in [79].

Lemma 2.9 (McKay and Wormald [79]) Let Sa,b denote the set of pairings
P ∈ Pn,d such that G(P ) has precisely a loops, b double edges, and no edges of
multiplicity greater than 2, nor double loops. Then for 1 ≤ a < d + ω(n) and
b < d2 + ω(n), where ω(n) → ∞ arbitrarily slowly, |Sa,b|/|Sa−1,b| = d−1

2a
(1 +

O(d+ω(n)
n

)).

Proof Denote a pair of points {pi, pj} by pipj. Given any pairing in Sa,b,
choose a pair p1p2 which projects onto a loop, choose two other pairs p3p4 and
p5p6, and replace all three pairs by the pairs p1p3, p2p5 and p4p6 to produce a
pairing P ′. This switching operation can be written as the composition of two
simple switchings.

We count how many ways this can be done so that P ′ lands in Sa−1,b. There
are 2a ways to choose p1 and p2 (as an ordered pair), and roughly dn ways to
choose each of p3 and p5, which determine p4 and p6. After this there is only
one way to perform the switching described. However, some choices of p3 and
p5 lead to unwanted multiple edges created by the switching (O(d3n) choices
do this) or to triple edges (O(bdn) do this) or unwanted loops (O(adn) do this)
or destroy loops or double edges unintentionally (O(adn + bdn) do this). So
the number of P ′ in Sa−1,b corresponding to P is

2ad2n2

(
1−O

(
d2 + a+ b

dn

))
. (10)

On the other hand, in how many ways can P ′ ∈ Sa−1,b be produced? To reverse
the procedure, choose p1 and p2 in the same cell (in d(d−1)n ways), and choose
p4 to be any other point (in dn− 2 ways). Then p3, p5 and p6 are determined,
in that order, as the points paired in P ′ with the three chosen points. Call this
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choice “bad” if it does not determine the reverse of the procedure as described.
There are only a few causes of badness, but counting as before shows that the
number of bad choices cannot exceed O(d3an+d2bn+d4n). Hence the number
of P in Sa,b corresponding to P ′ is

d2(d− 1)n2

(
1−O

(
d2 + da+ b

dn

))
,

and the result follows on division of (10) by this expression.

This lemma can be used to obtain the asymptotic probability that a = 0,
conditional upon a given value of b, by estimating |Sa,b|/|S0,b| (in the form
of a telescoping product of the ratios in the lemma) and summing over all
a which contribute significantly. (Large values of a can be ruled out by a
simple expectation argument.) This gives the reciprocal of the desired prob-
ability for d = o(n1/3). For d in this range, the restrictions in the hypotheses
of the lemma are easily justified in almost all pairings by expectation argu-
ments. To complete an estimation of P(Simple), we can use other types of
switchings for estimation of |S0,b|/|S0,0|, and combining the two, we can esti-
mate |Sa,b|/|S0,0| for all the significant terms. Summing over a and b gives an
estimate of |Pn,d|/|S0,0|, which gives the estimate of 1/P(Simple).

The superiority of the switching used in this proof over a simple switching
(switch a loop-inducing pair with any other pair) is that the number of ways to
reverse the procedure is almost independent of P . For the single switching, the
number of valid ways to reverse the procedure, given P ′, depends heavily on
the number of triangles in P ′. McKay [72] argued about the average number
of reversals, in order to reach d = o(n1/3); similar averaging arguments in [81]
for the “modern” switchings gave (5) (reaching d = o(

√
n)). Possibly this

averaging can be pushed further, but at the expense of a lot of work, and the
next step would only be n3/5.

Further uses of switchings are mentioned in Sections 2.5, 2.6, 2.7, 2.8, 3.2
and 5. Switchings also work fine on graphs in the model Gn,d. In addition, an
argument using one simple switching implies that many variables defined on
random regular graphs are sharply concentrated (Theorem 2.19). A general
description of the switching argument and an application to G(n, p) can also be
found in [123]. There the switchings give a relationship between probabilities
of events rather than cardinalities of sets, but they still taste of counting.

2.5 Longer cycles

Theorem 2.5 implies an asymptotic formula for the probability that G ∈
Gn,d has girth k when k and d are fixed (see Theorem 2.12). By the switching
method we can show that this asymptotic formula also applies when k →∞,
simultaneously with d → ∞. This is done for k close to 1

2 logd n by McKay
et al. [83]. The results on distribution of short cycles can also be extended in
this way to cycles of unbounded length.
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Garmo [50] used the small subgraph conditioning method to examine long
cycles. He showed that provided k = k(n) → ∞ faster than c log n but k =
o(n), the number of k-cycles in G ∈ Gn,d is concentrated near its expectation,
and he found its limiting distribution on the appropriate scale. If k/n → q,
0 < q < 1, the number is not so concentrated, the variance is a non-zero
constant times the square of the expectation, and the limiting distribution
was found.

2.6 Connectivity and diameter

For fixed d ≥ 3, G ∈ Gn,d is d-connected a.a.s., as was shown independently
by Bollobás [11] and by Wormald [117] (originally in [115]). This result can
readily be extended using switchings (Section 2.4) to d growing rather modestly
with n. The following extension seems to be the strongest in this sense which
has appeared in print, but the upper bound was just what was needed at the
time and by no means represents the limit imposed by the method.

Theorem 2.10 (ÃLuczak [63]) For 3 ≤ d(n) ≤ n0.02, G ∈ Gn,d is d-connected
a.a.s.

This is proved below in the more restricted range 3 ≤ d(n) ≤ 3 log n, which
is about as far as one can easily go without switchings or something similar.
The proof below actually gives the bound O(n2−d) on the probability that
G ∈ Gn,d is not d-connected for d fixed. It is easy to see that this bound
cannot be improved for fixed d (apart from the value of the constant implicit
in the O). In [117] and [63], non-regular versions of this theorem were given.
(See Theorem 2.16 below.)

Curiously, larger values of d seem to be more difficult to handle, but we
can confidently conjecture that the same basic result holds even for d of the
order of n.

Conjecture 2.11 For 3 ≤ d = d(n) < n− 3, G ∈ Gn,d is d-connected a.a.s.

This conjecture is trivially true also for d = n − 1 and n − 2. The exclusion
of n − 3 is necessary, since the complement of G is then a 2-regular graph
which has non-zero probability of having a 4-cycle. Deleting the other n − 4
vertices from G gives a disconnected graph. To prove the conjecture for d
bigger than n0.02 would not be too hard using switchings; something like

√
n

should be possible. However, to reach past d = n1−ε for arbitrarily small ε
would probably require a really new idea. On the other hand, for d very close
to n, it would become easy to verify by analysing the complement.

For d = 2 the story is different: a random graph in Gn,2 is a.a.s. discon-
nected. In fact, it is connected if and only if it is Hamiltonian, the probability of
which is easy to compute asymptotically. The number of Hamiltonian graphs
is n!

2n
, and dividing by |Gn,2| (say from Theorem 2.2) gives

P(G ∈ Gn,2 is Hamiltonian) ∼ 1
2e

3/4
√
πn−1/2 ≈ 1.876n−1/2. (11)
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The cyclic connectivity of regular graphs, especially 3-regular, has also been
of considerable interest. A set S of vertices or edges in a connected graph G
is cycle-separating if at least two components of G − S contain cycles. G is
cyclically k-vertex-connected (cyclically k-edge-connected) if it has no cycle-
separating vertex (respectively, edge) set of cardinality less than k. For d ≥ 3,
a large d-regular graph with a j-cycle immediately has cycle-separating vertex
and edge sets of cardinality (d−2)j. By Theorem 2.5, the probability that the
shortest cycle has length j tends to a non-zero constant. This shortest cycle
length, or girth, is asymptotically the determining factor for cyclic connectivity,
as shown in [117].

Theorem 2.12 Let d ≥ 3 and k ≥ 3 be fixed. The probabilities that G ∈ Gn,d
is

(i) cyclically k-vertex-connected

(ii) cyclically k-edge-connected

(iii) of girth at least k/(d− 2)

are all asymptotic to

∏

3≤i<k/(d−2)

exp

(−(d− 1)i

2i

)

as n→∞.

Theorem 2.5 determines this limiting probability from (iii).
Theorems 2.10 and 2.12 are both proved by showing that deleting a small

subset of the vertices of G ∈ Gn,d a.a.s. does not produce two reasonably large
components. This uses a simple expectation argument (and, essentially and
surreptitiously, Markov’s inequality, which can be found in many probability
texts such as Grimmett and Stirzaker [53]). It can employ either the formula
for the number of graphs with given degree sequence (as in [117]), or calcula-
tions directly in the pairing model and then making use of Lemma 2.1 (as by
Bollobás [11] and [16, Thm VII.32], although the proof in the latter is over-
simplified: the analysis is false for large values of the variable a). Use of the
pairing model approach is demonstrated in the proofs given below.

A notion closely related to the usual proofs of the connectivity results (for
example Lemma 2.14 below) is the isoperimetric number of a graph G, which is
the minimum value of the ratio |∂U |/|U | over all U ⊆ V (G), |U | ≤ |V (G)|/2.
Here ∂U is the set of edges with exactly one endpoint in U . Bollobás [17]
gave an asymptotically almost sure lower bound on this number for G ∈ Gn,d.
It follows that the number is a.a.s. between 1

2d − ε(d) and 1
2d + ε(d) where

ε(d)→ 0 as d→∞.
The diameter , diam(G), of a graph G is the maximum, over all u, v ∈ V (G),

of the distance from u to v. For a d-regular graph G this clearly satisfies



           

Models of random regular graphs 15

|V (G)| ≤ 1 +
∑diam(G)−1

i=0 d(d − 1)i. Graphs realising this bound are called
Moore graphs and are extremely rare. Roughly speaking, given n and d the
inequality gives a lower bound on the diameter of roughly logd−1 n. Using
methods somewhat related to those used for connectivity, Bollobás and de la
Vega [21] showed the following.

Theorem 2.13 The diameter diam(G) ofG ∈ Gn,d a.a.s. satisfies 1+blogd−1 nc
+
⌊
logd−1

(
(d−2)

6d
log n

)⌋
≤ diam(G) ≤ 1 +

⌈
logd−1((2 + ε)dn log n)

⌉
.

Another result involving distance was obtained by Bollobás [13], on the prob-
ability that for G ∈ Gn,d, each vertex v is determined uniquely by the sequence
n1(v), . . . , nk(v) where ni(v) is the number of vertices of distance i from v, and
k is a function of n. This event implies that the automorphism group of G is
trivial.

We turn now to the proofs of Theorems 2.10 and 2.12. These are included
not only because the latter has not been proved directly using the pairing
model before, but also as an example of using the independence property of
the pairing model. This is in the following lemma. First a technical definition:
let us define an (s, j)-separating set of a graph G to be a set S ⊆ V (G) with
|S| = s such that G− S has a component with exactly j vertices.

Lemma 2.14 Let d and s be arbitrary. For P ∈ Pn,d,

P(G(P ) has an (s, j)-separating set) < 32+s/d

(
j + s

n

)j( 1
2
d−1)

n
1
2
s(j + s)

3
2
s

for all j < 2
3
n− s.

Proof Let X denote the expected number of (s, j)-separating sets. To show
P(X ≥ 1) → 0 it is enough, by Markov’s inequality, to show EX → 0. If
such a set S exists, let F be a component of G − S with |V (F )| = j and let
T = S ∩N(F ). Put t = |T |. The j cells of P corresponding to V (F ) and the
t cells for T can be chosen in at most

(
n
j

)
nt ways.

Since each vertex in T has degree at least 1 in the subgraph of G induced by
F ∪T , the number r of edges with at least one end in F satisfies r ≥ (jd+t)/2.
Given r and the cells in V (F )∪T , what is the probability that a random pairing
has r pairs of the required type? By the independence property of the pairing
model, such pairs can be selected by repeatedly selecting the pair containing
the next unpaired point in a cell in V (F ). The probability of succeeding in
the ith step of this random process, conditional upon succeeding in all earlier
steps, is (j+t)d−2i+1

nd−2i+1
. So the probability of selecting r such pairs is at most

r∏

i=1

j + t− (2i− 1)/d

n− (2i− 1)/d
≤
(

[j + t]2r/d
[n]2r/d

) 1
2
d

(12)
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where we define [j]i+ε for i ∈ Z and 0 < ε < 1 to be [j]i(j − i)ε. Thus

EX ≤
s∑

t=0

∑

r

(
[j + t]2r/d

[n]2r/d

) 1
2
d(

n

j

)
nt < 3

s∑

t=0

(
[j + s]j+t/d

[n]j+t/d

) 1
2
d

[n]j
j!
nt (13)

since j + t ≤ j + s < 2
3
n and 2r/d ≥ j + t/d. The sum over t ≤ s can be

conveniently bounded by 3 times the term with t = s. We have

[j + s]j+s/d
[n]j+s/d

< min

(
(j + s)sj!

[n]j(n− j − s/d)s/d
,
(j + s)j+s/d

nj+s/d

)
.

Apply the first term in the minimum to one factor in (13) along with n−j− s
d
>

1
3n, and use the second term on the other factors, to obtain the lemma.

In the case of graphs, which by definition have no loops or multiple edges,
the result of Lemma 2.14 can be improved for small j as follows.

Lemma 2.15 Let d = d(n) < n1/3. For P ∈ Pn,d,

P(G(P ) ∈ Gn,d and has an (s, j)-separating set) < 2

(
j + s

n

)j(d− 1
2
j+ 1

2
)

nj+s.

