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Greetings again!

The pages below are a set of calculus problems, followed by their solutions. If
you can do these problems without too much trouble, you should have more than
enough background to handle the applications of calculus in the course; if you’re
struggling a bit hopefully looking at the worked out solution will be enough of a
refresher. If not, I strongly encourage you to consult additional resources, as well as
review the material with friends, tutors and your instructors.



Chapter 1

Calculus Review Problems

Calculus is an essential tool in probability and statistics. These questions are de-
signed to ensure that you have a sufficient mastery of the subject for a typical calculus
based course. I’ll first list several review problems, and then give detailed solutions.
If you’re rusty with calculus then you should attempt many of the problems below
without looking at the answers at first. Even if you’re comfortable solving all these
problems, I still recommend you look at both the solutions and the additional com-
ments. I’ll discuss various techniques to solve problems like these; some of these
techniques may not have been covered in your course. Further, for some of the prob-
lems I’ll discuss why we chose to attack it one way as opposed to another, analyzing
why some approaches work and others fail.

For the convenience of the reader, let’s collect some standard calculus results.

• Derivatives of Standard Functions

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

(xn)′ = nxn−1

(sinx)′ = cosx

(cosx)′ = − sinx

(ex)′ = ex

(bx)′ = (loge b)b
x

(loge x)
′ =

1

x

(logb x)
′ =

1

loge b

1

x
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• Useful Rules
Sum Rule: h(x) = f(x) + g(x) h′(x) = f ′(x) + g′(x)
Constant Rule: h(x) = af(x) h′(x) = af ′(x)
Product Rule: h(x) = f(x)g(x) h′(x) = f ′(x)g(x) + f(x)g′(x)

Quotient Rule: h(x) = f(x)
g(x)

h′(x) = f ′(x)g(x)−f(x)g′(x)
(g(x))2

Chain Rule: h(x) = g(f(x)) h′(x) = g′(f(x)) · f ′(x)
Power Rule: h(x) = (f(x))n h′(x) = n(f(x))n−1 · f ′(x)
Multiple Rule: h(x) = f(ax) h′(x) = af ′(ax)
Reciprocal Rule: h(x) = f(x)−1 h′(x) = −f ′(x)f(x)−2

1.1 Problems

1.1.1 Derivatives (one variable)
Question 1.1.1 Find the derivative of f(x) = 4x5 + 3x2 + x1/3.

Question 1.1.2 Find the derivative of f(x) = (x4 + 3x2 + 8) cosx.

Question 1.1.3 Find the derivative of f(x) = log(1− x2).

Question 1.1.4 Find the derivative of log(4x)− log(2x).

Question 1.1.5 Find the derivative of e−x
2/2 = exp(−x2/2).

Question 1.1.6 Find the second derivative of e−x
2/2 = exp(−x2/2).

Question 1.1.7 Find the derivative of ex
8

cos(3x4) = exp(x8) cos(3x4).

Question 1.1.8 Find the derivative of the function f(x) = 4x+
√
2 cos(x) and then

use it to find the tangent line to the curve y = f(x) at x = π/4. Use the tangent line
to approximate f(x) when x = π

4 + .01.

Question 1.1.9 Find the second derivative of f(x) = lnx+
√
162.

Question 1.1.10 Find the maximum value of x4e−x = x4 exp(−x) when x ≥ 0.

Question 1.1.11 Find the critical points of f(x) = 4x3 − 3x2, and decide whether
each is a maximum, a minimum, or a point of inflection.

Question 1.1.12 Find the derivative of (x2 − 1)/(x− 1).

Question 1.1.13 Find the derivative of the function f(x) = 3
√
(5x− 2)2 = (5x −

2)2/3.

Question 1.1.14 Find the points on the graph of f(x) = 1
3x

3 + x2 − x − 1 where
the slope is (a) −1, (b) 2, and (c) 0.

Question 1.1.15 Find the second derivative of f(x) = (x4 + 3x2 + 8) cosx.



Section 1.1.2: Taylor Series (one variable) • 5

1.1.2 Taylor Series (one variable)

Question 1.1.16 Find the first five terms of the Taylor series for f(x) = x8+x4+3
at x = 0.

Question 1.1.17 Find the first three terms of the Taylor series for f(x) = x8+x4+3
at x = 1.

Question 1.1.18 Find the first three terms of the Taylor series for f(x) = cos(5x)
at x = 0.

Question 1.1.19 Find the first five terms of the Taylor series for f(x) = cos3(5x) at
x = 0.

Question 1.1.20 Find the first two terms of the Taylor series for f(x) = ex at x = 0.

Question 1.1.21 Find the first six terms of the Taylor series for f(x) = ex
8

=
exp(x8) at x = 0.

Question 1.1.22 Find the first four terms of the Taylor series for f(x) = 1√
2π
e−x

2/2

= exp(−x2/2)/
√
2π at x = 0.

Question 1.1.23 Find the first three terms of the Taylor series for f(x) =
√
x at

x = 1/3.

Question 1.1.24 Find the first three terms of the Taylor series for f(x) = (1+x)1/3

at x = 1/2.

Question 1.1.25 Find the first three terms of the Taylor series for f(x) = x log x at
x = 1.

Question 1.1.26 Find the first three terms of the Taylor series for f(x) = log(1+x)
at x = 0.

Question 1.1.27 Find the first three terms of the Taylor series for f(x) = log(1−x)
at x = 1.

Question 1.1.28 Find the first two terms of the Taylor series for f(x) = log((1 −
x) · ex) = log((1− x) · exp(x)) at x = 0.

Question 1.1.29 Find the first three terms of the Taylor series for f(x) = cos(x) log(1+
x) at x = 0.

Question 1.1.30 Find the first two terms of the Taylor series for f(x) = log(1+2x)
at x = 0.
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1.1.3 Integrals (one variable)

Question 1.1.31 Find the following integral:
∫ 1

0
(x4 + x2 + 1)dx.

Question 1.1.32 Find the following integral:
∫ 1

0
(x2 + 2x+ 1)dx.

Question 1.1.33 Find the following integral:
∫ 1

0
(x2 + 2x+ 1)2dx.

Question 1.1.34 Find the following integral:
∫ π/2
−π/2(sin

3 x cosx+ sinx cosx)dx.

Question 1.1.35 Find the following integral:
∫ 4

−4(x
3 + 6x2 − 2x− 3)dx.

Question 1.1.36 Find the following integral:
∫ 1

0
x

1+x2 dx.

Question 1.1.37 Find the following integral:
∫ 3

0
(x3 + 3x)8 (x2 + 1)dx.

Question 1.1.38 Find the following integral:
∫ 2

0
x cos(3x2)dx.

Question 1.1.39 Find the following integral:
∫∞
0
xe−x

2/4dx.

Question 1.1.40 Find the following integral:
∫ b
a
x3e−x

2/2dx.

Question 1.1.41 Let

f(x) =

{
1 if x ∈ [0, 1]

0 otherwise.

Calculate
∫∞
−∞ f(t)f(x− t)dt.

1.1.4 Derivatives (several variables)
Question 1.1.42 Let f(x) = x2y + ex + sin(xy). Find ∂f/∂x and ∂f/∂y.

Question 1.1.43 Let

f(x;µ, σ) =
exp(−(x− µ)2/2σ2)√

2πσ2
.

Find ∂f/∂µ and ∂f/∂σ.

Question 1.1.44 Find ∂f/∂x and ∂f/∂y for the function

f(x, y) = xex
2+y2 = x exp(x2 + y2).

Question 1.1.45 Find ∂f/∂x and ∂f/∂y for the function

f(x, y) = exy − log(x2 + y2).

