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Greetings again!

In this supplemental chapter we state and sketch the prabédthange of Vari-
able Theorem, as well as cover some of the most importantgesm



Chapter 1

Change of Variable Formula

In this chapter we review the Change of Variable formula. &dirst course in
probability, it's usually sufficient to just know it in thedpthree special cases: polar
coordinates, cylindrical coordinates, and spherical dimates. We state the results
in a bit more generality and try to motivate the result by ggvimany of the details
of the proof.

While the more linear algebra you know, the easier time ybaVe, for the most
part all we need are the concepts of a square matrix and gsndigtant. For & x 2

matrix
a b
= (a)

the determinant, denoted| or det(A4), is
det(A) = ad — be.

There’s a very nice geometric interpretationlta(A) here; it's the area of the paral-
lelogram spanned by the vectdrs b) and(c, d) (or by the vectorsa, ¢) and(b, d)).
The formulais more involved in higher dimensions, but a Eimnterpretation holds
(in three dimensions the determinant is the volume of thalfedpiped spanned by
the rowsor by the columns).

1.1 Statement

We begin by looking at what happens when we have a map fromidne o itself.
Thus we have two variables, sayandy, and we change to new variablesandv.
We first need to recall some notation from multivariable ghls.

AregionD C R? isz-simpleif there are continuous functions andy, defined
on [¢, d] such that

P1(y) < ¥a(y)

and
D = {(z,y) : ¥1(y) <z <o(y) and c <y < d};
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similarly, D is y-simpleif there are continuous functions () and¢s(x) such that

P1(x) < ¢a(x)

and
D = {(z,y): ¢1(x) <y < ¢2(x) and a < x < b}

If D is bothx-simple andy-simple then we say is smple. A region that is either
z-simple, y-simple or simple is frequently called atementary region. ADD
PICTURES

Let’s look at the definition for a-simple region. What it's saying is that we
have two boundary curves, = ¢;(z) andy = ¢2(z), such that the first curve is
the ‘bottom’ of our region and the second is the ‘top’. In ativerds, for each: we
go up and first enter the region@t(z), we're in our region for ally from ¢, (z) to
¢=2(x), and then once we leave the regiorbatx) we never return (for this).

We can now state the Change of Variables Formula (in the plane

Theorem 1.1.1 (Change of Variables Formulain the Plane) Let S be an elemen-
tary region in the xy-plane (such as a disk or parallelogram for example). Let
T : R? — R? be an invertible and differentiable mapping, and let T(S) be the
image of S under 7. Then

[ o= [],e

or more generally

[ [ oty = [ [ g)

Some notes on the above.

oroy _oron|,
oudv Ovodu Uev,

Oxrdy Oz dy

1. We assume our mdp has an inverse function, denot&d*. ThusT (z,y) =
(u, v) andT " (u,v) = (z,y).

2. AsT isinvertible, for eacliz,y) € S there’s one and only one, v) that it's
mapped to, and conversely eaehv) is mapped to one and only ofie, y).

3. The derivative o ! (u,v) = (x(u,v),y(u,v)) is the matrix
) oz Oz
(DT~ Y (u,v) = ( a9y ),
Ou  Ov

and the absolute value of the determinant of the derivatifterf called the
Jacobean and denoted'T') is

Jdrdy Oz dy

1 _
‘det (DT )(u,v))‘ T |oudv O du

)

which implies the area element transforms as

Ox 0y Oz dy

drdy = 15,80~ v ou

’ dudv.
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4. Note thatf takes as input andy, but when we change variables our new
inputs arex andv. The magl’~! takesu andv and givese andy, and thus we
need to evaluat¢ at 7! (u, v). Remember that we're now integrating over
andwv, and thus the integrand must be a functiom@ndv.

5. Note that the formula requires an absolute value of therdehant. The reason
is that the determinant can be negative, and we want to seealsmall area
element transforms. Area is supposed to be positively ealirtiote in one-
variable calculus thaf: f(@)dz = — [} f(x)dz; we need the absolute value
to take care of issues such as this.

6. While we stated’ is a differentiable mapping, our assumptions imply' is
differentiable as well.

We occasionally need a more general version, such as whetud the chi-
square distribution in Chapter.

Theorem 1.1.2 (Change of Variables) Let V and W be bounded open setsin R™.
Leth: V — W bea 1-1 and onto map, given by

h(ug, ... un) = (ha(ur, .. tn), ooy hp(ur, ... up)) .

Let f : W — R be a continuous, bounded function. Then

/.../Wf(gcl,...,:vn)dxl---divn

_ /.../Vf(h(ul,...,un))J(ul,...7uv)du1---dun,

where J is the Jacobian

Ohi .. O

ouq Oun
J=1 Lo

ouq Oun

1.2 Sketch of Proof

The Change of Variable Theorem (or Formula) is one of the nmpgbrtant results

of multivariable calculus. The reason is that numerouslerab have a natural coor-
dinate system where, if we look at it from the right perspegtthe analysis greatly
simplifies. It's very important to be able to convert from a@ordinate system to
another and be able to exploit the advantages of each.