Proof Firstly, we can assume j < 2d and s < d2 since otherwise there is
nothing to prove. If G is a graph, the lack of loops and multiple edges permits
replacement of the inequality r ≥ (jd + t)/2 in the proof of Lemma 2.14 by
r ≥ jd −

(
j
2

)
. Repeating the first part of that argument, and bounding (12)

by (j + t)
1
2
d/n

1
2
d, shows that the worst case is t = s and r = (jd + t)/2. The

sum over t and r can be bounded by say twice this largest term, which gives
the lemma.

Proof of Theorem 2.10 For n ≥ d+ 1, a graph with n vertices which is not
d-connected contains a (d − 1, j)-separating set for some 1 ≤ j ≤ 1

2n. For d-
regular graphs, j = 1 can be excluded immediately. For 2 ≤ j ≤ d the bound
in Lemma 2.15 is O(n2−d(d + 1)2d−1), with the worst case always occurring
at j = 2, as well as j = 3 in the case d = 3, the other cases contributing
negligibly. For j > d we use the bound in Lemma 2.14, which is at most

27(j + d)j(
1
2
d−1)+ 3

2
d

nj(
1
2
d−1)− 1

2
(d−1)

. (14)

This is O(n2−d) for j = d + 1 and j = d + 2 (worst case d = 3), O(n1−d)
for j = d + 3, and much smaller for j = 1

2n. For the values in between, the
second derivative with respect to j of the logarithm of (14) has the same sign
as j(d − 2) + d(2d − 7), which is positive for j ≥ 3. Hence it is a convex
function of j, and the sum of (14) over d + 3 ≤ j ≤ 1

2n is O(n2−d). So for
P ∈ Pn,d, the probability that G(P ) is a graph which is not d-connected is
O(n2−d(d+ 1)2d−1).

The theorem now follows by Lemma 2.1 and the estimate for P(Simple)
in (5).
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Proof of Theorem 2.12 A cyclically k-edge-connected d-regular graph with
sufficiently many vertices must have girth at least k/(d−2). On the other hand,
let G be d-regular, of girth at least k/(d−2), and with a cycle-separating vertex
set S such that |S| = s < k. Then G−S has two components with cycles and
hence one of them has j vertices for k/(d − 2) ≤ j ≤ 1

2n. Since s and d are
bounded, the upper bound in Lemma 2.14 is

O(1)(j + s)j(
1
2
d−1)+ 3

2
s

n
1
2
j(d−2)− 1

2
s

.

Since j(d−2) ≥ s+1, this is O(n−
1
2 ) for j near its lower bound, and analysis as

for (14) shows the sum over all relevant j is O(n−
1
2 ). Hence for P ∈ Pn,d, G(P )

a.a.s. either has girth less than k/(d − 2) or is cyclically k-vertex-connected
and hence (for n large enough) also cyclically k-edge-connected. It follows
by Lemma 2.1, (3) and Theorem 2.5 that the probability that G ∈ Gn,d is
cyclically k-vertex-connected, cyclically k-edge-connected, or of girth at least
k/(d− 2), all tend to the same non-zero constant as n→∞.

Note The proof of Theorem 2.12 is easily adapted to permit d and k to grow
slowly with n, using the result mentioned in Section 2.5 to estimate the prob-
ability of having large girth. However, even for d fixed, it is only easy to reach
k = o(log log n). To go past this point would require more careful estimation
of the probability of having a cycle-separating set in the conditional space of
large girth, which would appear to be even more difficult than extending the
range of d in Theorem 2.10. Again, the switching method would presumably
be required here.

We close this subsection with mention of a similar result for Gn,d.

Theorem 2.16 ([117]) Fix 3 ≤ d ≤ D, and for each n let d = d(n) =
(d1, . . . , dn) ∈ [d, . . . , D]n with

∑
di even. The probability that G ∈ Gn,d is

not d-connected is O(n2−d).

ÃLuczak’s theorem in [63] shows that this is also valid with the upper bound
d ≤ n0.02, but with the bound O(n2−d) weakened to o(1). Theorem 2.16 is
the degree-restricted counterpart of the result of Erdős and Rényi [36] that a
random graph with n vertices and 1

2n log n+O(n) edges a.a.s. has connectivity
equal to its minimum degree. Without degree restrictions, a much higher edge
density is required before higher connectivity occurs, but for both models of
random graphs the basic effect is the same: vertices of degree less than d are
a.a.s. the only obstruction to d-connectedness.

In [63], ÃLuczak also considers random graphs with given degree sequence
where the minimum entry is 2, obtaining results on the number and nature of
the components. Molloy and Reed [85] gave a nice extension of these results,
to determine asymptotically necessary and sufficient conditions on the degree
sequence d (with minimum degree 2) for a random graph in Gn,d to have a.a.s.
a giant component.
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2.7 Automorphisms and unlabelled graphs

What is the number Un,d of unlabelled d-regular graphs on n vertices? Let
S be any set of unlabelled graphs on n vertices, and S ′ the set of all labelled
versions of graphs in S. A simple application of the Frobenius–Burnside lemma
gives

|S| = 1

n!

∑

σ∈Sn
|fix(σ)| (15)

where Sn denotes the group of permutations of the label set {1, 2, . . . , n} and
fix(σ) denotes the set of graphs in S ′ fixed by σ. (See Harary and Palmer [54]
for a variety of applications of this principle to the enumeration of unlabelled
graphs.) With id denoting the identity permutation, |fix(id)| = |Gn,d| and so

∑

σ∈Sn\{id}
|fix(σ)| = o(|Gn,d|) (16)

is equivalent to
Un,d ∼ |Gn,d|/n!. (17)

Rewrite fix(σ) =
∑

G∈S′ x(G, σ), where x(G, σ) is 1 if G ∈ fix(σ) and 0
otherwise. Reversing the order of summation in (15) then gives

|S| = 1

n!

∑

G∈S′
φ(G),

where φ(G) denotes the number of σ ∈ Sn which fix G.
Hence (16), via (17), is equivalent to

E(φ(G))→ 1 for G ∈ Gn,d. (18)

Bollobás [14] showed that this condition holds for fixed d ≥ 3. In a more
general investigation of McKay and Wormald, this was extended to the follow-
ing result.

Theorem 2.17 ([78]) Let ε > 0 and 3 ≤ d = d(n) = O(n
1
2
−ε). Then

E(φ(G))→ 1 for G ∈ Gn,d.

This and Corollary 2.4 imply the following.

Corollary 2.18 For ε > 0 and 3 ≤ d = d(n) = O(n
1
2
−ε),

Un,d =
(dn)!

(dn/2)!2dn/2(d!)nn!
exp

(
1− d2

4
− d3

12n
+ o(1)

)
.

Versions of Theorem 2.17 are invariably proved by going back to (16) and
noting that if σ ∈ Sn \ {id}, then for any graph in fix(σ), the arrangement
of edges incident with vertices moved by σ is severely restricted. The various
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possible subgraphs induced by these edges have a low probability of occurring
in G ∈ Gn,d, and the sum of this probability over all such subgraphs and σ is
o(1). Bounding |fix(σ)| is achieved by classifying G ∈ fix(σ) according to the
numbers of edges joining vertices in cycles of σ of given small lengths. This
leads to optimisation over several variables. A proof is given for bounded d
in [120] which is significantly simpler than the others because of the way in
which it handles these variables.

Computations to bound the probability of subgraphs occurring can be done
directly in the pairing model as in [14] and [120] for fixed d, but for d growing
significantly with n as in [78] the switching method (Section 2.4) is required.
No doubt Theorem 2.17 is still valid with the upper bound on d increased to
d ≤ n− 4, but a proof of this seems out of reach at present.

The results of McKay and Wormald [78] actually treat the model Gn,d with
varying degrees, and results are obtained like Theorem 2.17, but the upper
bound on degrees depends on how many vertices of low degree are permitted.

2.8 Packing, covering and colouring

The independence property of the pairing model has been used heavily
in packing and covering problems (including colouring, which is equivalent to
covering with independent sets). Some algorithms (say, for finding independent
sets) can be analysed by generating the pairs of the pairing in the order in which
they are examined by the algorithm, as long as the algorithm is “greedy” in the
sense that it does not have to know too much about the part of the pairing not
yet generated. An upper or lower bound can then be obtained a.a.s. on the
graph parameter of interest, by determining the behaviour of the algorithm
a.a.s. Several results along these lines have been obtained by showing that
the parameter of interest a.a.s. closely tracks a function given as the solution
of differential equations throughout the generation process. Convergence is
proved using supermartingale inequalities. This is referred to below as the
differential equation method . It is described in [122], but see [124] for a much
more comprehensive and up to date exposition.

Quite apart from this, there is a general concentration result using mar-
tingales which applies to many random regular graph parameters which are
large. A general statement of the result seems to be lacking so far (though a
particular case was referred to by Frieze and Suen [45]), and so we give the
following. We write P ∼ P ′ to denote that two pairings P and P ′ differ by a
simple switching.

Theorem 2.19 If Xn is a random variable defined on Pn,d such that |Xn(P )−
Xn(P ′)| ≤ c whenever P ∼ P ′, then

P(|Xn − EXn| ≥ t) ≤ 2 exp

( −t2
dnc2

)

for all t > 0.
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Proof Hold n fixed and write X = Xn. Generate an element P of Pn,d by
choosing the pairs consecutively. After each pair is completed, canonically
choose the next point to be paired by some convention (such as the lowest-
numbered unpaired point) and choose its mate randomly. Let P0 be any pairing
with the order of pairs specified according to the order of generation, let P0(m)
denote the set of the first m pairs in P0, and define

Ym(P0) = E(X(P ) | P0(m) ⊆ P )

for P ∈ Pn,d. Then Y0(P ), Y1(P ), . . . , Ydn/2(P ) is a martingale (in fact a mar-
tingale constructed this way is called a Doob martingale; see McDiarmid [65]
for example), and we have Y0(P )=EX and Ydn/2(P ) = X(P ). The theorem
now follows from Hoeffding’s inequality (also called Azuma’s; see [65]), once
we show that |Ym+1(P ) − Ym(P )| < c for all m; that is, the martingale has
differences bounded by c.

For given P0, let i denote the canonical next point after the pairs in P0(m)
are chosen, and let Sj denote those pairings in Pn,d containing all of P0(m)
as well as the pair {i, j}. Then for any j and k which occur in no pairs in
P0(m), each P ∈ Sj corresponds to a unique P ′ ∈ Sk by the simple switching
{{i, j}, {k, l}} ↔ {{i, k}, {j, l}}, where l is determined as the mate of k in P .
This gives a bijection between Sj and Sk. By assumption |X(P ′)−X(P )| ≤ c,
and the required bound on the differences now follows because Pn,d is a uniform
space.

One way of deriving results on Gn,d using Theorem 2.19 is to consider Yn
defined on Gn,d such that Y (G(P )) = X(P ) for all P ∈ Simple where Xn

satisfies the hypotheses of the theorem. Then

P(|Yn − EYn| ≥ t) ≤ 2

p
exp

( −t2
dnc2

)

in Gn,d, where p is the probability (in Pn,d) of Simple. This gives concentra-
tion of Xn and normally implies that EXn is well approximated by EYn (but
P(Simple) and the range of values of Yn can affect quantification of this).

2.8.1 Independent sets, dominating sets and star forests An indepen-
dent set or stable set in a graph G is a set of vertices no two of which are
adjacent, and the independence number α(G) of G is the cardinality of a max-
imum independent set in G. A dominating set is a set S of vertices such that
every vertex not in S has at least one neighbour in S, and the dominating
number α′(G) of G is the cardinality of a minimum dominating set in G.

Since a simple switching in a pairing P can change α(G(P )) by at most 1,
Theorem 2.19 and Corollary 2.3 imply that α(G)/|V (G)| (called the indepen-
dence ratio) is concentrated when d is fixed. For instance, it is a.a.s. within
log n/

√
n of its expected value for G ∈ Gn,d. A similar statement holds for the
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dominating number. In spite of this, no argument has been forthcoming to
show that the expected value of α(G)/n tends to some constant for G ∈ Gn,d
as n→∞. This (and a similar result for α′(G)/n) would imply the following.

Conjecture 2.20 For fixed d, there are constants β(d) and β′(d) such that
for all ε > 0, |α(G)−nβ(d)| < εn and |α′(G)−nβ′(d)| < εn a.a.s. for G ∈ Gn,d.

What bounds are known on α(G)/n? Bollobás [12] used the expected
number of independent sets of a given size to give an upper bound on α(G)/n
a.a.s. for G ∈ Gn,d, the upper bound being given in terms of the solution of
an equation and being strictly less than 2 log d

d
for all d. It can be checked that

this bound is asymptotic to

γ1(d) =
2n

d
(log d− log log d+ 1− log 2) (19)

as d → ∞. By sharpening the method, McKay [73] improved these slightly
to functions γ2(d), a.a.s. for G of sufficiently large (but fixed) girth. In view
of the concentration mentioned above and Theorem 2.5, γ2(d) + ε applies, for
any ε > 0, with no girth restriction. (Beware of McKay’s sign error in the
terms 1 − log 2 in his expression for γ1(d) defined above.) The definition of
γ2 is complicated but numerical computations give α(G)/n < γ2(3) < 0.4554
a.a.s. for G ∈ Gn,3, and similarly γ2(4) < 0.4164 and γ2(5) < 0.3845. McKay
expressed disappointment in the small improvement he obtained over γ1(d) as
d → ∞, but as we mention below this was inevitable because γ1(d) is quite
sharp to order o(n/d) in this asymptotic sense.