Question 1.1.46 Find ∂f/∂x and ∂f/∂y for the function

f(x, y, t) = 5t4 − 4t5 cos(t sin t).
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1.1.5 Integrals (several variables)
Question 1.1.47 Find ∫ 2

x=0

∫ 3

y=0

5(x2y + xy2 + 2)dxdy.

Question 1.1.48 Find ∫ 6

x=0

∫ 5

y=0

xe−xydxdy.

Question 1.1.49 Find ∫ 1

x=0

∫ 1

y=0

xmyndxdy,

where m,n > 0.

Question 1.1.50 Find ∫ 1

x=0

∫ x

y=0

xydydx.

Question 1.1.51 Find ∫ 1

x=0

∫ x

y=0

ye−xydydx.

Question 1.1.52 Find ∫ 1

x=0

∫ 1

y=0

(x2 + 2xy + y
√
x)dxdy.

Question 1.1.53 Find ∫ 1

x=0

∫ 1

y=0

(ax+ by + c)dxdy.

The following double integral is significantly harder than the ones considered
above. We chose to give it as there are a variety of approaches which lead to its
evaluation, each emphasizing a nice technique.

Question 1.1.54 Prove∫ 1

y=0

∫ 1

x=0

n(1− xy)n−1dxdy = 1 +
1

2
+ · · ·+ 1

n− 1
+

1

n
.
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1.2 Solutions
We now turn to solving the derivatives and integrals. Again, I urge you to attempt the
problems first before turning to this page. I’ll try to emphasize good ways to view
these problems whenever possible.

1.2.1 Derivatives (one variable)
Question 1.2.1 Find the derivative of f(x) = 4x5 + 3x2 + x1/3.

Solution: We use the sum and constant rules, as well as the power rule (which says
the derivative of xn is nxn−1. This yields f ′(x) = 20x4 + 6x + 1

3x
−2/3. 2

Question 1.2.2 Find the derivative of f(x) = (x4 + 3x2 + 8) cosx.

Solution: In problems like this, it helps to write down what rule we’re going to use.
We have a product of two functions, and thus it’s natural to use the product rule:
the derivative of A(x)B(x) is A′(x)B(x) + A(x)B′(x). The easiest way to avoid
making an algebra error is to write all the steps down; while this is time-consuming
and boring, it does cut down on the mistakes. Thus, we note

A(x) = x4 + 3x2 + 8, A′(x) = 4x3 + 6x

and

B(x) = cosx, B′(x) = − sinx.

Therefore f ′(x) = A′(x)B(x)+A(x)B′(x) with A,A′, B,B′ as above; as we have
written everything out in full detail, we need only substitute to find

f ′(x) = (4x3 + 6x) cosx− (x4 + 3x2 + 8) sinx.

2

Question 1.2.3 Find the derivative of f(x) = log(1− x2).

Solution: This problem requires the chain rule. A good way to detect the chain
rule is to read the problem aloud. We are finding the derivative of the logarithm
of 1 − x2; the of almost always means a chain rule. If f(x) = g(h(x)) then
f ′(x) = g′(h(x))h′(x). We must identify the functions g and h which we com-
pose to get log(1 − x2). Usually what follows the of is our h(x), and this problem
is no exception. We see we may write

f(x) = log(1− x2) = g(h(x)),

with
g(x) = log x, h(x) = 1− x2.

Recall the derivative of the natural logarithm function is the one-over function; in
other words, log′(x) = 1/x. Taking derivatives yields

g′(x) =
1

x
, g′(h(x)) =

1

h(x)
=

1

1− x2



Section 1.2.1: Derivatives (one variable) • 9

and
h′(x) = −2x,

or

f ′(x) = − 2x

1− x2
.

2

Important Note: One of the most common mistakes in chain rule problems is
evaluating the outer function at the wrong place. Note that even though initially we
calculate g′(x), it’s g′(h(x)) that appears in the answer. This shouldn’t be surprising.
Imagine f(x) =

√
4− x; we may write this as f(x) = g(h(x)) with g(x) =

√
x

and h(x) = 4−x. Note g(−5) doesn’t make sense; this is
√
−5, and we should only

take square-roots of non-negative numbers. If g(−5) doesn’t even make sense, how
could g′(−5)? The reason this isn’t a problem is that we don’t care about g(−5), but
rather g(h(−5)); as h(−5) = 9, we see g(h(−5)) = 3.

Question 1.2.4 Find the derivative of log(4x)− log(2x).

Solution: One way to evaluate this is to use the difference rule and then compute the
derivative of log(cx) with c = 4 and c = 2. We can do this by either using the chain
rule or the multiple rule (the derivative of f(cx) is cf ′(cx)). A better approach is
to simplify the problem: as logA − logB = log(A/B), our problem is to find the
derivative of log(4x/2x) = log 2. The constant rule says the derivative of any con-
stant is zero; note log 2 is a constant, approximately .69. Thus the derivative of this
function is zero. 2

Important Note: For the problem above, notice how much faster it is to do some
algebra first before differentiating. It’s frequently a good idea to spend a few mo-
ments mulling over a problem and thinking about the best way to attack it. Often a
little inspection suggests a way to rewrite the algebra to greatly simplify the compu-
tations.

Question 1.2.5 Find the derivative of e−x
2/2 = exp(−x2/2).

Solution: This is another chain rule; the answer is−x exp(−x2/2), and uses the fact
that the derivative of ex is ex. 2

Question 1.2.6 Find the second derivative of e−x
2/2 = exp(−x2/2).

Solution: To find the second derivative, we just take the derivative of the first deriva-
tive. The first derivative (by the previous problem) is −x exp(−x2/2). We now
use the product rule with f(x) = −x and g(x) = exp(−x2/2). The answer is
− exp(−x2/2) + x2 exp(−x2/2). 2

Question 1.2.7 Find the derivative of ex
8

cos(3x4) = exp(x8) cos(3x4).
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Solution: When there are several rules to be used, it’s important that we figure out
the right order. There is clearly going to be a power rule, as we have terms such as
x8 and x4. There will be a chain rule, as we have cosine of 3x4 and the exponential
of x8; there will also be a product. Which rule do we use first? We can’t write our
function as f(g(x)), so we don’t use the chain rule first. We can write it as f(x)g(x),
with f(x) = exp(x8) and g(x) = cos(3x4), so we start with a product rule. By the
product rule our derivative is

f ′(x)g(x) + f(x)g′(x) = f ′(x) cos(3x4) + exp(x8)g′(x);

to complete the problem we must compute f ′(x) and g′(x). We use the chain rule
for each, and find

f ′(x) = 8x7 exp(x8), g′(x) = −12x3 sin(3x4);

substituting these in yields the answer. 2

Question 1.2.8 Find the derivative of the function f(x) = 4x+
√
2 cos(x) and then

use it to find the tangent line to the curve y = f(x) at x = π/4. Use the tangent line
to approximate f(x) when x = π

4 + .01.

Solution: The derivative is f ′(x) = 4 −
√
2 sin(x); while we could use the product

rule for the second term, it’s faster to just note that
√
2 is a constant and the derivative

of cg(x) is cg′(x). The tangent line is the best linear approximation to our function
at that point. The slope of the tangent line is given by the derivative at that point;
this is one of the most important interpretations of the derivative. We thus have
two pieces of information: we’re at the point (π/4, f(π/4)) and the derivative (i.e.,
the instantaneous rate of change) there is f ′(π/4). We can thus find the line going
through this point with this slope by using, not surprisingly, the point-slope equation
of a line:

y − y1 = m(x− x1).

Here

(x1, y1) = (π/4, f(π/4)) = (π/4, π + 1), m = f ′(π/4) = 3.

Thus

y − (π + 1) = 3(x− π/4) or y = (π + 1) + 3(x− π/4).