Lower bounds were obtained by several authors; the best (at least for small
d) comes from analysing what is called in [124] the degree-greedy algorithm:
choose vertices to put in the growing independent set randomly; the first, v1,
is chosen uniformly at random, and in general after adding a vertex vi to
the set, delete vi and its neighbours from the graph and randomly choose the
next vertex vi+1 (uniformly) from those vertices now of minimal degree. The
analysis uses the differential equation method. This was done first by Frieze
and Suen [45] for d = 3, and independently for arbitrary d ≥ 3 in [122]. It
gives asymptotically almost sure lower bounds β1(d) on α(G)/n. For example,
β1(3) = 6 log 3

2
− 2 = 0.4328, β1(4) = 0.3901 and β1(5) = 0.3566. These

constants are computed numerically for d ≥ 4 by solving systems of first order
nonlinear differential equations, and the asymptotic behaviour for large d is
unknown. Further values are in [122] and [124]. The best known simple formula

for a lower bound when d ≥ 4 is 1
2
− 1

2

(
1
d−1

)2/(d−2)
from [122]. However, this

is far from β1(d) for d small, and approaches only 1
2γ1(d) for large d. It is

obtained from the simpler algorithm which randomly greedily chooses vertices
for the independent set regardless of their neighbours, analysed again by the
differential equation method. Weaker lower bounds were obtained earlier by
Bollobás [12] through lower bounds on the independent set size of all d-regular
triangle-free graphs, and arguing that deleting all vertices in short cycles a.a.s.
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decreases the independent set size only marginally. Interestingly, the non-
deterministic bounds used here are obtained by analysing the greedy algorithm
on triangle-free graphs of given average degree. That line of reasoning was also
improved by Shearer [105] but with only an iterative formula for arbitrary d
which seems always to be less than β1(d).

Frieze and ÃLuczak [44] proved that functions γ1(d)+o(n/d) for d→∞, d <
n1/3 − ε, provide upper and lower bounds a.a.s. on α(G), G ∈ Gn,d. However,
this result implies nothing for small d. They used an argument partitioning
the pairing into large pieces which are then analysed almost separately, and
part of the proof relies on the results of McKay and Wormald [79] which were
obtained using switchings.

The dominating number seems to have been well studied only in Gn,3. Mol-
loy and Reed [86] showed that the obvious lower bound 1

4n on α′(G) can be
improved slightly to α′(G) > 0.2636n a.a.s. by simply computing the expected
number of dominating sets of that size. On the other hand they gave the almost
sure upper bound 0.3126n by analysing a greedy algorithm which walks along
a Hamilton cycle. The analysis uses the differential equation method and relies
on Theorem 4.5 which implies that when proving events a.a.s., one can assume
G ∈ Gn,3 is a random Hamilton cycle plus a random matching. This is easier to
analyse than the algorithm corresponding to the degree-greedy algorithm for
independent sets; Duckworth and Wormald [34] applied the differential equa-
tion method to such an algorithm and improved the upper bound to 0.2746n.
To summarise, 0.2636 < α′(G)/n < 0.2746 a.a.s. for G ∈ Gn,3.

As a slight variation of the last result, by analysing almost the same algo-
rithm, it is shown in [34] that G ∈ Gn,3 a.a.s. has a forest of stars containing at
least 0.7178n edges. The obvious upper bound is 0.75n, which can be reduced
to 0.7390n using the usual argument of computing the expected number of
star packings with a given number of edges.

2.8.2 Chromatic number Frieze and ÃLuczak [44] also gave functions asymp-
totic to d

2 log d
for d → ∞ which a.a.s. are upper and lower bounds on the

chromatic number χ(G) for G ∈ Gn,d. Like their bounds on independent set
size, these give no restriction for small d. A related result by Bollobás and
Clark [18] considers a generalised version of chromatic number.

The chromatic number of G is at least n/α(G), and so almost sure lower
bounds for small d are given by the almost sure upper bounds on α(G) men-
tioned in Section 2.8.1. Better lower bounds come from considering the ex-
pected number of k-colourings. For instance, counting bicoloured graphs shows
that for fixed d ≥ 3, G ∈ Gn,d a.a.s. cannot be 2-coloured. For r ≥ 3, Molloy
and Reed [84] performed calculations of the expected number of r-colourings
of G ∈ Gn,d which show that its nth root is at most r( r−1

r
)d/2 + o(1) (for fixed

r and d). Hence, for instance, a.a.s. χ(G) ≥ 4 for G ∈ Gn,d when d ≥ 6.
Brooks’ Theorem (see Diestel [33] for example) gives the upper bound

χ(G) ≤ d a.a.s. Non-trivial asymptotically almost sure upper bounds for
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small d seem to be harder to obtain. Borodin and Kostochka [23], Catlin [25]
and Lawrence [62] all showed that for K4-free graphs G, χ(G) ≤ 3

4
(∆(G) + 2).

Hence by Lemma 2.7, χ(G) ≤ 3
4
(d + 2) a.a.s. for G ∈ Gn,d. For triangle-free

graphs G there is the bound χ(G) ≤ 2
3
∆(G) + 2, which has been attributed

to Kostochka, and by Theorem 2.5 implies χ(G) ≤ 2
3
d+ 2 with probability at

least e−(d−1)3/6 − o(1) for G ∈ Gn,d.
These results still leave open the question of whether a random 4-regular or

5-regular graph is a.a.s. 3-colourable. An answer to this would be a significant
breakthrough.

Knowledge of the edge-chromatic number χ′(G) is in a much more satis-
factory state. It is shown below (Corollary 4.16) that G ∈ Gn,d a.a.s. has a
partition of the edge set into perfect matchings if n is even. Hence χ′(G) = d
a.a.s. for n even, and clearly for n odd it must attain the upper bound d + 1
of Vizing’s theorem.

2.8.3 Linear arboricity The linear arboricity of a graph is the minimum
number of edge-disjoint linear forests (i.e. forests in which each component is a
path) which cover the edges of the graph. The linear arboricity conjecture [1] is
that every d-regular graph has linear arboricity precisely equal to the obvious
lower bound of d1

2(d + 1)e. Alon [2] proved using the Lovász Local Lemma
that all regular graphs with sufficiently large girth satisfy this. Based on his
approach, McDiarmid and Reed proved that a random d-regular graph a.a.s.
satisfies the conjecture.

Theorem 2.21 (McDiarmid and Reed [66]) For fixed d, the linear arboricity
of a random d-regular graph is a.a.s. d1

2(d+ 1)e.

This theorem is proved easily from the more recent results on the structure of
random regular graphs, as shown in Section 4.3. It is also shown there that
the paths in all but one of the factors can be forced to be Hamilton paths.

2.9 Perfect matchings and Hamilton cycles

The aim of this section is to whet the appetite with some of the results on
the existence of certain types of spanning subgraphs of random regular graphs.
The method of proof of the strongest results in this direction is presented
in Section 4, along with many extensions of these results which assert the
existence of factorisations of regular graphs into subgraphs of prescribed types.

Every d-regular (d − 1)-edge-connected graph of even order has a perfect
matching (see, for example, Berge [8]). Hence Theorem 2.10 has an interesting
consequence.

Corollary 2.22 (Bollobás [16]) For fixed d ≥ 3, G ∈ Gn,d a.a.s. has a perfect
matching if dn is even.
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This fails for d = 2 since in that case G ∈ Gn,d a.a.s. has an odd cycle, and
hence no perfect matching. One way to see this is to observe from Theorem 2.5
that, for fixed k ≥ 2, the probability that G ∈ Gn,2 has no odd cycle of length

less than 2k is exp(−∏k
i=2

1
4i−2

) + o(1), which is exp(−1
4

log k) + o(1) → 0 as
k → ∞. (Here k goes “slowly” to ∞ while n goes “quickly”.) Alternatively,
this probability can be computed using generating function methods and then
evaluated asymptotically (see Wilf [112, Section 5.3] for simlar examples). In
Pn,2 there is the following exact expression, which is asymptotic to Cn−1/4 for
a constant C. It then follows from Lemma 2.1 that the probability is also o(1)
for G ∈ Gn,d.

Lemma 2.23 For P ∈ Pn,2, the probability that G(P ) has no odd cycles is
precisely

b 1
2
nc∏

i=1

4i− 2

4i− 1
.

Proof By the independence property of the pairing model, the random pairing
P ∈ Pn,2 can be generated in such a way that the next point paired is always
a point in a cell which already contains a paired point (if such a cell exists).
Then G(P ) is generated by tracing along paths, not starting a new path until
the old one becomes a cycle. Let Fi denote the event that the i’th pair chosen
completes a cycle inG(P ) with the earlier pairs. In order to create no odd cycle,
the requirement is that F2i−1 must be false for each 1 ≤ i ≤ 1

2n. (Conditioning
on F2i−1 being false for all i ≤ j, if F2j holds then the cycle created will have
even length and if F2j+1 holds the cycle will have odd length.) Given all earlier
choices of pairs, the conditional probability of Fi is (2n− 4i+ 3)−1 regardless
of the earlier choices. The product of (1 − (2n − 4i + 3)−1) over 1 ≤ i ≤ 1

2n
gives the stated probability.

The expected number and variance of the number of perfect matchings
were computed asymptotically by Bollobás and McKay.

Theorem 2.24 (Bollobás and McKay[20]) For 3 ≤ d = d(n) ≤ (log n)1/3,
let Mn denote the number of perfect matchings in G ∈ Gn,d. Then with n
restricted to even integers,

EMn ∼
√

2e1/4

(
(d− 1)d−1

dd−2

) 1
2
n

,
EM2

n

(EMn)2
→ e−

1
4

(2d−1)/(d−1)2

√
d− 1

d− 2
.

This result on the first moment is readily derived in the pairing model by
counting how many ways one can first choose a perfect matching of the n
vertices, then lay down a set of pairs in P which create the chosen matching in
G(P ), and then complete these pairs to a full pairing. After this, divide by the
total number of pairings. To obtain the result in Gn,d one can condition these
counts on having no loops or multiple edges, using for instance the method of
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moments as in Section 2.3. (Lemma 4.4 below performs this task in general.)
The second moment EM2

n is calculated in a similar fashion by laying down the
pairs corresponding to an ordered pair of perfect matchings, which is much
more complicated than the first moment calculation due to an extra variable
denoting the number of edges in common between the two perfect matchings.

Since the variance is VarMn = EM2
n − (EMn)2, it tends to a non-zero

constant multiple of (EMn)2. This gives some information on the distribution
of Mn via Chebyshev’s inequality

P(|X − EX| ≥ t) ≤ σ2

t2
,

valid for any real-valued random variable X with variance σ2 and for any
t > 0. Putting t < EX gives an upper bound on P(X = 0), which is loosely
called the second moment method . This is not sharp enough in this case to
imply Corollary 2.22. However, the elaborate refinement of the second moment
method presented in Section 4 is sufficient to obtain not only Corollary 2.22,
but also the full asymptotic shape of the distribution of the number of perfect
matchings.

Ever since the earliest results on random regular graphs, the natural con-
jecture on Hamiltonicity was (by Bollobás [11], for example) that G ∈ Gn,d is
a.a.s. Hamiltonian for all fixed d ≥ 3. For d = 2 this is false, by (11) for exam-
ple. The second moment method implies that asymptotically at least a certain
percentage of large random 3-regular graphs are Hamiltonian, which was first
shown by Robinson and Wormald in [98]. In fact, it was shown there that by
restricting to graphs with no triangles, a higher proportion (2 − 3e−13/12) is
obtained, which can be shown by bijective type methods to be valid back in the
unrestricted space Gn,3. This idea evolved into the small subgraph condition-
ing method for estimating the distribution of the number of large subgraphs.
The results in the following theorem were derived for d = 3 in [98], stated in
general in [100] without being used, and then derived and used by Frieze et
al. [42].

Theorem 2.25 For fixed d ≥ 3, let Hn denote the number of Hamilton cycles
in G ∈ Gn,d. Then with dn restricted to even integers,

EHn ∼ e

√
π

2n

(
(d− 2)d−2(d− 1)2

dd−2

) 1
2
n

,
EH2

n

(EHn)2
→ d

(d− 2)e2/(d−1)
.

The calculations are similar to those for Theorem 2.24 but derivation of the
second moment in particular is considerably more difficult. Again, two copies
of the subgraph in question (this time a Hamilton cycle) are laid down and
the rest of the cubic graph is completed. (All calculations can be made in the
pairing model or directly in the graph model.) The number of ways of doing
the laying down is computed as a function of the structure of the graph which
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is the intersection of the two Hamilton cycles. Two variables are required:
the number of paths in this intersection and the number of isolated vertices.
The resulting expression is summed over these two variables and evaluated
asymptotically. (In the case d = 3 the number of isolated vertices must be 0,
and so that case is much simpler than for general d.)

Further sharpening of the small subgraph conditioning method, as de-
scribed in Section 4, produced the following.

Theorem 2.26 (Robinson and Wormald [99, 100]) For fixed d ≥ 3, G ∈ Gn,d
is a.a.s. Hamiltonian.

This was proved first for large d only, using an entirely different method, by
Fenner and Frieze [38] (d ≥ 796) and independently by Bollobás [15] (d ≥ 107).
The method used was developed by Fenner and Frieze [37] for a model of non-
regular graphs. It combines the technique which Pósa [90] and Komlós and
Szemerédi [61] successfully applied to determine the threshold for Hamiltonic-
ity for G ∈ G(n, p) and a colouring argument by which the random graph is
split into semi-random pieces of different colours. (This resembles the parti-
tioning argument mentioned in Section 2.8.1 regarding independence number.)
Neither of these works was attempting to achieve a sharpest possible result
from this method. Frieze [41] later made improvements to cover all d ≥ 85,
giving a polynomial time constructive proof, before the appearance of [99] and
[100] settled the matter for all d ≥ 3.

Theorem 2.26 has now been improved in various ways to give much stronger
results. It is now known that for d ≥ 3, G ∈ Gn,d is a.a.s. decomposable
into edge-disjoint Hamilton cycles (plus a matching if d is odd). In addition,
Hamilton cycles are in a certain sense dense in random regular graphs: for
d ≥ 3 there is a.a.s. a Hamilton cycle containing a randomly selected set of
o(
√
n) edges of G ∈ Gn,d. These results and others are discussed more fully in

Section 4.3.

By putting vertices of degree 2 in each selected edge, the last-mentioned
result translates to a result about random graphs with all vertices of degree
3 except for a small number of degree 2. This is possibly the only non-trivial
result known on the existence of perfect matchings or Hamilton cycles in G ∈
Gn,d, and yet the following is certain to be true.

Conjecture 2.27 Restricting d = d(n) to those sequences with elements di
in the range 3 ≤ di ≤ D for some fixed d and D, G ∈ Gn,d is a.a.s. Hamiltonian.

It would be very interesting to prove this even for d = 3 and D = 4; probably
all the difficulties for this are encountered in the special case where half the
vertices are of degree 3 and half of degree 4 (mentioned in Section 1.1).
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3 Other uniform models

3.1 Unlabelled regular graphs

How does one select an unlabelled graph uniformly at random? As in
Section 2.7, let S be a set of unlabelled graphs on n vertices and let S ′ be the
set of all labelled versions of them. By applying (15) to each singleton subset
of S, it follows that an unlabelled graph can be selected uniformly at random
from S by selecting a labelled G ∈ S ′ with weight proportional to |φ(G)|, and
then ignoring the labels on the vertices. From Theorem 2.17 it follows that for
3 ≤ d = o(n

1
2
−ε), a structural property is a.a.s. true of G ∈ Gn,d if and only if

it is a.a.s. true of a random unlabelled d-regular graph n-vertex graph.

3.2 Random bipartite graphs

For a model of random bipartite regular graphs we assume that n is even
and that the vertices of one colour are labelled 1, 2, . . . , 1

2n, as are the vertices
of the other colour. The natural pairing model for d-regular bipartite graphs is
obvious: the cells containing points are the same as for ordinary graphs, but the
random perfect matching is equivalent to a bijection between the points in cells
of one colour and those in cells of the other colour. As a result, calculations are
usually even easier than in the graph case. O’Neil [89] found that the number
of bicoloured d-regular graphs on n vertices (n even) is asymptotic to

(1
2dn)!e−

1
2

(d−1)2

(d!)n
(20)

for 3 ≤ d < (log n)
1
4−ε with ε > 0, and the same result (at least for d fixed)

was found in [4] using a model equivalent to the pairing model. O’Neil also
obtained a few results on random bipartite graphs.

More recently McKay [71] extended (20) to higher d using switchings, and
then McKay and Wang [76] extended to d = o(

√
n) using the new type of

switchings exemplified by the proof of Lemma 2.9.
For simplicity when we refer to the model of random bipartite regular

graphs we mean the model described above, which is actually uniform on
bicoloured graphs. It is not uniform on bipartite d-regular labelled graphs
because the number of 2-colourings of a bipartite graph G is 2k where k is the
number of components of G. To deal with graphs which are not bicoloured
but are rather bipartite, one notes (see below) that, at least for d ≥ 3, the
bicoloured graphs are a.a.s. connected. This implies that the bipartite graphs
(taken as Gn,d restricted to bipartite graphs) are similarly a.a.s. connected. For
d = 2 the situation is a bit more complicated but results can be obtained by
exact enumeration and we do not pursue this here. So, in this article, random
regular bipartite graphs have the uniform bicoloured distribution.

The distribution of short cycles can be derived just as for graphs. The

expected number of cycles of length i is asymptotically (d−1)i

i
for all even
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i ≥ 4, and the numbers of cycles of given bounded lengths are asymptotically
independent Poisson. This was all derived in [115].

Ellingham [35] showed the analogues of Theorems 2.10 (for d bounded)
and 2.12 on connectivity of random regular bipartite graphs. The main result
on the expected number of automorphisms of a random regular graph, Theo-
rem 2.17, also applies in the bipartite case as shown by the very general results
of McKay and Wormald [78, Note before Corollary 3.5].

The expectation and variance of the number of perfect matchings in random
d-regular bipartite graphs were given asymptotically in [89] and [20] (for quite
small d). For Hamilton cycles these quantities were given in [98], where the case
d = 3 of the following result was proved simply from Chebyshev’s inequality.

Theorem 3.1 (Robinson and Wormald [100]) For fixed d ≥ 3, a random d-
regular bipartite graph is a.a.s. Hamiltonian.

Godsil and McKay [51] obtained asymptotics for the number of k×n Latin
rectangles for k = o(n6/7). As part of the argument they find an asymptotic
formula for the number of perfect matchings (respecting the bipartition) in
a random edge-coloured bicoloured k-regular graph whose edges have been
coloured such that each colour class is a perfect matching. This is equivalent
to the bicoloured analogue of the random graph model kGn,1 defined in Sec-
tion 4.3. Their derivation uses an integral formula to convert the problem into
one about short cycles, and from here switchings are used (necessarily, for such
a large k).

3.3 Directed graphs

LetDGn,d denote the uniform model of random d-regular digraphs (in which
each vertex has in- and out-degree d).

Cooper [28] showed for D ∈ DGn,2 that D is a.a.s. strongly 2-connected
and [29] that a.a.s. every pair of vertices lies on a common directed cycle. For
graphs, 2-connectedness implies such a property, but not so for digraphs.

For d = 2 the expected number of directed Hamilton cycles goes to 0, so
digraphs in DGn,d are a.a.s. not Hamiltonian. For larger d the situation is
different.

Theorem 3.2 (Cooper et al. [31]) For d ≥ 3 a random digraph in DGn,d a.a.s.
has a directed Hamilton cycle.

The proof of this employs the ideas from Section 4.3, and is outlined near the
end of that section. A different but related proof was given by Janson using
the small subgraph conditioning method directly (see Theorem 4.12).

The d-regular bipartite graph corresponding to a d-regular digraph has a
perfect matching by Hall’s theorem (see [22] for example), and so all d-regular
digraphs have an edge decomposition into 1-regular factors.
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3.4 Multigraphs

Nothing much has been done with uniformly distributed multigraphs. The
asymptotic number with a given degree sequence (with an upper bound on
the degrees) is found in [118], with loops permitted as well as multiple edges.
Bender and Canfield [5] have a similar result, but they effectively count a loop
as contributing degree 1 to a vertex. These results should be possible to extend
to higher degrees.

Of course many results on the uniform model can be deduced from the
pairing model, which is not uniform but is close. This can be quantified as
follows (here multigraphs permit loops as well).

Theorem 3.3 (Janson [56]) For d fixed, an event is true a.a.s. for G(P ),
P ∈ Pn,d, if and only if it is true a.a.s. for d-regular multigraphs chosen u.a.r.

This does not follow from Theorem 2.6, because multigraphs with many mul-
tiple edges have a reduced probability of arising as G(P ). Hence Theorem 2.6
leaves open the possibility that a random d-regular multigraph a.a.s. has at
least say log n multiple edges. Some further analysis of the appropriate mo-
ments was required to prove this theorem.

3.5 Hypergraphs

There are some results on uniformly distributed d-regular, r-uniform hy-
pergraphs with d and r fixed, as n→∞ (subject to dn being a multiple of r).
For many of the results on random regular graphs, similar techniques will suf-
fice. For instance, Bollobás [10] stated an asymptotic formula for the number
of r-uniform d-regular hypergraphs, and Cooper et al. [32] applied the small
subgraph conditioning method to show that for fixed positive integers r and s,

lim P(Gn,r,s has a perfect matching ) =

{
0 s > σr
1 s < σr

where

σr =
log r

(r − 1) log
(

r
r−1

) + 1.

3.6 Tournaments

In 1974 Spencer [106] used an argument akin to switchings to prove prop-
erties of subgraphs of random regular tournaments. This gave the logarithm of
the number of n-vertex regular tournaments asymptotically. This result was
superseded by McKay [74], who found an asymptotic formula for the num-
ber itself using saddle-point techniques. This method, also used for asymp-
totic enumeration of tournaments with given score sequence by McKay and
Wang [77], is useful for studying random regular tournaments. In this way
Gao et al. [46] obtained some results on subgraphs of random tournaments
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with a given score sequence, and have shown that the expected number of
automorphisms tends to 1.

4 The small subgraph conditioning method, contiguity,
and superposition models

When it was finally shown in [99] and [100] that almost all d-regular graphs
are Hamiltonian for d ≥ 3 (Theorem 2.26), the central work involved two appli-
cations of essentially the same general method. The method has since proved
useful for gaining information on a variety of spanning subgraphs, as well as
other large subgraphs, of random regular graphs. The strongest consequences
are given in Section 4.3.

The way in which the method works can be described as follows. (A precise
development of how to use it comes in the following subsections.) The random
variable Y = Yn of interest (for instance, the number of Hamilton cycles in
G ∈ Gn,d) has a variance which is of a size comparable with the square of its
expectation (as in, for example, Theorems 2.24 and 2.25). Thus, Chebyshev’s
inequality is not strong enough to show that a.a.s. Y > 0. However, the
explanation for the large variance lies in the fact that the distribution of Y is
affected by the presence of certain small but not too common subgraphs in the
random graph—usually the short cycles of given lengths. (By not too common,
we mean the expected number is bounded.) It turns out (in the cases where
the method works) that conditioning on the small subgraph counts (up to some
preselected size of small subgraphs) affects EY , altering it by some constant
factor. However, luckily and yet mysteriously, such conditioning reduces the
variance of Y , to the point that conditioning on the numbers of enough small
subgraphs reduces the variance to any desired small fraction of (EY )2.

Perhaps this is not a total mystery. For instance, one can imagine that
the number of ways in which a Hamilton cycle or perfect matching can “go
through” a short cycle depends on the length of the short cycle. Probably
the main mystery is not that conditioning on the small cycle counts affects
EY , but that the variance can be made so small by conditioning on the small
subgraph counts. The computations which are performed in carrying out the
small subgraph conditioning method demonstrate this as a fact but leave the
user with no underlying explanation of the effect. These computations can be
described as follows. The set of all regular graphs can be divided into groups
according to the small subgraph counts. The variance VarY of Y can be
written as the expected value of the variance within a group, plus the variance
of the group mean. The calculations show that the latter consumes almost all
of the variance of Y , so the variance within any group is small. One deduction
which can be made from this is that Y > 0 a.a.s. This explains the basic
argument used in [99], where Y counts Hamilton cycles, to show that G ∈ Gn,3
is a.a.s. Hamiltonian.

Moreover, the asymptotic distribution of Y is determined from the distri-
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bution of the group means and the sizes of the groups. The fact that the
group means of the most common groups are close to each other implies that
the value of Y does not vary too much in the random graphs (except for a rare
event). For instance, taking Y as the number of perfect matchings in G ∈ Gn,d,
this shows that the number of perfect matchings in such a random graph usu-
ally varies by only a constant factor. This was used in [100] to deduce that
adding a random perfect matching to an edge-disjoint random (d− 1)-regular
graph produces a random d-regular graph with something close to the uniform
distribution. This relationship is called contiguity of the two models—perfect
matching plus (d − 1)-regular on the one hand, and d-regular on the other
hand—as defined precisely below. Hence, if random (d − 1)-regular graphs
are a.a.s. Hamiltonian, so are random d-regular graphs, and so Theorem 2.26
follows by induction on d from the case d = 3. This is the second major use
of the small subgraph conditioning method, and it leads naturally to the es-
tablishment of relationships between various non-uniform models of random
regular graphs which are called here superposition models.

4.1 Contiguity of models

One of the most important conclusions from the small subgraph condition-
ing method is well described in terms of altered probabilistic models. Suppose
that Y is a non-negative integer random variable defined on a space G with
EY 6= 0. We define1 a new model G(Y ) with the same underlying set as G by
weighting the probability of each element G by Y (G). That is, the probability
of G in G(Y ) equals the probability in G multiplied by Y (G)/EY . Thus the
probability of an event H in G(Y ) is EG(Y ∧ 1H)/EGY , where 1H is the indi-
cator function of H and ∧ denotes the conjuction of events. We have already
encountered this idea in the proof of Lemma 2.8 with Y = [Xk,n]rk .

It is a very interesting property of two different random graph models if
all events true a.a.s. in one model are true a.a.s. in the other. To make this
precise, suppose that (Gn)n≥1 and (Ĝn)n≥1 are two sequences of probability

spaces such that Gn and Ĝn differ only in the probabilities. We say that these
sequences are contiguous2 if a sequence of events An is a.a.s. true in Gn if and
only if it is a.a.s. true in Ĝn, in which case we write

Gn ≈ Ĝn.

Contiguity is clearly an equivalence relation on these sequences of spaces.

1This definition is for discrete probabilistic spaces, a context which can be assumed for
this article. The method of this section holds in continuous spaces as well, by defining
dQ/dP = Y/EGY where P and Q are the probability measures in G and G(Y ) respectively,
and the σ-algebra is the same for both spaces.

2Formally, two sequences Pn and Qn of probability measures are contiguous if Pn and
Qn are defined on the same measurable space (Gn,Fn) for each n, and for every sequence of
measurable sets An, limn→∞ Pn(An) = 0 iff limn→∞Qn(An) = 0. Here I have defined the
(sequences of) spaces to be contiguous if the probabilities are.
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The original approach in [99] and [100] is sufficiently strong for all the
applications of the small subgraph conditioning method which have occurred
to date and was presented in general by Molloy et al. [87, Theorem 1]. However
Janson [56] was able to streamline the procedure by adjusting the method
of proof so as to eliminate several of the conditions required in [87]. This
simplification has made little difference in applications of the method: it turns
out that the extra conditions have been trivially satisfied in every application
so far. However, the simplification is definitely advantageous.