When x = π/4 + .01, this gives f(π/4 + .01) ≈ (π + 1) + .03 ≈ 4.17159, while
f(π/4+ .01) is about 4.17154. This is terrific agreement; our approximation is basi-
cally accurate to about four decimal places! In general, when we evaluate f(x0 + h)
using the tangent line method, the error is on the order of h2; for this problem h = .01
so we expect to be accurate to about .0001. 2

Question 1.2.9 Find the second derivative of f(x) = lnx+
√
162.

Solution: Remember the derivative of any constant is zero, so we see f ′(x) = 1/x
and thus f ′′(x) = −1/x2. 2
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Question 1.2.10 Find the maximum value of x4e−x = x4 exp(−x) when x ≥ 0.

Solution: To find the maximum (or minimum) value of a function, we must do two
things: find the critical points (the places where the first derivative vanishes) and
find the end points for the region under investigation. We then evaluate our function
at all these points and see where it’s largest (or smallest). The first derivative is

4x3 exp(−x)− x4 exp(−x) = x3 exp(−x) (4− x) .

Thus the critical points are x = 0 and x = 4. We only have one end point (x = 0), but
note that as x → ∞ our function very rapidly decays to zero (as exponential decay
is faster than polynomial growth). Our function is 0 when x = 0 but 254e−4 ≈ 4.7
when x = 4. Comparing these points, we see the maximum is when x = 4. Interest-
ingly, 0 was both an end point and a critical point in this problem. 2

Question 1.2.11 Find the critical points of f(x) = 4x3 − 3x2, and decide whether
each is a maximum, a minimum, or a point of inflection.

Solution: From the previous problem, we know the critical points are where the first
derivative vanishes. In this case, f ′(x) = 12x2 − 6x = 6x(2x − 1), giving critical
points of 0 and 1/2. There are several ways to determine if we have a maximum or
minimum at a critical point. If we can take two derivatives, the second derivative
test is a great way to proceed. It says that if f ′(a) = 0 and f ′′(a) > 0, then we have
a local minimum, while if f ′(a) = 0 and f ′′(a) < 0 then we have a local maximum.
For us, f ′′(x) = 24x − 6; thus f ′′(0) = −6, which tells us 0 is a local maximum,
while f ′′(1/2) = 6 > 0, which tells us 1/2 is a local minimum. An inflection point
is where the second derivative vanishes; this corresponds to the shape of the curve
changing (from concave up to concave down, for instance). It’s quite unusual for
a maximum or minimum to also be an inflection point; as the second derivative is
non-zero at each point, neither point is an inflection point. 2

Important Note: A good way to remember the second derivative test is to look at
the polynomials x2 and −x2. Both have critical points at 0, but the first has second
derivative of 2 while the second has a second derivative of −2. The first is an up
parabola, and clearly the vertex x = 0 is a minimum; the other is a down parabola,
and clearly the vertex x = 0 is a maximum. Note the second derivative test is silent
in the case when f ′(a) = 0 and f ′′(a) = 0. There is a third and even a fourth deriva-
tive test.... 2

Question 1.2.12 Find the derivative of (x2 − 1)/(x− 1).

Solution: We use the quotient rule: if f(x) = g(x)/h(x) then

f ′(x) =
g′(x)h(x)− g(x)h′(x)

h(x)2
.

For us

h(x) = x2 − 1, h′(x) = 2xc
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and
g(x) = x− 1, g′(x) = 1.

We just substitute in, and find

f ′(x) =
2x(x− 1)− (x2 − 1)1

(x− 1)2
=

x2 − 2x+ 1

(x− 1)2
= 1.

2

Important Note: The above problem could have been done a lot faster if, as
suggested in an earlier problem, we spent a moment thinking about algebra first.
Such a pause might have allowed us to see that the numerator factors as (x− 1)(x+
1); the x − 1 cancels with the denominator, and we get f(x) = x + 1. This is a
much easier function to differentiate; the answer is clearly 1. Another way to do this
problem is to avoid the quotient rule and use the product rule, by writing the function
as (x2 − 1) · (x− 1)−1.

Question 1.2.13 Find the derivative of the function f(x) = 3
√

(5x− 2)2 = (5x −
2)2/3.

Solution: This is an example of the generalized power rule: if f(x) = g(x)r then
f ′(x) = rg(x)r−1g′(x). Here g(x) = 5x − 2 and r = 2/3. Thus g′(x) = 5,
r − 1 = −1/3, and the answer is f ′(x) = 2

3 (5x− 2)−1/3 · 5. 2

Important Note: One of the most common mistakes in using the generalized
power rule is forgetting the g′(x) at the end. One reason this is so frequently omitted
is that it’s actually not needed in a very special case: if f(x) = xr then f ′(x) =
rxr−1. However, we could write this as f ′(x) = rxr−1x′ = rxr−11. Thus there’s
a g′(x) term even in this case, but as it’s 1 it’s easy to forget about it when we
generalize.

Question 1.2.14 Find the points on the graph of f(x) = 1
3x

3 + x2 − x − 1 where
the slope is (a) −1, (b) 2, and (c) 0.

Solution: The first derivative gives the slope, so we must find where the first deriva-
tive equals −1, 2 and 0. Well, f ′(x) = x2 + 2x − 1. So for (a) we must solve
x2 +2x− 1 = −1, or x2 +2x = 0; there are two solutions, x = 0 and x = −2. We
can see this by factoring: x2+2x = 0 is the same as x(x+2) = 0, and the only way
the product can vanish is if one of the factors vanish. Thus either x = 0 or x+2 = 0.
For (b), a similar analysis gives x2 +2x− 3 = 0; this factors as (x+3)(x− 1) = 0,
so the solutions are x = −3 and x = 1. For (c), we have x2 + 2x − 1 = 0. This
doesn’t factor nicely, so we use the quadratic formula. Recall the quadratic formula
says that if ax2 + bx+ c = 0 then x = (−b±

√
b2 − 4ac)/2a. In our case, we find

the roots are (−2±
√
4 + 4)/2. We can simplify this with some algebra and find the

roots are −1±
√
2. 2

Question 1.2.15 Find the second derivative of f(x) = (x4 + 3x2 + 8) cosx.
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Solution: This is another product rule problem; the answer is

(4x3 + 6x) cosx− (x4 + 3x2 + 8) sinx.

2

1.2.2 Taylor Series (one variable)
Recall that the Taylor series of degree n for a function f at a point x0 is given by

f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)2

+
f ′′′(x0)

3!
(x− x0)3 + · · ·+

f (n)(x0)

n!
(x− x0)n,

where f (k) denotes the kth derivative of f . We can write this more compactly with
summation notation as

n∑
k=0

f (k)(x0)

k!
(x− x0)k,

where f (0) is just f . In many cases the point x0 is 0, and the formulas simplify a bit
to

n∑
k=0

f (k)(0)

k!
xk = f(0) + f ′(0)x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn.

The reason Taylor series are so useful is that they allow us to understand the behavior
of a complicated function near a point by understanding the behavior of a related
polynomial near that point; the higher the degree of our approximating polynomial,
the smaller the error in our approximation. Fortunately, for many applications a first
order Taylor series (i.e., just using the first derivative) does a very good job. This is
also called the tangent line method, as we’re replacing a complicated function with
its tangent line.

One thing which can be a little confusing is that there are n+1 terms in a Taylor
series of degree n; the problem is we start with the zeroth term, the value of the
function at the point of interest. You should never be impressed if someone tells you
the Taylor series at x0 agrees with the function at x0 – this is forced to hold from the
definition! The reason is all the (x − x0)k terms vanish, and we’re left with f(x0),
so of course the two will agree. Taylor series are only useful when they are close to
the original function for x close to x0.