Theorem 4.1 ([56], see also [87]) Let λi > 0 and δi ≥ −1, i = 1, 2, . . ., be
real numbers and suppose that for each n there are random variables Xi =
Xi(n), i = 1, 2, . . . , and Y = Y (n) defined on the same probability space
G = G(n) such that Xi is non-negative integer valued, Y is non-negative and
EY > 0 (for n sufficiently large). Suppose furthermore that

(a) For each k ≥ 1 Xi, i = 1, 2, . . . , k are asymptotically independent Poisson
random variables with EXi → λi;

(b)

E(Y [X1]j1 · · · [Xk]jk)

EY
→

k∏

i=1

(λi(1 + δi))
ji

for every finite sequence j1, . . . , jk of non-negative integers;

(c)
∑

i λiδ
2
i <∞;

(d)
EY 2

n

(EYn)2
≤ exp

(∑

i

λiδ
2
i

)
+ o(1) as n→∞.

Then

P(Yn > 0) = exp

(
−
∑

δi=−1

λi

)
+ o(1),

and, provided
∑

δi=−1 λi <∞,

G(Y ) ≈ G

where G is the probability space obtained from G by conditioning on the event∧
δi=−1(Xi = 0).

The proof of this theorem is based on the ideas in the discussion at the start
of Section 4. The role of condition (b) is to deduce by the method of moments
the joint distribution of the Xi in G(Y ), which then gives the expected value
of Yn conditioned on X1, . . . , Xk. For the proof the factor (1 + δi) need not be
interpreted. It is an adjustment to the expected value of Xi in the space G(Y ),
so that δi = −1 only if conditioning on the event Xi > 0 in G suppresses the
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value of Y asymptotically. Condition (d) has been at other times stated with
“=” instead of “≤”, but “≤” implies “=” anyway (see Janson [56, Theorem
1, Note 4]), basically because variance is always non-negative.

The hypotheses of the theorem are normally verified in much the same way
on each occasion. Most of the times this method has been used so far, the Xi

are short cycle counts and so (a) is simply Theorem 2.5 or Theorem 2.6. In
all other cases, the method of moments has sufficed for verifying (a). Part (d)
is verified like Theorems 2.24 or 2.25, and (b) is usually like a combination of
the two, harder than (a) but easier than (d).

It follows immediately from contiguity that the value of Y in G is usually
“close” to its expected value.

Corollary 4.2 If the conditions of the theorem are satisfied then

lim
ε→0+

{
lim
n→∞

Pn

(
ε <

Yn
EYn

<
1

ε

)}
= 1

where Pn denotes probability in G.

From the arguments in [99] and [100] it was clear that when the hypotheses
of the theorem are satisfied, the distribution of Y is determined asymptotically.
Janson made this explicit.

Theorem 4.3 (Janson [56]) With the same hypotheses as Theorem 4.1,

Y

EY

d→ W =
∞∏

i=1

(1 + δi)
Zie−λiδi as n→∞,

where the variables Zi are independent Poisson variables with EZi = λi for
i ≥ 1. Moreover, this convergence and the convergence of the Xi to the Zi
expressed in Theorem 4.1 (a) all hold jointly.

Thus in each case where contiguity is proved using Theorem 4.1, we can if
so desired deduce the asymptotic distribution of the appropriate variable im-
mediately by Theorem 4.3. Moreover, the joint convergence mentioned here
means that the Zi are linked to the Xi. Thus the distribution of Y conditioned
on any values of a finite number of Xi is also determined asymptotically, for
example the distribution of Y conditioned on Xi = k is asymptotically that of
W conditioned on Zi = k. This makes the contiguity assertion of Theorem 4.1
easy to verify in view of the proof of [87, Corollary 1].

One more result is often useful when the Xi are short cycle counts in Pn,d.
It is readily proved by applying Lemma 2.8 to the space G(Y ).

Lemma 4.4 (Janson [56]) If the conditions of Theorem 4.1 hold and Y ′(n)
has the distribution of Y (n) conditioned on X1(n) = X2(n) = 0 then

EY ′(n)

EY (n)
→ exp(−λ1δ1 − λ2δ2),

E(Y ′(n)2)

(EY ′(n))2
→ exp(−λ1δ1 − λ2δ2)

E(Y (n)2)

(EY (n))2
.
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We mention one application of contiguity immediately. Janson showed
in [56] that G(P ), for P ∈ Pn,d, is contiguous to a uniformly chosen random
regular multigraph (with loops permitted). Theorem 3.3 follows directly from
this.

4.2 Applications to regular spanning subgraphs and long cycles

In order to discuss in some detail how to verify the hypotheses of The-
orem 4.1, we consider the result of the arguments in [99], expressed in the
language of contiguity as follows.

Theorem 4.5 Let Hn denote the number of Hamilton cycles in G ∈ Gn,3.

Then G(Hn)
n,3 ≈ Gn,3.

Proof The first and second moments of Hn are given by Theorem 2.25 with
d = 3. However, although the final result will be in Gn,3, it is a little simpler to
work with Theorem 4.1 where G(n) = Pn,3. In this case Y = Y (n) is defined as
the number of Hamilton cycles in the multigraph corresponding to P ∈ Pn,3.
We have

EY 2

(EY )2
→ 3. (21)

(In Pn,d for d ≥ 3 the limit is d
d−2

, as shown in [42].) This second moment
calculation is the most difficult part of this whole proof, and is virtually the
same as the calculation required for Gn,d.

Let Xi = Xi(n) denote the number of cycles of length i in G(P ) for P ∈
Pn,3. The condition of Theorem 4.1 (a) follows from Theorem 2.6 with

λi =
2i−1

i
(22)

(i ≥ 1). Working towards Theorem 4.1 (b), we next show that for any fixed
i ≥ 1

E(Y Xi)

EY
→ λi(1 + δi) (23)

where

δi =
(−1)i − 1

2i
.

Let D be some fixed set of pairs of points corresponding to a Hamilton
cycle in pairings in Pn,3. By symmetry all copies of D are equivalent and so
in Pn,3

E(Y Xi)

EY
= E(Xi | D ⊆ P ).

If C is the set of pairs corresponding to an i-cycle (in which case we also call
C itself an i-cycle), we classify C according to the configuration of paths in
G(D ∩ C). We can assume that there must be at least one such path as all
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pairs in C cannot be in D provided n > i. Give these paths a consistent
orientation along C (which multiplies counts by 2) and distinguish one path
as first (which multiplies counts by the number of paths and induces a linear
ordering of paths around C). Thus

E(Y Xi)

EY
=
∑

Q

1

2|Q|E(Xi(Q) | D ⊆ P ) (24)

where Q denotes the sequence of lengths of paths, |Q| is the number of paths in
Q and Xi(Q) is the number of i-cycles in P consistent with such a configuration
Q. Fix on such a Q with k paths. There are asymptotically (2n)k ways to
choose the starting points of the paths on D together with their directions
along D. Almost all such points are well spaced for n large, and once they
are chosen the pairs in C, if it is to correspond to an i-cycle yielding Q, are
determined. The probability that these pairs all occur in P ∈ Pn,3 conditional
upon D ⊆ P is asymptotically n−k. Hence E(Xi(Q) | D ⊆ P ) → 2|Q| and
so (24) becomes

E(Y Xi)

EY
→
∑

k≥1

2k

2k
| {Q : |Q| = k} |. (25)

The ordinary generating function for the number of configurations Q with
x marking the total number of vertices involved and y marking the number of
paths is g(x,y)

1−g(x,y)
where g(x, y) is the generating function for one path; that is,

yx2

1−x . Thus, with square brackets denoting extraction of coefficients,

E(Y Xi)

EY
→

∑

k≥1

2k

2k
[xiyk]

yx2

1− x− yx2

= [xi]
∑

k≥1

1

2k
[yk−1]

2x2

1− x− 2yx2

= [xi]
1

2

∫ 1

0

2x2

1− x− 2yx2
dy

= −[xi]1
2 log(1− x− 2x2) + 1

2 log(1− x),

and (23) follows. To obtain the condition of Theorem 4.1 (b), one observes
that this argument works in general for higher moments and gives the required
result.

Noting
∑

i≥1 λiδ
2
i = log 3 and recalling (21), we see that the hypotheses of

Theorem 4.1 are satisfied. As δi = −1 only for i = 1, Pn,3 is the restriction
of Pn,3 to pairings P with X1 = 0, i.e. for which G(P ) has no loops. The

conclusion is that P (Y )

n,3 ≈ Pn,3. The theorem now follows using the definition
of contiguity by restricting to X2 > 0, since in Pn,3 the probability of this
event tends to a non-zero constant.
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Notes (i) An alternative way of proceeding from (25) to (23), which in some
applications leads to significantly simpler computations (see Janson [56]),
is the following. Each intersection D ∩ C corresponds to a sequence
in {0, 1}i determined by walking along C in a given direction from an
arbitrary starting edge (which multiplies counts by 2i) and writing 0
for an edge not in D ∩ C and 1 for an edge in D ∩ C. Each 0 must
be followed by 1 and contributes a factor 2 (by an argument analogous
to (25)). Regarding 0 and 1 as two states in a Markov chain (or something
similar), and imposing the condition that the final state is equal to the
initial state (since the first edge must be returned to) we see that the
sum over sequences is Tr(Ai) where

A =

(
0 2
1 1

)
.

As the sequence of all 1’s is impossible, it follows that E(Y Xi)/EY →
1
2i

(Tr(Ai) − 1). Then by noting that A has eigenvalues 2 and −1, we
obtain Tr(Ai) = 2i + (−1)i and then (23) as required.

(ii) Working the proof in Gn,3 instead of Pn,3 merely requires eliminating loops
and multiple edges in a couple of places, which can always be done using
the method of moments. Alternatively, as in [99, 100], one can appeal
directly to the enumeration results of Bender and Canfield [5] to count
the ways of adding edges to an existing graph without creating multiple
edges, since their main theorem allows arbitrary forbidden edges as long
as a bounded number are incident with a vertex.

From the proof of Theorem 4.5 and Theorem 4.3 we obtain the following.

Corollary 4.6 (Janson[56]) Let Hn denote the number of Hamilton cycles in
G ∈ Gn,3. Then

Hn

EHn

d→ W =
∞∏

i=3

(1 + δi)
Zie−λiδi as n→∞,

where λi = 2i−1

i
, δi = (−1)i−1

2i
, and Zi are independent Poisson variables with

EZi = λi for i ≥ 3.

Proof These are the λi and δi obtained in the proof of Theorem 4.5, so The-
orem 4.3 gives the claimed result for G(P ), P ∈ Pn,3 but with i ≥ 1. By the
joint convergence of the variables, restricting to Gn,3 (i.e. X1 = X2 = 0) is
asymptotically equivalent to restricting to Z1 = Z2 = 0.

Similar arguments, using [42] for the variance calculation, give the follow-
ing.
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Theorem 4.7 (Frieze et al. [42], Janson [56]) Let Hn denote the number of

Hamilton cycles in G ∈ Gn,d. Then G(Hn)
n,d ≈ Gn,d for d ≥ 3.

To obtain a result generalising Corollary 4.6, one only needs to note the

values λi = (d−1)i

2i
, δi = (−1)i−1

(d−1)i
and that Xi is again the number of i-cycles (so

the product in the definition of W is again over i ≥ 3 for distribution in Gn,d).
This was done by Janson [56].

Proof of Theorem 2.26 This now follows immediately by the definition of
contiguity, since the event {Hn > 0} has probability 1 in G(Hn)

n,d , so it is true
a.a.s. in Gn,d.

The proof of Theorem 2.26 in [100] was different. It involved proving the
analogous property of perfect matchings given in Theorem 4.8, and then argued
using contiguity inductively as developed in Section 4.3. In the case of n odd
and d even this result could not be used directly, but instead another result
was proved which related to the distribution of the number of matchings which
miss just one vertex. (However, Janson [56] was the first to state the contiguity
result for perfect matchings explicitly.) Other results on the distribution of
numbers of spanning regular subgraphs in Gn,d have been obtained using the
same method, with the conclusions summarised in the next theorem.

A k-factor of a graph is a k-regular spanning subgraph. (A perfect match-
ing is the edge set of a 1-factor.) A 1-factorisation of a d-regular graph is a
set of d edge-disjoint 1-factors, equivalent to a partition of the edge set into
perfect matchings. For enumeration purposes, we assume these matchings are
ordered. (For d = 3 the number of 1-factorisations is then equal to the num-
ber of ordered pairs of disjoint 1-factors, called double 1-factors in [87].) For
n even, let Mn (defined in Gn,d) denote the number of perfect matchings and
let Tn (defined in Gn,3) denote the number of 1-factorisations of G. For all n
let Dn denote the number of 2-factors in G ∈ Gn,d (D comes from dwa, which
is Polish for 2), and let Bn denote the number of ordered pairs of edge-disjoint
Hamilton cycles in G ∈ Gn,4 (a good name for these is Hamilton bicycles; hence
the letter B). The following result on Mn essentially appears in [100] and was
given explicitly by Janson [56], that on Tn was obtained independently by Jan-
son [56] and by Molloy et al. [87], that on Dn is by Robalewska [95], and the
one on Bn is by Kim and Wormald [60].

Theorem 4.8 Restricting to n even, G(Mn)
n,d ≈ Gn,d for all d ≥ 3, and G(Tn)

n,3 ≈
Gn,3. With no restrictions on n, G(Dn)

n,d ≈ Gn,d for n ≥ 4 and G(Bn)
n,4 ≈ Gn,4.

Proving these results is like proving Theorem 4.7, but the calculations are
much easier in the case of Mn, somewhat easier for Tn and Dn. The result for 2-
factors (Dn) when d = 4 was conjectured in [56]. (More precisely, the stronger
multigraph version was conjectured for G(P ) where P ∈ Pn,d restricted to
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loopless multigraphs, which no doubt follows in the same way. As noted in
Section 2, this space of multigraphs is not uniform.) For edge-disjoint Hamilton
cycles (Bn) the same method was again used, but a really new idea was required
to compute the variance, including a proof of Theorem 4.11 below. In fact, it
was a conjecture in [100] that a random 4-regular graph a.a.s. decomposes into
two edge-disjoint Hamilton cycles, and the related contiguity result was later
conjectured by Janson [56]. (Actually, the multigraph version was conjectured,
which also follows from the results in [60].)

In each of these applications, the Xi are the short cycle counts as before,

and so λi = (d−1)i

2i
as in (22). Other relevant values (all in the graph space

Gn,d) are given in the following table. Hamilton cycles (Hn) are included for
comparison.

Yn EYn ∼ EY 2
n /(EYn)2 → δi

Hn e
√

π
2n

(
(d−2)d−2(d−1)2

dd−2

) 1
2
n

d
(d−2)e2/(d−1)

(−1)i−1
(d−1)i

Mn

√
2e1/4

(
(d−1)d−1

dd−2

) 1
2
n

e−
1
4

(2d−1)/(d−1)2
√

d−1
d−2

(−1)i

(d−1)i

Tn 2
√
e(4

3
)n/2 4e−5/4 (−1)i

2i−1

Dn e1/4
√

2
(

(d−1)(d−2)(d−2)/2

d(d−2)/2

)n
e−

1
4

(2d−1)/(d−1)2
√

d−1
d−2

(−1)i

(d−1)i

Bn e7/4 π√
8n

(3
2
)n e−55/36

√
24 −2+(−1)i

3i

Theorem 2.24 is used for the second moment of Mn. The values of the first
two moments of Mn and Tn for G(P ), P ∈ Pn,d (and hence the corresponding
contiguity results for this multigraph space) are given in [56]; in all applications
examined so far these are obtained by omitting the powers of e, since these
and only these factors arise when sieving to remove loops and multiple edges
(see Lemma 4.4). Similarly, the contiguity relating to Bn for G(P ), P ∈ Pn,d
restricted to loopless multigraphs, follows from the results in [60]. For general

d, Janson also derives the value δi = (−1)i

(d−1)i−1 relevant to 1-factorisations of
d-regular graphs, but it seems to be too difficult to obtain the variance for
general d.

In all cases, the limiting distribution of Yn is given immediately from The-
orem 4.3 (and this is done in [56] for Mn and Tn, and in [95] for Dn).

The obvious corollary of the result for Tn is that G ∈ Gn,3 a.a.s. has a
1-factorisation for even n, but this already follows from Theorem 2.26 with
d = 3. The result for Mn gives another proof of Corollary 2.22. The result for
Dn shows that G ∈ Gn,4 a.a.s. has a 2-factor, but this event has probability 1
anyway by Petersen’s theorem (see [33] for example). So the only new result
we obtain of this type is with Bn.
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Corollary 4.9 A random 4-regular graph a.a.s. decomposes into two edge-
disjoint Hamilton cycles.

The surprising equality of the values in the last two columns of the table
for Mn and Dn has the following consequence.

Corollary 4.10 (Robalewska [95]) For even n,

Mn

EMn

and
Dn

EDn

have the same limit distribution in Gn,d (d ≥ 3).

Moreover, from the joint convergence given by Theorem 4.1 and the fact that
the Xi are the same variables in each of these two cases, it follows that Mn

and Dn are far from independent: they are asymptotically linked, and we can
write

Mn

EMn

∼ Dn

EDn

a.a.s.

in Gn,d.
Computing the variance of Bn in Gn,4 required the following result, which

interestingly relates to the models of random regular graphs in Section 4.3.

Theorem 4.11 (Kim and Wormald [60]) Let n be even. Given four indepen-
dent random matchings Mi, i = 0, . . . , 3, of n vertices, the probability that
Mi ∪ Mi+1 induces a Hamilton cycle for each i (with subscripts mod 4) is
asymptotic to p4

H as n → ∞, where pH ∼
√

π
2n

is the probability that two
independent random matchings of n vertices induce a Hamilton cycle.

There are recent extensions of Theorem 4.5 in other directions. Robinson
and Wormald [101] established the analogue of this theorem in which o(

√
n)

edges of G ∈ Gn,3 are chosen u.a.r., and the variable Hn counts only Hamilton
cycles which pass through these edges. A corollary is that if that number of
edges of G ∈ Gn,3 are chosen at random, then a.a.s. there is a Hamilton cycle
passing through them all. The limiting distribution of the probability was also
found, if c

√
n edges are chosen. This is an interesting example in that the

variables Xi in the use of Theorem 4.1 are not just the short cycles counts,
but also the counts of short paths joining distinguished edges. A similar result
is by Janson and Wormald [57] that if the edges of G ∈ Gn,d are randomly
coloured in n colours, 1

2d of each colour, then a.a.s. there is a Hamilton cycle
using precisely one of each colour (provided d ≥ 8).

Moving away from regular spanning subgraphs, in [98] the expectation and
variance of the number of decompositions of G ∈ Gn,3 into a tree and a cycle
were computed asymptotically. (The length of cycle is necessarily 1

2n + 1.)
Janson [55] computed the joint distribution with short cycles and verified that
the small subgraph conditioning method performs as expected; that is, almost
all cubic graphs have such a decomposition. The difficult part is as usual the
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variance, covered in [98], but the short cycle part of the calculation is perhaps
more complicated than all the other examples done so far.

Finally, as an example of use of this method with non-spanning subgraphs,
there are the results of Garmo mentioned in Section 2.5.

Several results have appeared on the random regular bipartite model. The
calculations for Hamilton cycles in bipartite graphs for the case d = 3 are
given in [98], in which case the simple application of Chebyshev’s inequality
to the expectation and variance is enough to deduce that the probability of
Hamiltonicity tends to 1. The same is true of the general case d ≥ 4 (but this
does not seem to have been published). The bipartite analogue of Theorem 2.26
was proved in [100] not by proving the bipartite analogue of Theorem 4.7, but
it did involve verifying the bipartite analogue of the statement in Theorem 4.8
about Mn. The variance of Hn in the bipartite case requires a function to
be maximised virtually the same as that encountered for Gn,d in [42]. This
calculation is almost the same as in the general graph case, and no doubt
calculations for Dn also follow a similar pattern in bipartite graphs. The
bipartite analogue for Tn (1-factorisations) of the statement in Theorem 4.8 is
verified in [87].

Let Hn denote the number of (directed) Hamilton cycles in a digraph in
DGn,d (defined in Section 3.3). Janson [56] used the small subgraph condition-
ing method to obtain the following.

Theorem 4.12 (Janson [56]) DG(Hn)
n,d ≈ DGn,d for all d ≥ 3.

Theorem 3.2 is a corollary of this.
Although the results discussed in this section are strong in some ways, the

method is extremely difficult to extend to examination of Gn,d in general, and
no good results in this direction seem to be known. It is not known for instance
if Conjecture 2.27 has any chance of being proved by contiguity.

4.3 The superposition arithmetic of contiguity classes

Originating from the argument in [100], the notion of the union of two ran-
dom regular graphs on the same vertex set is very useful for proving asymptotic
properties of Gn,d. If G and Ĝ are two probability spaces of random graphs or

multigraphs on the same vertex set, we define their sum G + Ĝ to denote the
space whose elements are defined by the random multigraph G ∪ Ĝ (called

the superposition of G and Ĝ) where G ∈ G and Ĝ ∈ Ĝ are generated inde-

pendently. Similarly, define the graph-restricted sum of G and Ĝ, denoted by
G ⊕ Ĝ, to be the space which is the restriction of G + Ĝ to simple graphs (i.e.
with no multiple edges—we have no cause to use this operation when loops
are present). This is defined only if G + Ĝ contains at least one simple graph.
In order to ensure that all our probability spaces can be sensibly related, we
assume when using these operations that the underlying sets are extended to
cover all graphs (or multigraphs, as the case may be) on that vertex set. Thus
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any n-vertex graph which cannot be formed by the operation in question is
included in the space, but with probability 0. We loosely call models defined
by sums superposition models .

The two sum operations + and ⊕ are clearly commutative and associative.
We define

kG = G ⊕ · · · ⊕ G,
with k terms on the right. (The analogous product of k by G using + instead
of ⊕ is not so interesting for our purposes here.)

It is also straightforward to derive the following result.

Lemma 4.13 (Janson[56]) Suppose that Gn ≈ G ′n and Ĝn ≈ Ĝ ′n where all four

spaces Gn, G ′n, Ĝn and Ĝ ′n are of graphs on n vertices. Then

Gn + Ĝn ≈ G ′n + Ĝ ′n.

Janson [56] discussed contiguity of multigraph models defined by both the
sum + and the graph-restricted sum ⊕, but in that paper the emphasis is
on the sum. Results for the graph-restricted sum can be obtained using the
multigraph results, and it is desirable to put this on a systematic base. A
crucial property required of the graph models in order for this idea to work is
that the probability that a simple graph is created in the sum space must be
bounded away from 0 (which incidentally ensures that the graph-restricted sum
is defined). To ensure this, we use the property of every natural model, that it
is label-independent , by which we mean that the probability of any multigraph
is the same as that of any particular relabelled version of that multigraph.

Lemma 4.14 Suppose that Gn ≈ G ′n and Ĝn ≈ Ĝ ′n where all four spaces Gn,

G ′n, Ĝn and Ĝ ′n are label-independent and all graphs in the spaces have bounded
degree (and n vertices). Then

Gn ⊕ Ĝn ≈ G ′n ⊕ Ĝ ′n.

Proof Let An be any sequence of events which is a.a.s. true in Gn ⊕ Ĝn. We
can regard An as an event in Gn + Ĝn also (after all, it is just a set of graphs).

Let Bn be the event that G ∈ Gn + Ĝn has a multiple edge. Then An ∨ Bn is
a.a.s. true in Gn + Ĝn (where ∨ denotes the union of events) and hence also in

G ′n + Ĝ ′n by Lemma 4.13. It then follows that An is a.a.s. true in G ′n ⊕ Ĝ ′n once

we show that the probability of the complement of Bn in G ′n + Ĝ ′n is bounded
below by a positive constant.

For this it suffices to treat each pair of graphs G1 ∈ G ′n and G2 ∈ G ′n
separately, and consider a random relabelling of each. We can use the method
of moments. It is easily verified that the expected number λ of edges in common
between two such random relabellings is exactly half the product of the average
degrees of vertices in G1 and G2. The other moments are calculated and
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satisfy the relation (8) in Section 2.3 (with k = 1). Hence (by Brun’s sieve or
Lemma 2.8) the probability that the superposition of the relabelled copies of
G1 and G2 creates no multiple edges is asymptotically e−λ, which is bounded
below in view of the upper bound on vertex degrees.

The reverse argument, from G ′n ⊕ Ĝ ′n to Gn ⊕ Ĝn, is identical.

For bicoloured graphs the analogue of Lemma 4.14 holds if the definition
of label-independence is specified to include only those relabellings which re-
arrange the labels within each of the two label sets.

If Y = Y (n) is the number of spanning k-regular subgraphs of G ∈ Gn,d
which lie in some specified set Sn, then G ∈ G(Y )

n,d has the distribution of
F (n) ∪ F ′(n) where the ordered pairs (F (n), F ′(n)) are sampled uniformly
such that F (n) ∈ Sn, F ′(n) is a (d− k)-regular graph on the same vertex set,

and F (n) and F ′(n) are edge-disjoint. Thus G(Y )
n,d = Un⊕Gn,d−k where Un is the

uniform space on Sn. Similarly, if Y is the number of decompositions of the
edge set of G ∈ Gn,d into j spanning k-regular subgraphs of G ∈ Gn,d each of

which lie in a uniform space Un (so jk = d) then G(Y )
n,d = jUn. So, for example,

G(Tn)
n,3 = 3Gn,1 for n even. We can now restate Theorems 4.7 and 4.8 in the

following form. Let Hn denote a uniformly random Hamilton cycle (n even),
on the same n vertices as G ∈ Gn,d for all d. The only item in the following
not explicitly covered already is (iv) for d = 3, which is equivalent to (ii) for
d = 3.

Theorem 4.15

(i) Gn,d−2 ⊕Hn ≈ Gn,d for d ≥ 3.

(ii) Gn,d−1 ⊕ Gn,1 ≈ Gn,d for d ≥ 3 and n even.

(iii) 3Gn,1 ≈ Gn,3 (n even).

(iv) Gn,d−2 ⊕ Gn,2 ≈ Gn,d for d ≥ 3.

(v) 2Hn ≈ Gn,4.

We next examine implications of this theorem, taking an interesting special
case first. From (ii) (used repeatedly), and (iii), and Lemma 4.14,

Gn,d ≈ dGn,1 (26)

for n even and d ≥ 3. Since every element of dGn,1 has a 1-factorisation, this
implies the following.

Corollary 4.16 (Robinson and Wormald [100]) For d ≥ 3, G ∈ Gn,d a.a.s. has
a 1-factorisation when n is even.
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Another way to say this is that the edge-chromatic number of these graphs is
a.a.s. equal to d when n is even, which is best possible since it must be d + 1
by Vizing’s theorem when n is odd.

The main problem with d = 2 is that Gn,1 ⊕ Gn,1 6≈ Gn,2, since, as seen in
Section 2.9, G ∈ Gn,2 a.a.s. has an odd cycle, but G ∈ 2Gn,1 clearly does not.
Similarly, Gn,1 ⊕ Gn,1 6≈ Hn 6≈ Gn,2, but these three form the only exceptions
in the rather pleasant arithmetic of contiguity classes of regular graph models.
Earlier, weaker versions of this result [56, 87] appeared at the times when
various parts of Theorem 4.15 were proved.