Question 1.2.16 Find the first five terms of the Taylor series for f(x) = x8+x4+3
at x = 0.

Solution: To find the first five terms requires evaluating the function and its first four
derivatives:

f(x) = x8 + x4 + 3 ⇒ f(0) = 3
f ′(x) = 8x7 + 4x3 ⇒ f ′(0) = 0
f ′′(x) = 56x6 + 12x2 ⇒ f ′′(0) = 0
f ′′′(x) = 336x5 + 24x ⇒ f ′′′(0) = 0
f (4)(x) = 1680x4 + 24 ⇒ f (4)(0) = 24
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Therefore the first five terms of the Taylor series are

f(0) + f ′(0)x+ · · ·+ f (4)(0)

4!
x4 = 3 +

24

4!
x4 = 3 + x4.

This answer shouldn’t be surprising as we can view our function as f(x) = 3+x4+
x8; thus our function is presented in such a way that it’s easy to see its Taylor series
about 0. If we wanted the first six terms of its Taylor series expansion about 0, the
answer would be the same. We won’t see anything new until we look at the degree 8
Taylor series (i.e., the first nine terms), at which point the x8 term appears. 2

Question 1.2.17 Find the first three terms of the Taylor series for f(x) = x8+x4+3
at x = 1.

Solution: We can find the expansion by taking the derivatives and evaluating at 1 and
not 0. We have

f(x) = x8 + x4 + 3 ⇒ f(1) = 5
f ′(x) = 8x7 + 4x3 ⇒ f ′(1) = 12
f ′′(x) = 56x6 + 12x2 ⇒ f ′′(1) = 68.

Therefore the first three terms gives

f(1) + f ′(1)(x− 1) +
f ′′(1)

2!
(x− 1)2 = 5 + 12(x− 1) + 34(x− 1)2.

2

Important Note: Another way to do this problem is one of my favorite tricks,
namely converting a Taylor expansion about one point to another. We write x as
(x − 1) + 1; we’ve just added zero, which is one of the most powerful tricks in
mathematics. We then have

x8 + x4 + 3 = ((x− 1) + 1)8 + ((x− 1) + 1)4 + 3;

we can expand each term by using the Binomial Theorem, and after some algebra
we’ll find the same answer as before. For example, ((x− 1) + 1)4 equals(

4

0

)
(x− 1)410 +

(
4

1

)
(x− 1)311

+

(
4

2

)
(x− 1)212 +

(
4

3

)
(x− 1)113 +

(
4

4

)
(x− 1)015.

In this instance, it isn’t a good idea to use this trick, as this makes the problem
more complicated rather than easier; however, there are situations where this trick
does make life easier, and thus it’s worth seeing. We’ll see another trick in the next
problem (and this time it will simplify things).

Question 1.2.18 Find the first three terms of the Taylor series for f(x) = cos(5x)
at x = 0.

Solution: The standard way to solve this is to take derivatives and evaluate. We have
f(x) = cos(5x) ⇒ f(0) = 1
f ′(x) = −5 sin(5x) ⇒ f ′(0) = 0
f ′′(x) = −25 cos(5x) ⇒ f ′′(0) = -25.
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Thus the answer is

f(0) + f ′(0)x+
f ′′(0)

2
x2 = 1− 25

2
x2.

2

Important Note: We discuss a faster way of doing this problem. This method
assumes we know the Taylor series expansion of a related function, g(u) = cos(u).
This is one of the three standard Taylor series expansions one sees in calculus (the
others being the expansions for sin(u) and exp(u); a good course also does log(1±
u)). Recall

cos(u) = 1− u2

2!
+
u4

4!
− u6

6!
+ · · · =

∞∑
k=0

(−1)ku2k

(2k)!
.

If we replace u with 5x, we get the Taylor series expansion for cos(5x):

cos(5x) = 1− (5x)2

2!
+

(5x)4

4!
− (5x)6

6!
+ · · · .

As we only want the first three terms, we stop at the x2 term, and find it’s 1−25x2/2.
The answer is the same as before, but this seems much faster. Is it? At first it seems
like we avoided having to take derivatives. We haven’t; the point is we took the
derivatives years ago in calculus when we found the Taylor series expansion for
cos(u). We now use that. We see the advantage of being able to recall previous
results – we can frequently modify them (with very little effort) to cover a new situ-
ation; however, we can of course only do this if we remember the old results!

Question 1.2.19 Find the first five terms of the Taylor series for f(x) = cos3(5x) at
x = 0.

Solution: Doing (a lot of!) differentiation and algebra leads to

1− 75

2
x2 +

4375

8
x4 − 190625

48
x6;

we calculated more terms than needed because of the comment below. Note that
f ′(x) = −15 cos2(5x) sin(5x). To calculate f ′′(x) involves a product and a power
rule, and we can see that it gets worse and worse the higher derivative we need! It’s
worth doing all these derivatives to appreciate the alternate approach given below. 2

Important Note: There is a faster way to do this problem. From the previous
exercise, we know

cos(5x) = 1− 25

2
x2 + terms of size x3 or higher.

Thus to find the first five terms is equivalent to just finding the coefficients up to x4.
Unfortunately our expansion is just a tad too crude; we only kept up to x2, and we
need to have up to x4. So, let’s spend a little more time and compute the Taylor
series of cos(5x) of degree 4: that is

1− 25

2
x2 +

625

24
x4.
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If we cube this, we’ll get the first six terms in the Taylor series of cos3(5x). In other
words, we’ll have the degree 5 expansion, and all our terms will be correct up to the
x6 term. The reason is when we cube cos(5x), the only way we can get a term of
degree 5 or less is covered. We’ve dropped the terms where the power of x is at least
6, and clearly none of these terms can contribute to a term with power at most 5.
Thus we only need to compute(

1− 25

2
x2 +

625

24
x4
)3

;

however, as we only care about the terms of x5 or lower, we can drop a lot of terms
in the product. For instance, one of the factors is the x4 term; if it hits another x4

term or an x2 it will give an x6 or higher term, which we don’t care about. Thus,
taking the cube but only keeping terms like x5 or lower degree, we get

1 +

(
3

1

)
12
(
−25

2
x2
)
+

(
3

2

)
1

(
−25

2
x2
)2

+

(
3

1

)
12
(
625

24
x4
)
.

After doing a little algebra, we find the same answer as before.
So, was it worth it? To each his own, but again the advantage of this method

is we reduce much our problem to something we’ve already done. If we wanted to
do the first seven terms of the Taylor series, we would just have to keep a bit more,
and expand the original function cos(5x) a bit further. As mentioned above, to truly
appreciate the power of this method you should do the problem the long way (i.e.,
the standard way).

Question 1.2.20 Find the first two terms of the Taylor series for f(x) = ex at x = 0.

Solution: This is merely the first two terms of one of the most important Taylor series
of all, the Taylor series of ex. As f ′(x) = ex, we see f (n)(x) = ex for all n. Thus
the answer is

f(0) + f ′(0)x = 1 + x.

More generally, the full Taylor series is

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

∞∑
n=0

xn

n!
.

2

Question 1.2.21 Find the first six terms of the Taylor series for f(x) = ex
8

=
exp(x8) at x = 0.

Solution: The first way to solve this is to keep taking derivatives using the chain
rule. Very quickly we see how tedious this is, as f ′(x) = 8x7 exp(x8), f ′′(x) =
64x14 exp(x8) + 56x6 exp(x8), and of course the higher derivatives become even
more complicated. We use the faster idea mentioned above. We know

eu = 1 + u+
u2

2!
+
u3

3!
+ · · · =

∞∑
n=0

un

n!
,
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so replacing u with x8 gives

ex
8

= 1 + x8 +
(x8)2

2!
+ · · · .