Corollary 4.17 Let d ≥ 3, and suppose d = 2j +
∑d−1

i=1 iki with all terms
non-negative. Then

Gn,d ≈ jHn ⊕ k1Gn,1 ⊕ · · · ⊕ kd−1Gn,d−1,

with n restricted to even integers if ki 6= 0 for any odd i.

Proof Lemma 4.14 is used abundantly throughout. From (i), (iv) and (v),

Gn,d ≈ jHn ⊕ kGn,2 ⊕ Gn,d−2j−2k (27)

for any k ≤ 1
2d − 2j. If ki = 0 for all odd i, take k = 1

2d − 2j and combine
the copies of Gn,2 into the desired spaces Gn,i using the same result in reverse
(with j = 0) for each space. If not, we can assume n is even, use (27) with
k = k2 and (26) to get

Gn,d ≈ jHn ⊕ k2Gn,2 ⊕ (d− 2j − 2k2)Gn,1
(unless d− 2j − 2k2 = 2). Then recombine the copies of Gn,1 into all the other
terms required using (26) in reverse for each term Gn,i, i ≥ 3. The required k1

copies of Gn,1 will be surplus. The only case left is d−2j−2k2 = 2 and k1 = 2,
whence either j > 0 or k2 > 0. From above we have Gn,d ≈ jHn⊕ (k2 + 1)Gn,2,
and any two of these spaces can be recombined to give Gn,4. This can then
be split as desired since Gn,4 ≈ Gn,3 ⊕ Gn,1 ≈ Gn,2 ⊕ 2Gn,1 by (ii) (twice) and
Gn,3 ≈ Hn ⊕ Gn,1 by (i).

A complete Hamiltonian decomposition of a d-regular graph is a partition
of its edge set into the edges of d

2
Hamilton cycles (for d even), or d−1

2
Hamilton

cycles and a perfect matching (for d odd).

Corollary 4.18 (Kim and Wormald [60]) For fixed d ≥ 3, G ∈ Gn,d a.a.s. has
a complete Hamiltonian decomposition.

One restatement of Corollary 4.9 is that a random 4-regular graph a.a.s.
has four 1-factors such that a certain pairwise union gives two Hamilton cycles.
The following strengthening of this has not even been proved yet for d = 3.
A perfect 1-factorisation of a d-regular graph is an edge-decomposition into
d pairwise disjoint perfect matchings such that the union of any two of them
gives a Hamilton cycle.
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Conjecture 4.19 For d ≥ 3, G ∈ Gn,d a.a.s. has a perfect 1-factorisation
when n is even.

I also conjecture the contiguity version of this; i.e. that GYnn,d ≈ GYnn,d where Yn
is the number of perfect 1-factorisations of G.

There is strong evidence for this conjecture from the results in [60], where
it is shown that imposing Hamiltonicity conditions on pairs of perfect match-
ings does not asymptotically alter the probability of such conditions holding
between other pairs (at least, not for a small number of pairs). If this is true
in general then the expected number of perfect 1-factorisations will be large.
I believe that Theorem 4.11 extends as follows.

Conjecture 4.20 Let n be even. The probability that d ≥ 4 random match-
ings of n vertices create a perfect 1-factorisation of a d-regular graph is asymp-
totic to ( π

2n
)d(d−1)/4 as n→∞.

The case d = 3 is not conjectured here, because it is proved in [60], which
means that the expected number of perfect 1-factorisations in G ∈ Pn,3 or Gn,3
is known. The variance, as usual, is much harder to compute. The expected
number of 1-factorisations of G ∈ Gn,d grows exponentially with n, so by the
contiguity expressed in (26) it is a.a.s. exponentially large. It seems unlikely
that none of these 1-factorisations is perfect, even if Conjecture 4.20 is in error
by a large factor. This supports Conjecture 4.19.

Corollary 4.18 is quite a strong statement about the structure of G ∈
Gn,d and enables quick proof of some results already known. For even d it
immediately shows that G ∈ Gn,d is a.a.s. d-edge-connected, giving the edge
connectivity version of Theorem 2.10 for d fixed. Here are some other examples.

Proof of Theorem 2.21 Take the decomposition in Corollary 4.18, and re-
move one edge from each Hamilton cycle. Since there are only b1

2dc such cycles,
for n sufficiently large we can easily arrange that the removed edges form a
matching (d even) or form a linear forest with the perfect matching in the
decomposition (d odd). The Hamilton paths form the other linear forests, to
obtain linear arboricity b1

2dc+ 1 = d1
2(d+ 1)e.

This proof also shows that the conclusion of Theorem 2.21 can be considerably
strengthened: all but one of the forests in this proof are Hamilton paths, and
the other has maximum path length 1 (even d) or 3 (odd d).

The model Hn⊕Gn,1 has already been studied for its diameter, but without
the convenience of contiguity. A weaker version of the following result was
obtained by Bollobás and Chung [19], with lower bound log2 n− 10 and upper
bound log2 n+ log2 log n+ 10.

Corollary 4.21 A Hamilton cycle plus a random matching a.a.s. gives a graph
with diameter between log2 n+ log2 log n− 4 and log2 n+ log2 log n+ 4.

Proof This comes immediately from Theorems 4.5 and 2.13 with d = 3.



          

Models of random regular graphs 45

Bollobás and Chung [19] also investigated the diameter of a fixed regular graph
plus a random matching in order to show that it is possible to find large regular
graphs with small diameter using randomisation for only a small part of the
graph.

Janson [56] conjectured that the model of random 2-regular graphs obtained
by taking a random permutation digraph and ignoring the directions of edges
fits in with the arithmetic of models just like the models Hn and Gn,d (again
requiring d ≥ 3). However, no results in this direction have been forthcoming,
probably because of the lack of a suitable framework for combining this model
with Gn,d. We conjecture that the model obtained from Gn,2 by restricting
to graphs with even cycles fits in the same way. (This is not the same as
2Gn,1—the probabilities are different.)

The theory of the superposition arithmetic of contiguity classes has pro-
gressed further for random regular graph models than for related models. For
bipartite graphs, Theorem 3.1 is proved in [100] in the same way as Theo-
rem 2.26 by treating 1-factors in random (d− 1)-regular bipartite graphs, and
examination of the argument will verify the analogue of Theorem 4.15 (ii) in
the bipartite case. The proof of Theorem 3.2 in [31] also uses contiguity in
just the same way: the bipartite regular graph related to a regular digraph is
contiguous to the graph-restricted sum of a perfect matching and a bipartite
(d−1)-regular graph. The result is proved first for d = 3 working with the two
random parts of this decomposition, and the results for larger d again follow
by contiguity.

Some of the other necessary base results in this area are missing (see the
comments on this near the end of Section 4.2). But this is due mainly to
the fact that they are almost the same as the corresponding graph case. For
directed graph models, even more results are missing, but this is due to real dif-
ficulties. Permutation digraphs, or 1-regular digraphs (with loops permitted)
are equivalent to matchings in the bipartite graphs corresponding to d-regular
digraphs, so contiguity is known for these. On the other hand, in view of
Corollary 4.18 and Theorem 4.12 we have the following.

Conjecture 4.22 A random digraph in DGn,d a.a.s. has d edge-disjoint di-
rected Hamilton cycles.

We also of course conjecture the contiguity version of this. From Theorem 4.12
this would imply contiguity of sums of directed Hamilton cycles.

5 The generation problem

The difficulty of sampling from Gn,d, i.e. of generating regular graphs u.a.r.,
and the related problem for Gn,d, are part of the motivation for the “algorith-
mic” models given in Section 6. Those models do not have uniform, or even
well understood, distributions. In this section we focus on uniform and near-
uniform distribution.
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5.1 Uniform generation for d large

Generating an element of Gn,d is easy in the following sense: just generate
an element P of Pn,d and use G(P ) if it has no loops or multiple edges. If
it is not suitable, repeat. This is implicit in the presentation of the pairing
model by Bollobás [10], and in the model used by Bender and Canfield in [5].
It was discussed explicitly in [119], along with a non-probabilistic algorithm
for generating 3-regular graphs (which is much more complicated).

The difficulty of this simple procedure is the number of repetitions required
before success. The expected number is exactly 1/P(Simple), which from (3)
and (5) is prohibitively large for even quite small d, say d = 8. What can we
do for larger d?

McKay and Wormald [79] used the modern version of switchings to give an
algorithm for generating a random d-regular graph for d = O(n1/3) in which
the expected time per graph is polynomial (O(n2d4) in a version that would
be implementable, or O(nd3) in a version that qualifies as the programmer’s
nightmare). The idea is to generate a random pairing in the pairing model,
where those pairings corresponding to multigraphs with given numbers of loops
and multiple edges are all equally likely, and then use a random switching to
get to a random pairing with fewer loops and multiple edges. An accept/reject
procedure is used to make sure the resulting random pairing is uniformly dis-
tributed with those parameters. Iterating this procedure eventually reaches
pairings P such that G(P ) is a simple d-regular graph uniformly distributed.
The “old” switchings do not help with this problem even for d = nε, and the
idea definitely cannot be extended in any easy way to get an algorithm for
degree n1/3+ε with polynomial expected time per graph generated.

Earlier Tinhofer [109] considered choosing edges consecutively, each choice
a uniform choice from some restricted set, so that a regular graph hopefully
results. This is combined with an accept/reject procedure to produce the
uniform distribution, which is based on a posteriori computation of the prob-
ability p(G) of the generated graph. The probability of acceptance is the ratio
of p(G) to an upper bound on p(G′) for all G′. Unfortunately basically nothing
is known about such upper bounds, with the result that such algorithms do
not seem to be of practical use for uniform generation, except perhaps for very
small graphs.

The description of how to generate a random unlabelled graph given in
Section 3.1 was applied directly in [121] to generating random unlabelled d-
regular graphs. The expected time complexity per graph is linear in n for
d-regular graphs on n vertices if d is fixed. Achieving this requires judicious
use of accept/reject procedures, as well as the simplification given in [120] of the
multidimensional optimisation problem involved in Theorem 2.17. However,
in an uncommon twist, the algorithm is not at all practicable for d = 3 and
4 unless n is quite large, say n ≥ 200. This is because symmetries are more
common for smaller n than for larger n.
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For random graphs in Gn,d, the result in [79] applies to degree sequences for
which the maximum degree is O(m1/4), where m is the sum of the degrees. The
result is a polynomial time algorithm for uniform generation. Those in [109]
apply to any degree sequence (but tell us little).

5.2 Near-uniform generation

When uniform generation is difficult, it is worth looking at near-uniform
generation. If the approximation to uniform can be made to a given accuracy,
then probabilities can be obtained experimentally to the same accuracy.

Jerrum and Sinclair [58] gave a fully polynomial almost uniform generator
for d-regular graphs on n vertices; that is, a generation algorithm which, for
ε > 0, runs in time polynomial in n and log(1/ε), such that all graphs are
generated with probabilities varying by a factor of at most 1 + ε. This result
is remarkable in that it applies for all d. The analysis required to prove it uses
sophisticated eigenvalue techniques for estimating the rate of convergence of
a Markov chain to the stationary distribution. Unfortunately the polynomial
does not have very low order so this algorithm seems to be of little practical
significance.

ÃLuczak and Wormald [64] studied a generalised form of the random pro-
cesses described below in Section 6 which suggested the algorithm studied
by Steger and Wormald [107]. This seems to be a very practical algorithm
(time O(nd2) expected per graph for small d, and good practical results for
all d ≤ 1

2n, which suffices by complementation). Although it does not give
the uniform distribution, for d < nc where c is a small positive constant, it
produces all graphs with asymptotically the same probability. That is, for
such d there are upper and lower bounds on the probabilities of a graph on
n vertices being generated which are asymptotically equal as n → ∞. Unfor-
tunately, there are indications that this algorithm does not give such a close
approximation to uniform distribution when d gets past n1/3.

This algorithm has useful properties even though it is equivalent to the
quite naive idea of generating (non-uniformly) at random an element of the
pairing model one pair at a time, at each step selecting only from those pairs
which will not create loops or multiple edges with those already selected. This
process occasionally gets stuck, with unpaired points remaining and not legally
able to be paired, but experimental evidence strongly supports the following
conjecture, with the value of the constant approximately 1

3
.

Conjecture 5.1 Let f(n, d) denote the probability that this procedure ter-
minates with a regular graph. Then f(n, d) is bounded below by a constant
for all d ≤ 1

2n.

Jerrum et al. [59] showed that the algorithm in [58] applies to a very wide
class of degree sequences. The proof relies on showing that if the degrees do
not vary by too much, the number of graphs does not changes radically with



              

48 N. C. Wormald

small perturbations of the degrees (maintaining the same number of vertices).
This incidentally gives an explanation of the difficulty of enumerating graphs
or generating random graphs with given degrees when the degrees vary wildly.

6 Algorithmically defined models

As explained in Section 5, it can be difficult to efficiently generate members
of Gn,d uniformly at random. There are no good practical schemes for large d,
and the state of affairs for Gn,d is even worse. It is substantially these difficulties
which motivate the “algorithmic” models given here, but aside from this they
are often also of intrinsic interest due to their simplicity.

Tinhofer’s scheme (see Section 5.1) is based on selection of edges by re-
peating a uniform selection from a restricted set. Wilson [113] uses a similar
approach (ignoring questions of distribution). A simple form of such an al-
gorithm is the following. Given d and n, start with n isolated vertices and
repeatedly add edges joining vertices of degree strictly less than d. Each time,
the edge added is chosen uniformly at random from all unfilled positions. This
is the degree restricted graph process with parameter d, or d-process for short.
The d-process stops when no more edges can be added, i.e. when the graph
induced by the vertices of degree less than d is a clique.