As we only want the first six terms, the highest term is x5. Thus the answer is just
1 – we would only have the x8 term if we wanted at least the first nine terms! For
this problem, we see how much better this approach is; knowing the first two terms
of the Taylor series expansion of eu suffice to get the first six terms of ex

8

. This is
magnitudes easier than calculating all those derivatives. Again, we see the advantage
of being able to recall previous results.

Question 1.2.22 Find the first four terms of the Taylor series for f(x) = 1√
2π
e−x

2/2

= exp(−x2/2)/
√
2π at x = 0.

Solution: The answer is
1

2π
− x2

4π
.

We can do this by the standard method of differentiating, or we can take the Taylor
series expansion of eu and replace u with −x2/2. The first four terms means we go
up to the x3 term, so we don’t need to worry about the u2/2 term in the expansion
of eu; it’s enough to use 1 + u. 2

Question 1.2.23 Find the first three terms of the Taylor series for f(x) =
√
x at

x = 1/3.

Solution: If f(x) = x1/2, f ′(x) = 1
2x
−1/2 and f ′′(x) = − 1

4x
−3/2. Evaluating at

1/3 gives

1√
3
+

√
3

2

(
x− 1

3

)
− 3
√
3

8

(
x− 1

3

)2

.

2

Question 1.2.24 Find the first three terms of the Taylor series for f(x) = (1+x)1/3

at x = 1/2.

Solution: Doing a lot of differentiation and algebra yields(
3

2

)1/3

+
1

3

(
2

3

)2/3(
x− 1

2

)
− 2

27

(
2

3

)2/3(
x− 1

2

)2

.

2

Question 1.2.25 Find the first three terms of the Taylor series for f(x) = x log x at
x = 1.
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Solution: One way is to take derivatives in the standard manner and evaluate; this
gives

(x− 1) +
(x− 1)2

2
.

2

Important Note: Another way to do this problem involves two tricks we’ve men-
tioned before. The first is we need to know the series expansion of log(x) about
x = 1. One of the the most important Taylor series expansions, which is often done
in a calculus class, is

log(1 + u) = u− u2

2
+
u3

3
− u4

4
+ · · · =

∞∑
n=1

(−1)k+1uk

k
.

We then write

x log x = ((x− 1) + 1) · log (1 + (x− 1)) ;

we can now grab the Taylor series from

((x− 1) + 1) ·
(
(x− 1)− (x− 1)2

2

)
= (x− 1) +

(x− 1)2

2
+ · · · .

Question 1.2.26 Find the first three terms of the Taylor series for f(x) = log(1+x)
at x = 0.

Solution: Using either the formula mentioned above, or taking derivatives, gives
x− x2

2 . 2

Question 1.2.27 Find the first three terms of the Taylor series for f(x) = log(1−x)
at x = 1.

Solution: The expansion for log(1− x) is often covered in a Calculus class; equiva-
lently, it can be found from log(1 + u) by replacing u with −x. We find

log(1− x) = −
(
x+

x2

2
+
x3

3
+ · · ·

)
= −

∞∑
n=1

xn

n
.

For this problem, we get x+ x2

2 . 2

Question 1.2.28 Find the first two terms of the Taylor series for f(x) = log((1 −
x) · ex) = log((1− x) · exp(x)) at x = 0.

Solution: Taking derivatives and doing the algebra, we see the answer is just zero!
The first term that has a non-zero coefficient is the x2 term, which comes in as
−x2/2. A better way of doing this is to simplify the expression before taking the
derivative. As the logarithm of a product is the sum of the logarithms, we have
log((1 − x) · ex) equals log(1 − x) + log ex. But log ex = x, and log(1 − x) =
−x−x2/2− · · · . Adding the two expansions gives −x2/2− · · · , which means that
the first two terms of the Taylor series vanish. 2
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Question 1.2.29 Find the first three terms of the Taylor series for f(x) = cos(x) log(1+
x) at x = 0.

Solution: Taking derivatives and doing the algebra gives x− x2/2. 2

Important Note: A better way of doing this is to take the Taylor series expansions
of each piece and then multiply them together. We need only take enough terms of
each piece so that we’re sure that we get the terms of order x2 and lower correct.
Thus

cos(x) log(1 + x) =

(
1− x2

2
+ · · ·

)
·
(
x− x2

2
+ · · ·

)
= x− x2

2
+ · · · .

Question 1.2.30 Find the first two terms of the Taylor series for f(x) = log(1+2x)
at x = 0.

Solution: The fastest way to do this is to take the Taylor series of log(1 + u) and
replace u with 2x, giving 2x. 2

1.2.3 Integrals (one variable)

Question 1.2.31 Find the following integral:
∫ 1

0
(x4 + x2 + 1)dx.

Solution: We use the integral of a sum is the sum of the integrals, and the integral of
xn is xn+1/(n+ 1) (so long as n 6= −1; if n = −1 then the integral is log x). Thus
the answer is∫ 1

0

(x4 + x2 + 1)dx =

∫ 1

0

x4dx+

∫ 1

0

x2dx+

∫ 1

0

dx

=
x5

5

∣∣∣∣∣
1

0

+
x3

3

∣∣∣∣∣
1

0

+ x

∣∣∣∣∣
1

0

=
1

5
+

1

3
+ 1.

2

Question 1.2.32 Find the following integral:
∫ 1

0
(x2 + 2x+ 1)dx.

Solution: We can solve this as we did the above problem, integrating term by term,
or we can note that the integrand x2 + 2x+ 1 is just (x+ 1)2. Thus

∫ 1

0

(x2 + 2x+ 1)dx =

∫ 1

0

(x+ 1)2dx =
(x+ 1)3

3

∣∣∣∣∣
1

0

=
8

3
− 1

3
=

7

3
.

2

Question 1.2.33 Find the following integral:
∫ 1

0
(x2 + 2x+ 1)2dx.
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Solution: You might be tempted to use the power rule and say

∫ 1

0

(x2 + 2x+ 1)2dx =
(x2 + 2x+ 1)3

3

∣∣∣∣∣
1

0

=
64

3
− 1

3
= 21;

however, this is wrong! What’s the difference between this and the previous prob-
lem? To use the power rule, we need

∫ b
a
nf(x)n−1f ′(x)dx. In the previous problem

n = 2, f(x) = x + 1 and f ′(x) = 1. In this exercise, n = 2, f(x) = x2 + 2x + 1
and f ′(x) = 2x + 2. As we don’t have the 2x+ factor, the suggested argument is
wrong! Fortunately, there are two easy fixes. One of course is to expand everything
out. The second is to note the integrand is just ((x+ 1)2)2 = (x+ 1)4. We now use
the power rule with n = 4, f(x) = x+ 1 and f ′(x) = 1, and find

∫ 1

0

(x2 + 2x+ 1)2dx =

∫ 1

0

(x+ 1)4dx =
(x+ 1)5

5

∣∣∣∣∣
1

0

=
25

5
− 1

5
=

31

5
.

2

Question 1.2.34 Find the following integral:
∫ π/2
−π/2(sin

3 x cosx+ sinx cosx)dx.

Solution: We use the integral version of the power rule:
∫
g(x)ng′(x)dx = g(x)n+1

n+1 .
As sin′ x = cosx, we have

∫ π/2

−π/2
(sin3 x cosx+ sinx cosx)dx =

sin4 x

4

∣∣∣∣∣
π/2

−π/2

+
sin2 x

2

∣∣∣∣∣
π/2

−π/2

= 0.

An alternate way to write the computations is with u-substitution. We show this for
the first integral. If we let u = sinx then du/dx = cosx or du = cosxdx; also, if x
runs from −π/2 to π/2 then u runs from −1 to 1. Hence

∫ π/2

−π/2
(sin3 x cosx)dx =

∫ 1

−1
u3du =

u4

4

∣∣∣∣∣
1

−1

= 0.