This process was considered by Erdős, who asked for the asymptotic dis-
tribution of the number of vertices of degree less than d in the final graph (d
fixed, n →∞). This question was settled in [102] using the differential equa-
tion method together with some other arguments. It was shown that a.a.s.
the final graph is regular if dn is even, and almost regular, with one vertex of
degree d− 1 and the rest of degree d, otherwise.

The final graph of the d-process, conditioned on it being d-regular, gives a
model of d-regular graphs which we denote here by Gdeg

n,d . Using the fact that the
numbers of vertices of given degree follow close to the solutions of differential
equations, Ruciński and Wormald [103] also determined the limiting distribu-
tion of the numbers of short cycles in G ∈ Gdeg

n,2 . These are asymptotically in-
dependent Poisson, but the expected number of cycles of length i involves an i-

dimensional integral. For i = 3 this simplifies to 1
2

∫∞
0

(log(1+x))2 dx
xex

= 0.1887 . . .,
which is a little different from the expected number 1

6
of 3-cycles in the uniform

model Gn,2. More recently, the same authors [104] showed that G ∈ Gdeg
n,d is

a.a.s. connected for d ≥ 3, and the following is conjectured there.

Conjecture 6.1 For G ∈ Gdeg
n,3 , P(G is disconnected) ∼ cn−2 where c ≈ 0.25.

The corresponding statement in Gn,3 holds with c = 2
27

.
If we do not condition on the final graph of the d-process being regular,

the probability of disconnectedness seems, from simulation results, to be much
higher than this. Nevertheless, the following seems quite plausible.

Conjecture 6.2 Let d ≥ 3 be fixed. For G ∈ Gdeg
n,d , G is a.a.s. d-connected.
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Telcs and Wormald [108], using a delicate application of the differential
equation method, found the probability that G ∈ Gdeg

n,2 is a single Hamilton

cycle is asymptotic to
√

πeτ

2n
≈ 1.819n−1/2 where τ =

∫∞
0

(log(1+x))2 dx
xex

, and also

determined the expected number of cycles in G ∈ Gdeg
n,2 quite accurately. These

values are also close to those in the uniform model Gn,2 (see (11) for example).
Although the evidence is not very strong, the following is suspiciously hard to
disprove.

Conjecture 6.3 For fixed d ≥ 1 and dn even, Gn,d ≈ Gdeg
n,d .

Motivated by [109] and [113], in which the aim was to conveniently generate
random graphs with given degrees, Robalewska [96] studied a random process
by which stars are added to fill the required vertex degrees. We consider the
regular case here, and take d fixed. Beginning with n isolated vertices, at each
step choose u.a.r. a vertex v of minimum degree, and choose u.a.r. d − d(v)
other vertices of degree strictly less than d. Edges are added from v to these
vertices, then the step is repeated. As with the d-process, stop when the
required edges do not exist or the graph is d-regular. This is called the star
d-process . Multiple edges are impossible by the degree-filling nature of the
process.

In the case d = 2 the short cycle distribution of the final graph was ob-
tained in [96], as well as the asymptotic probability of Hamiltonicity and the
distribution of the number of cycles. It was also shown that the final graph is
a.a.s. 2-regular. The latter result was extended to d-regular for fixed d, pro-
vided dn is even, in [97]. The methods are similar to those used for d-processes.
Again, we can consider restricting to those processes in which the final graph
to d-regular, to obtain a probability space which we call here Gstardeg

n,d .

Conjecture 6.4 For fixed d ≥ 1 and dn even, Gn,d ≈ Gstardeg
n,d .

7 A wider perspective

There are several interesting random graph models which involve either
special regular graphs or in some sense near-regular graphs. After mentioning
some cubic examples, we look at results on planar graphs and near-regular
graphs in a bit more detail.

McKay et al. [75] found the asymptotic number of claw-free cubic graphs.
Together with the result in [101], their result implies that almost all of these
graphs are Hamiltonian.

Garmo [48, 49] defined random railways to be random cubic multigraphs
with one of the three half-edges at each vertex distinguished, and studies spe-
cial connectivity properties of these (properties defined with respect to the
distinguished half-edges).
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7.1 Random regular planar graphs

For enumeration purposes, planar graphs are normally studied embedded
in the sphere and with a rooting which consists of distinguishing an edge and
a vertex incident with that edge. For 3-connected graphs the enumeration
is equivalent to labelled planar graphs (just multiply the number of rooted
graphs by n!

4n
to get the corresponding number of labelled planar graphs).

Many enumeration results and several on random planar graphs were ob-
tained in this way, for instance Tutte [110] showed that a random 3-connected
planar graph a.a.s. has no automorphisms. Then a more general theory of ran-
dom planar graphs began with the paper of Richmond et al. [92] showing that
a random 3-connected cubic planar graph has exponentially small probability
of being Hamiltonian. Richmond and Wormald [93] extended this result to
more classes of planar maps. These papers also give results on the frequency
of subgraphs in such graphs.

Up to this point, results were quite dependent on generating function anal-
ysis, but Bender et al. [6] freed the topic from generating functions to a large
extent (although their argument to show this uses a modification of the gener-
ating function singularity arguments in [92, 93]). Building on this, Richmond
and Wormald [94] showed that many classes of planar maps are almost all
asymmetric, thus including a simpler proof of the result of Tutte mentioned
above (amongst other things).

Bender et al. [7], returning to generating function methods, showed that in
almost all 3-connected cubic planar graphs with n edges, the largest cyclically
4-edge-connected cubic component has about n/2 edges. See also Gao and
Wormald [47] for more general results.

7.2 Non-regular models

Some random graph models cannot easily be specialised to models of reg-
ular graphs, and yet have features in common, in particular vertices of low
degree but with a guaranteed lower bound on the degrees. Here is only a brief
mention of some of the results of this type.

Several authors have considered the random graph coming from a random
digraph in which k arcs are chosen out of each vertex at random, and then
the orientations are suppressed and multiple edges are coalesced. Fenner and
Frieze [37] showed for k ≥ 23 that this is a.a.s. Hamiltonian. The big open
problem in this area is whether this is true for all k ≥ 3. For k = 2 the opposite
is true, as sketched in an exercise in Bollobás [16, Section VIII.5], because of
the asymptotically almost sure occurrence of small subgraphs called spiders
which kill Hamilton cycles. The result for k ≥ 23 has been far superseded by
the recent result of Cooper and Frieze [30] that a random 3-in, 3-out digraph
(in which from each vertex three arcs are randomly chosen in and three out)
is a.a.s. Hamiltonian.

An early result of Walkup [111], subsequently used by others, is that a
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random d-out directed bicoloured graph with n vertices in each part (in which
from each vertex d arcs are randomly chosen out) a.a.s. contains a perfect
matching provided d ≥ 2 (and a.a.s. does not if d = 1). Frieze [40] later showed
that the superposition of two random 1-out-regular digraphs a.a.s. has a perfect
matching (n even). Also in the spirit of the models in Section 4, Frieze et al. [43]
showed that the superposition of five random trees is a.a.s. Hamiltonian. The
big open problem in this direction is whether three is enough.

Recently a model of random regular graphs with edge faults has been stud-
ied. Here the edges of G ∈ Gn,d are randomly deleted independently with
probability p each. For example, Goerdt [52] looked at the giant component,
and Nikoletseas and Spirakis [88] obtained concentration results on the second
eigenvalue of the adjacency matrix of the giant component.

7.3 Further unsolved problems

Besides the various conjectures sprinkled through this paper, there is one
issue which benefits from emphasising. Large values of d are in general a prob-
lem. For many of the results mentioned in this article, the obvious conjecture
is that the result holds for much higher values of d (such as Conjecture 2.11).
Can the generating function method in [80] help here? It certainly does permit
computation of the probability of sets of edges being present, to some extent.
For another example, can one in this way show that for d ∼ 1

2n, G ∈ Gn,d
a.a.s. has no non-trivial automorphisms? At least it would be good to extend
Theorem 2.17 past d = o(n1/2). Also can a practical near-uniform generation
algorithm be found for very large d (say d ≈ √n or d = cn)? In addition,
further results on random tournaments (Section 3.6) would be interesting, but
this suffers for one thing from a problem similar to the case of Gn,d with large
d: high edge density restricts switchings.

For some of these questions, asymptotic enumeration of |Gn,d| in the range√
n < d < cn/ log n may help. This is still wide open, and has strong implica-

tions for the model of the degree sequence of a random graph in G(n, p) which
is given in [82].
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[4] A. Békéssy, P. Békéssy & J. Komlós, Asymptotic enumeration of regu-
lar matrices, Studia Scientiarum Mathematicarum Hungarica, 7 (1972),
343–353.

[5] E. A. Bender & E. R. Canfield, The asymptotic number of non-negative
integer matrices with given row and column sums, Journal of Combina-
torial Theory, Series A, 24 (1978), 296–307.

[6] E. A. Bender, Z. C. Gao & L. B. Richmond, Submaps of Maps I. General
0-1 Laws, Journal of Combinatorial Theory, Series B , 55 (1992), 104–
117.

[7] E. A. Bender, L. B. Richmond & N. C. Wormald, Largest 4-connected
components of 3-connected planar triangulations, Random Structures &
Algorithms , 7 (1995), 273–285.

[8] C. Berge, Graphes et Hypergraphes , Dunod, Paris (1970).

[9] B. Bollobás, A probabilistic proof of an asymptotic formula for the
number of labelled regular graphs, Preprint Series, Matematisk Institut,
Aarhus Universitet, 1979.

[10] B. Bollobás, A probabilistic proof of an asymptotic formula for the num-
ber of labelled regular graphs, European Journal of Combinatorics , 1
(1980), 311–316.

[11] B. Bollobás, Random graphs, in Combinatorics (ed. H. N. V. Temper-
ley), London Mathematical Society Lecture Note Series , 52, Cambridge
University Press, Cambridge (1981), pp. 80–102.

[12] B. Bollobás, The independence ratio of regular graphs, Proceedings of
the American Mathematical Society , 83 (1981), 433–436.

[13] B. Bollobás, Distinguishing vertices of random graphs, in Graph The-
ory (ed. B. Bollobás), North-Holland Math. Stud., 62, North-Holland,
Amsterdam (1982), pp. 33–49.

[14] B. Bollobás, The asymptotic number of unlabelled regular graphs, Jour-
nal of the London Mathematical Society , 26 (1982), 201–206.

[15] B. Bollobás, Almost all regular graphs are Hamiltonian, European Jour-
nal of Combinatorics , 4 (1983), 97–106.



   

Models of random regular graphs 53

[16] B. Bollobás, Random Graphs , Academic Press, London (1985).

[17] B. Bollobás, The isoperimetric number of a random graph, European
Journal of Combinatorics , 9 (1988), 241–244.

[18] B. Bollobás & L. Clark, Generalized chromatic numbers of random reg-
ular graphs, in Graph Theory, Combinatorics and Algorithms, Vol. 1, 2
(eds. Y. Alavi & A. Schwenk), Wiley, New York (1995), pp. 209–219.

[19] B. Bollobás & F. R. K. Chung, The diameter of a cycle plus a random
matching, SIAM Journal on Discrete Mathematics , 1 (1988), 328–333.

[20] B. Bollobás & B. D. McKay, The number of matchings in random regular
graphs and bipartite graphs, Journal of Combinatorial Theory, Series B ,
41 (1986), 80–91.

[21] B. Bollobás & W. Fernandez de la Vega, The diameter of random regular
graphs, Combinatorica, 2 (1982), 125–134.

[22] J. A. Bondy & U. S. R. Murty, Graph Theory with Applications , Elsevier,
New York (1976).

[23] O. Borodin & A. Kostochka, On an upper bound of a graph’s chromatic
number depending on the graph’s degree and density, Journal of Com-
binatorial Theory, Series B , 23 (1977), 247–250.

[24] A. Broder & E. Shamir, On the second eigenvalue of random regular
graphs, in 28th Annual Symposium on Foundations of Computer Science.
IEEE Comput. Soc. Press, Washington DC (1987), pp. 286–294.

[25] P. Catlin, A bound on the chromatic number of a graph, Discrete Math-
ematics , 22 (1978), 81–83.

[26] F. R. K. Chung, Constructing random-like graphs, in Probabilistic Com-
binatorics and Its Applications (ed. B. Bollobás), Proc. Sympos. Appl.
Math., 44, Amer. Math. Soc., Providence, Rhode Island (1991), pp. 21–
55.

[27] K. L. Chung, A Course in Probability Theory, 2nd ed., Academic Press,
New York (1974).

[28] C. Cooper, A note on the connectivity of 2-regular digraphs, Random
Structures & Algorithms , 4 (1993), 469–472.

[29] C. Cooper, On the 2-cyclic property in 2-regular digraphs, Random
Structures & Algorithms , 6 (1995), 439–448.

[30] C. Cooper & A. M. Frieze, Hamilton cycles in a class of random directed
graphs, Journal of Combinatorial Theory, Series B , 62 (1994), 151–163.



    

54 N. C. Wormald

[31] C. Cooper, A. Frieze & M. Molloy, Hamilton cycles in random regular
digraphs, Combinatorics, Probability and Computing , 3 (1994), 39–50.

[32] C. Cooper, A. Frieze, M. Molloy & B. Reed, Perfect matchings in ran-
dom r-regular, s-uniform hypergraphs, Combinatorics, Probability and
Computing , 5 (1996), 1–14.

[33] R. Diestel, Graph Theory , Springer, New York (1997).

[34] W. Duckworth & N. C. Wormald, Maximum star forests and minimum
dominating sets in random cubic graphs, in preparation.

[35] M. N. Ellingham, The asymptotic connectivity of labelled coloured
regular bipartite graphs, in Combinatorial Mathematics X. (ed.
L. R. A. Casse), Springer Lecture Notes in Mathematics , 1036, Springer,
Berlin (1983), pp. 177–188.
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