Question 1.2.35 Find the following integral:
∫ 4

−4(x
3 + 6x2 − 2x− 3)dx.

Solution: The indefinite integral is−3x−x2+2x3+ 1
4x

4; evaluating at the endpoints
gives 232. 2

Question 1.2.36 Find the following integral:
∫ 1

0
x

1+x2 dx.

Solution: This is another example of u-substitution. Let u = x2. Then du/dx =
2xdx so xdx = du/2; as x runs from 0 to 1 we have u runs from 0 to 1 as well. Thus

∫ 1

0

x

1 + x2
dx =

∫ 1

0

1

1 + u

du

2
=

log(1 + u)

2

∣∣∣∣∣
1

0

=
log 2

2
.
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2

Important Note: In the above problem, it’s very important that the range of inte-
gration was from 0 to 1 and not from −1 to 1. Why? If we tried to do u-substitution
in that case, we would say u = x2 so when x = −1 we have u = 1, and also when
x = 1 we get u = 1. In other words, the range of the u-integration is from 1 to
1! Any integral over a point is just zero. What went wrong? The problem is the
function x2 isn’t one-to-one on the interval [−1, 1]; in other words, different values
of x are mapped to the same value of u. When we do u-substitution, it’s essential
that to each x there’s one and only one u (and vice-versa).

Question 1.2.37 Find the following integral:
∫ 3

0
(x3 + 3x)8 (x2 + 1)dx.

Solution: There are several ways to do this problem. The slowest (but it will work!)
is to expand the integrand and write it as a massive polynomial. The fastest is to let
u = x3 + 3x and use u-substitution. Note that du/dx = 3x2 + 3 = 3(x2 + 1), and
thus our

∫
(x3 + 3x)8(x2 + 1)dx becomes

∫
u8du/3. After some algebra we obtain

369/27. 2

Important Note: We need to use u-substitution and not the product rule here.
Why? Unfortunately the product rule doesn’t give a nice answer for

∫
f(x)g(x)dx,

but only for integrals of the form
∫
[f ′(x)g(x) + f(x)g′(x)] dx.

Question 1.2.38 Find the following integral:
∫ 2

0
x cos(3x2)dx.

Solution: This is another u-substitution; this is a very important technique in proba-
bility. We let u = 3x2 so du/dx = 6x or xdx = du/6. Thus

∫ 2

0

x cos(3x2)dx =

∫ 12

0

cosudu

6
=

sinu

6

∣∣∣∣∣
12

0

=
sin 12

6
.

2

Question 1.2.39 Find the following integral:
∫∞
0
xe−x

2/4dx.

Solution: Surprise – another u-substitution! This time it’s u = x2/4 so du/dx = x/2
or xdx = 2du. We find∫ ∞

0

xe−x
2/4dx =

∫ ∞
0

2e−udu = −2e−u
∣∣∣∣∣
∞

0

= 2.

2

Important Note: This integral is very important; it’s basically how one calculates
the mean of a normal distribution (except that it doesn’t integrate to 1, this would be
a normal distribution with mean 0 and variance 2).

Question 1.2.40 Find the following integral:
∫ b
a
x3e−x

2/2dx.
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Solution: We finally have an integral where we don’t proceed by u-substitution. For
this one, we integrate by parts. The formula is∫ b

A

udv = u(x)v(x)

∣∣∣∣∣
b

a

−
∫ b

a

vdu.

The explanation below is quite long because we want to highlight how to approach
problems involving integration by parts. It’s well worth the time to analyze ap-
proaches that work as well as those that don’t, and see why some fail and others
work. This is a great way to build intuition, which will be essential when you have
to evaluate new integrals.

The difficulty in integrating by parts is figuring out what we should take for u(x)
and v(x). The integrand is x3e−x

2/2. There are several natural choices. Two obvious
ones are to either take u(x) = x3 and dv = e−x

2/4dx, or to take u(x) = e−x
2/2 and

dv = x3dx. The first guess fails miserable, but it’s illuminating to see why it fails.
The second guess works but is a little involved. After analyzing these two cases we’ll
discuss another choice of u and dv that works quite well for problems like these.

In the first guess, it’s easy to find du, which is just du = 3x2dx. While this
looks promising, we’re in trouble when we get to the dv term. There we have dv =

e−x
2/2dx, which requires us to find a function whose derivative is e−x

2/2. Sadly,
there’s no elementary function that works!

What about the other idea? For the second guess, the dv = x3dx is no problem;
it leads to v(x) = x4/4. Then the u(x) = e−x

2/2 term gives du = −xe−x2/2. This
will work, but it’ll be a tad cumbersome. We get∫ b

a

x3e−x
2/2dx = e−x

2/2x
4

4

∣∣∣∣∣
b

a

+
1

4

∫ b

a

x3e−x
2/2dx.

Thus after integrating by parts we’re still left with a tough integral. Amazingly,
however, this is the same integral as we started with, except multiplied by a factor of
1/4. It’s essential that it’s multiplied by something other than 1; the reason is we can
subtract it from both sides, and find

3

4

∫ b

a

x3e−x
2/2dx = e−x

2/2x
4

4

∣∣∣∣∣
b

a

,

or, multiplying both sides by 4/3, we can solve for our original, unknown integral!
This is an example of what I’ll call the bring it over method.

This second method works, and involves a truly elegant trick. If we call our
original integral I , we found I = C + 1

4I where C is some computable constant.
This led to 3

4I = C or I = 4
3C. It’s nice, but will we always be lucky enough to get

exactly our unknown integral back? If not, this trick will fail. Thus, it’s worth seeing
another approach to this problem. Let’s analyze what went wrong in our first attempt.
There we had dv = e−x

2/2dx; the trouble was we couldn’t find a nice integral (or
anti-derivative) of e−x

2/2. What if we took dv = e−x
2/2xdx? The presence of the

extra factor of x means we can find an anti-derivative, and we get v = −e−x2/2.
This means we now take u(x) = x2 instead of x3, but this is fine as du is readily
seen to be du = 2xdx. To recap, our choices are

u(x) = x2 and du = 2xdx
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and
dv = e−x

2/2xdx and v = −e−x
2/2.

This yields ∫ b

a

x3e−x
2/2dx = −x2e−x

2/2

∣∣∣∣∣
b

a

+ 2

∫ b

a

xe−x
2/2dx.

While we haven’t solved the problem, the remaining integral can easily be done by
u-substitution (in fact, a simple variant of this was done in the previous problem).
We leave it as a very good exercise for the reader to check and make sure these two
methods give the same final answer. 2

Question 1.2.41 Let

f(x) =

{
1 if x ∈ [0, 1]

0 otherwise.

Calculate
∫∞
−∞ f(t)f(x− t)dt.

Solution: This integral is significantly harder to evaluate than all the others we’ve
studied. The reason is that the function f isn’t one of the standard functions we’ve
seen. The easiest way to attack problems like this is to break the problem up into
cases. Note that the integrand f(t)f(x−t) is zero unless both t and x−t are in [0, 1].
In particular, if x > 2 or x < 0, then at least one of these two expressions isn’t in
[0, 1]. For example, we must have t ∈ [0, 1]. This means that that x−1 ≤ x− t ≤ x;
for this to lie in [0, 1], we must have x ≥ 0 and x − 1 ≤ 1, which translates to
0 ≤ x ≤ 2. For each such x we now do the integral directly. The answer turns out
to depend on whether or not 0 ≤ x ≤ 1 or 1 ≤ x ≤ 2. Let’s do the first case. If
0 ≤ x ≤ 1, then x− t ∈ [0, 1] forces t ∈ [0, x]. Thus for x ∈ [0, 1],∫ ∞

−∞
f(t)f(x− t)dt =

∫ x

0

dt = x.

If now 1 ≤ x ≤ 2 then x− t ∈ [0, 1] implies t ∈ [x− 1, x]; however, we must also
have t ∈ [0, 1], so these two conditions restrict us to t ∈ [x− 1, 1], and now we get∫ ∞

−∞
f(t)f(x− t)dt =

∫ 1

x−1
dt = 2− x.

To recap, the answer is x if 0 ≤ x ≤ 1, 2− x if 1 ≤ x ≤ 2, and 0 otherwise. 2

Important Note: There’s a nice probabilistic interpretation of the above integral.
It’s the convolution of f with itself. If f is the density of the uniform distribution on
[0, 1], this represents the probability distribution for the sum of two uniform distri-
butions on [0, 1].

1.2.4 Derivatives (several variables)
We quickly review some of the basics of partial derivatives. If we have a function
of several variables (say x1, . . . , xn for definiteness), the partial derivative with
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respect to xi means we treat all the variables but xi as constant, and use standard
techniques from calculus to take the derivative with respect to xi. Explicitly, the
partial derivative with respect to xi at the point (a1, . . . , an) of the function f is

∂f

∂xi
(a1, . . . , an) = lim

h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a1, . . . , an)
h

.

We often denote this by fxi
. If we have the partial derivative of a partial derivative,

we denote it as
∂2f

∂xi∂xj
=

∂

∂xj

(
∂f

∂xi

)
= fxixj

.

A very important result states that if all the first and second order partial derivatives
of a function f exist and are continuous at a, then the order of the derivatives doesn’t
matter; in other words, ∂2f/∂xi∂xj = ∂2f/∂xj∂xi.

Question 1.2.42 Let f(x) = x2y + ex + sin(xy). Find ∂f/∂x and ∂f/∂y.

Solution: To find ∂f/∂x, we treat y as a constant and differentiate with respect to x.
We find

∂f

∂x
= 2xy + ex + y cos(xy),

where the last piece involves using the chain rule (or the multiple rule) on sin(xy),
remembering that y is a constant. Similarly we find

∂f

∂y
= x2 + x cos(xy).

2

Question 1.2.43 Let

f(x;µ, σ) =
exp(−(x− µ)2/2σ2)√

2πσ2
.

Find ∂f/∂µ and ∂f/∂σ.

Solution: Treating σ as a constant, we find

∂f

∂µ
=

exp(−(x− µ)2/2σ2)√
2πσ2

·
(
− 1

2σ2
· 2(x− µ) · (−1)

)
=

(x− µ) exp(−(x− µ)2/2σ2)

σ2
√
2πσ2

.

A more involved computation, involving the quotient rule, gives

∂f

∂σ
= −exp(−(x− µ)2/2σ2)√

2πσ2
+

(x− µ)2 exp(−(x− µ)2/2σ2)√
2πσ4

.

2
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Question 1.2.44 Find ∂f/∂x and ∂f/∂y for the function

f(x, y) = xex
2+y2 = x exp(x2 + y2).

Solution: A straightforward computation gives

∂f

∂x
= ex

2+y2 + 2x2ex
2+y2

∂f

∂y
= 2xyex

2+y2 .

2

Question 1.2.45 Find ∂f/∂x and ∂f/∂y for the function

f(x, y) = exy − log(x2 + y2).

Solution: Holding y constant, we see

∂f

∂x
= yexy − 2x

x2 + y2
,

while holding x constant gives

∂f

∂y
= xexy − 2y

x2 + y2
.

2

Important Note: There’s actually no need to find ∂f/∂y once we know ∂f/∂x.
The reason is that our original function is symmetric in x and y: f(x, y) = f(y, x).
This means we can interchange the roles of x and y. Thus if we know ∂f/∂x =
g(x, y), then by symmetry ∂f/∂y = g(y, x). Using symmetry is a powerful tech-
nique to simplify computations.

Question 1.2.46 Find ∂f/∂x and ∂f/∂y for the function

f(x, y, t) = 5t4 − 4t5 cos(t sin t).

Solution: It would be a long calculation if we were asked to find ∂f/∂t; however, as
f(x, y, t) only depends on t, the partials with respect to x and y vanish. If we had
wanted ∂f/∂t, the answer is

20t3 − 20t4 cos (t sin (t)) + 4t5(t cos (t) + sin (t)) sin (t sin (t)) .

2
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1.2.5 Integrals (several variables)

One of the most important theorems in multivariable integration is Fubini’s theo-
rem. One version states that if either∫ b

a

[∫ d

c

|f(x, y)|dy

]
dx or

∫ d

c

[∫ b

a

|f(x, y)|dx

]
dy

is finite, then ∫ b

a

[∫ d

c

f(x, y)dy

]
dx =

∫ d

c

[∫ b

a

f(x, y)dx

]
dy.

There are numerous problems where one integral is easier than the other, and thus
you should always consider switching the order of integration. Whenever both
integrals exist and are equal, we write∫ b

a

∫ d

c

f(x, y)dxdy

to denote either integral. When it isn’t clear which integration bounds refer to which
variable, we can be a bit more explicit and write∫ b

x=a

∫ d

y=c

f(x, y)dxdx.

Question 1.2.47 Find ∫ 2

x=0

∫ 3

y=0

5(x2y + xy2 + 2)dxdy.

Solution: We do the y-integration first and then the x-integration. We get∫ 2

x=0

∫ 3

y=0

5(x2y + xy2 + 2)dxdy = 5

∫ 2

x=0

[
x2
y2

2
+ x

y3

3
+ 2y

]3
0

dx

= 5

∫ 2

0

[
9

2
x2 + 9x+ 6

]
dx

= 5

[
3x3

3
+

9x2

2
+ 6x

]2
0

= 190.

For this problem, it doesn’t really matter if we do the x or the y-integration first; both
lead to equally easy computations. 2

Question 1.2.48 Find ∫ 6

x=0

∫ 5

y=0

xe−xydxdy.
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Solution: Unlike the previous problem, for this problem life is much easier if we
integrate in the correct order. Note the integrand is xe−xy . We need to find an anti-
derivative for this with respect to x or with respect to y. It’s hard to find a function
whose partial derivative with respect to x equals this, though it can be done. (The
answer turns out to be −(1 + xy) e−xy /y2, which should be a non-obvious guess.)
If we try to find an anti-derivative with respect to y, however, things are much nicer
as we have the factor of x. We thus do the y-integration first, as the factor of xmakes
things very nice (i.e., u-substitution). We find∫ 6

x=0

∫ 5

y=0

xe−xydxdy =

∫ 6

x=0

[
−e−xy

]5
0
dx

=

∫ 6

0

(
1− e−5x

)
dx

= x

∣∣∣∣∣
6

0

+
1

5
e−5x

∣∣∣∣∣
6

0

= 6 +
e−30

5
− 1

5
=

29

5
− 1

5e30
.

2

Question 1.2.49 Find ∫ 1

x=0

∫ 1

y=0

xmyndxdy,

where m,n > 0.

Solution: The fact that m,n > 0 means that the integrand is continuous and we
can integrate in either order; further, we don’t have to worry about an anti-derivative
being a logarithm as none of the exponents are −1. We might as well do the y-
integration first, and we see∫ 1

x=0

∫ 1

y=0

xmyndxdy =

∫ 1

x=0

[
xm

yn+1

n+ 1

]1
0

dx

=
1

n+ 1

∫ 1

0

xmdx

=
1

n+ 1

xm+1

m+ 1

∣∣∣∣∣
1

0

=
1

(m+ 1)(n+ 1)
.

2

Important Note: For problems like the above, if we’re integrating a function
f(x, y) which factors as f(x, y) = g(x)h(y) and the region of integration is a rect-
angle whose boundary is independent of x and y, then we have∫ b

x=a

∫ d

y=c

f(x, y)dxdy =

∫ b

a

g(x)dx

∫ d

c

h(y)dy.

We’ll be fortunate enough to have integrals like this when we’re looking at indepen-
dent random variables.
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Question 1.2.50 Find ∫ 1

x=0

∫ x

y=0

xydydx.

Solution: For this problem, the region of integration is no longer a nice, simple rect-
angle. ADD PICTURE! It turns out to be a triangle, and clearly the order of
integration matters. Why? Well, as it’s written we must do the y-integration first as
its bounds depend on x. If we wanted to do the x-integration first, we would have to
change the bounds of integration. The triangle can also be written in the following
manner: for each fixed y ∈ [0, 1], x ranges from y to 1. Thus∫ 1

x=0

∫ x

y=0

xydydx =

∫ 1

y=0

∫ 1

x=y

xydxdy.

We compute both double integrals, and see they are equal. The first is∫ 1

0

xy2

2

∣∣∣∣∣
x

0

dx =

∫ 1

0

x3

2
dx =

x4

8

∣∣∣∣∣
1

0

=
1

8
,

while the second method gives∫ 1

0

x2y

2

∣∣∣∣∣
1

y

dy =

∫ 1

0

(
y

2
− y3

2

)
dy =

y2

4

∣∣∣∣∣
1

0

− y4

8

∣∣∣∣∣
1

0

=
1

4
− 1

8
=

1

8
.

For this problem it isn’t a good idea to change the order of integration; however,
we’ll see in the next problem the utility of changing orders. In other words, here it
isn’t worth the time or effort needed to figure out how to write the region when we
switch orders, but the function in the next problem is harder to integrate in the given
order, and there the effort will be amply repaid. 2

Question 1.2.51 Find ∫ 1

x=0

∫ x

y=0

ye−xydydx.

Solution: For this problem, it would be quite painful to integrate in the given order.
The reason is that we would need to find a function whose partial with respect to
y is ye−xy; this can be done, but the answer of −(1 + xy) e−xy /x2 isn’t obvious
or easily seen. If, however, we switch the order of integration, then we just need a
function whose derivative with respect to x is ye−xy , and the answer to this problem
is easily seen to be −e−xy . Thus, unlike the previous problem, it’s well worth the
effort to switch orders of integration. In the previous problem we showed the region
can be parametrized by for a fixed y ∈ [0, 1], x runs from y to 1. We find∫ 1

x=0

∫ x

y=0

ye−xydydx =

∫ 1

y=0

[∫ 1

x=y

ye−xydy

]
dx

=

∫ 1

0

−e−xy
∣∣∣1
y
dy

=

∫ 1

0

(
−e−y + e−y

2
)
dy

= e−y
∣∣∣1
0
+

∫ 1

0

e−y
2

dy.
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At this point, we’re in trouble – there’s no nice, closed form expression for the anti-
derivative of e−y

2

or a nice, closed form expression for the integral of this function
from 0 to 1. (The solution involves a new function you may not have seen, the error
function, often denoted by erf or Erf .) I wanted to do a problem like this where
there’s no nice, closed form answer at the end of the day because, sadly, most prob-
ability problems are like this! It’s actually quite unusual to be able to evaluate a
two-dimensional integral and get a nice answer, unless we stick to very simple re-
gions and very nice functions. 2

Question 1.2.52 Find ∫ 1

x=0

∫ 1

y=0

(x2 + 2xy + y
√
x)dxdy.

Solution: This problem is solved by using the same techniques as before. The answer
turns out to be 7/6. If we do the y-integration first we get x2 + x+

√
x/2, which is

then readily integrated. 2

Question 1.2.53 Find ∫ 1

x=0

∫ 1

y=0

(ax+ by + c)dxdy.

Solution: The answer is a/2 + b/2 + c. 2

The following double integral is significantly harder than the ones considered
above. We chose to give it as there are a variety of approaches which lead to its
evaluation, each emphasizing a nice technique.

Question 1.2.54 Prove∫ 1

y=0

∫ 1

x=0

n(1− xy)n−1dxdy = 1 +
1

2
+ · · ·+ 1

n− 1
+

1

n
.

Solution: We give several solutions. We first integrate with respect to x. Note∫ 1

x=0

n(1− xy)n−1dx =
n

y

∫ 1

x=0

(1− xy)n−1ydx =
n

y
(1− (1− y)n) ;

we don’t need to worry about convergence issues when y = 0 (note that 1 − (1 −
y)n = O(y), where the O(y) means some error at most a constant times y). Thus
we’re reduced to finding ∫ 1

0

1− (1− y)n

y
dy. (1.1)

The integral in (1.1) is easily evaluated by induction. We do one or two steps, as
the pattern is clear and the induction straightforward. Write

(1− y)n = (1− y)(1− y)n−1 = (1− y)n−1 − y(1− y)n−1.
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Thus our integral is just∫ 1

0

1− (1− y)n−1 + y(1− y)n−1

y
dy

=

∫ 1

0

1− (1− y)n−1

y
dy +

∫ 1

0

(1− y)n−1 dy

=

∫ 1

0

1− (1− y)n−1

y
dy +

1

n
.

By induction, we have∫ 1

0

1− (1− y)n−1

y
dy =

1

n− 1
+

1

n− 2
+ · · ·+ 1

1
.

Thus the original integral is just∫ 1

y=0

∫ 1

x=0

n(1− xy)n−1dxdy =
1

n
+

1

n− 1
+ · · ·+ 1

1
≈ log n+ γ,

where γ ≈ .5772 is the Euler-Mascheroni constant. If you haven’t seen the sum of
the reciprocals of the first n integers is approximately log n+ γ, don’t worry.

We provide an alternate way to evaluate the integral in (1.2.5). We use the finite
geometric series formula:

1 + r + r2 + · · ·+ rn−1 =
1− rn

1− r
;

Taking r = 1− y yields

1 + (1− y) + (1− y)2 + · · ·+ (1− y)n−1 =
1− (1− y)n

y
.

We integrate the above with respect to y from 0 to 1. As trivially
∫ 1

0
(1− y)k−1dy =

1/k, we have∫ 1

0

1− (1− y)n

y
dy =

1

1
+

1

2
+ · · ·+ 1

n
≈ log n+ γ,

providing another method to evaluate the integral.
We give yet another solution. We want to show∫ 1

0

∫ 1

0

n(1− xy)n−1dxdy = 1 +
1

2
+

1

3
+ · · ·+ 1

n
;

by induction it suffices to show

D(n+1) =

∫ 1

0

∫ 1

0

(n+1)(1−xy)ndxdy−
∫ 1

0

∫ 1

0

n(1−xy)n−1dxdy =
1

n+ 1

(instead of induction one could also proceed by using telescoping series). This ap-
proach, of course, is similar to the other methods above. We use the Binomial The-
orem to expand the two integrands and then integrate with respect to x and y. We
have

D(n+ 1) =

(
n

0

)
1

1
−
(
n

1

)
1

2
+

(
n

2

)
1

3
−
(
n

3

)
1

4
+ · · ·+ (−1)n

(
n

n

)
1

n+ 1
;
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note, however, that the right hand side above is the same as∫ 1

0

(1− t)ndt

(just use the Binomial Theorem again and integrate term by term). This integral is
easily seen to be 1/(n+ 1), which implies that D(n+ 1) = 1/(n+ 1), or∫ 1

0

∫ 1

0

n(1− xy)n−1dxdy = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.
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