Our first example is mapping the unit square to a rectangéeRgrird 1.11). Note
the original square$, has area 1 and the region it mapsT4S), has area 6. Thus
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(0,0) (2,0)
u = 2x X = u/2
v = 3y y = v/3

Figure 1.1: Mapping the unit square via= 22 andv = 3y, soT'(z,y) = (2, 3y).

dzxdy correspondst%dudv. If we compute the derivative matrix associatedto',
since
x(u,v) = u/2 and y(u,v) = v/3,

oz Oz L
(EB)-(11)
ou ov 3

which has a determinant @f/6. This verifies the formula’s prediction, namely that
the conversion factor to go from areaiip-space to area inv-space id /6. In other

words,
1
//l-dxdyz// — - dudv;
S 7(s) 6

clearly we don't expecf [, 1- dzdy to equalf fT(S) 1 - dudv. | think a great way
to view the absolute value of the determinant of the dexeatatrix is that it gives
the exchange rate in converting from area in one space taliee o

we find

We now sketch the proof of the formula. It'll involve seveddlthe major con-
cepts in multivariable calculus, from the cross productdatedminants and areas to
the definition of the derivative being that the tangent pliareegreat approximation.
The proof below may safely be skipped; we've included it because the Change of
Variable Theorem is so important, and because the proof reviews a lot of concepts
from multivariable calculus.

Recall we have

T Y u,v) = (2(u,v),y(u,v)).
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(u_0,v_O+dv) (u_O+du,v_0+dv)

(u_O+du, v_0)

(x_ 0, !

Figure 1.2: Mapping of the general caséu, v) andy(u, v). Note: to save time I've
written ug + du for ug + Aw, and similarly for thev’s, above.FIX IMAGE AND
TEXT.

We want to see what a small rectangleuittspace corresponds to ity-space; see
Figure[T.2. Let’s look at where the four corners of the regkaim theuwv-plane are
mapped. Recall that if we have a functiftu, v), then

flu,v) = fluog,vo) + (Vf)(uo,v0) - (u— ug,v — vg) + small

if (u,v) is close to(ug,vo). There are many ways to look at this. It's a Taylor
expansion, it's a definition of the derivative, it's takingliaectional derivative.
As T~ is differentiable, we can write

z(u,v) = x(uo,vo) + (Vz)(uo, vo) - (u — ug,v — vg) + small

y(u,v) = y(uo,vo) + (Vy)(uo,v0) - (u — up,v — vg) + small,

so long aq(u, v) is close to(ug, vg). This is simply the definition of the derivative
in several variables, namely the statement that we can appate a complicated
function locally by a plane. What makes it a little confusisghatx is now our
function name, not a coordinate (this is why we consideredt#tample with a func-
tion f above). Thus, while the square with lengths and Av in uv-space doesn’t
map to exactly a square, rectangle or parallelogramyispace, it maps to almost a
parallelogram.

Let’s see where the four corners of the rectangle map to. #ipg the gradient
we find

Ox Ox

x(u,v) = 1w+ %(u —ug) + %(’U — vp) + small
3} 0

y(u,v) = yo+ 8—3(16 —up) + 8—5(1} — vp) + small.

Note thatz(ug,vo) is what we're callingzy and y(ug, vo) is what we're calling
Yo, the base point of the square. For definiteness we're asguménfour corners’
orientations are preserved under the mapping (we had tcsetiomw to draw / discuss
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things). We have

ox 0
(x(uo + Au,vo), y(uo + Au,vp)) = (xo + %Au,yo + a—ZAu)
(20, vo + A), y(uo, v + Av)) = + 9% Ao+ A
Z{Uo, Vo v),Yy(Uo, Vo v = Zo o U, Yo 90 v

The original rectangle inv-space had sides given by the vectarg+ Au, vo) —
(w0, vo) and(ug, vo+Av)—(ug, vo). Thusthe areais equivalentto that of a rectangle
given by the vector§Au, 0) and(0, Av), for an area ofAuAwv.

What about the region it's mapped to? It's essentially alfgogram; this is the
content of the functiofi"—! being differentiable. The sid@:, + Au, vo) — (uo, vo)
which was equivalent to the vectef\u, 0) corresponds to

(z(uo + Au,vo) — (0, %0)),

Or oy .
(aAU, %AU) ]

similarly the other side is basically
Or dy
—Av, —Av|.
(81} " v v)

To find the area of a parallelogram with sidés and @, we need only take the
cross product. We must be careful, though. The cross prdekes as input two
vectors with three components and outputs a vector wittetboenponents. We can
consider our vectors as living in three-dimensional spacadpending a zero as the

third component, and then the area of the parallelogrameidethgth of the cross
product. We must compute

<%Au,@Au,O> X <%Av,%Av,O).
v

which is approximately

ou ou ov 0
Recall this is given by
PG %
92Ny A 0 | = (0,0, (@@ — @@) AuAv) :
Ju u oudv  Ovdu
SeAv FEAv 0
and the length is clearly just
Ox dy Oz Oy
Budv  Dvdu| Y
or equivalently
Oxdy Oz dy

The outline above highlights the key ideas in the proof. Oheoarse needs to
perform a careful analysis of the error terms, but you'vensbe main ideas. The
key observation is that locally any differentiable mapnehr (and takes rectanglesto
parallelograms), and then we piece the contributions dweettire region together.
The absolute value of the determinant of the derivative miagsgus the exchange
rate between the two different areas.
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1.3 Special Cases

We'll first state the big three special cases, and then do aefeamples. Briefly,
change of variables allows us to convert integrals over dimated regions to inte-
grals over simpler regions, at a cost of a more complicategjrand. Often this is
a good exchange; in other words, in many problems it's battbave to integrate a
harder function over a simpler area than a simpler functier a harder area. We
won't prove the theorems below, which are essentially cgusaces of the Change
of Variable Formula in 2 and 3 dimensions. We have to say ¢sdgras there’s
one minor, annoying technicality. Our map is supposed tarmysvalued, but for
the three maps below, multiple poirts #) are mapped t40, 0). Fortunately(0, 0)

is the only point where this breaks down, and a more involvedfshows that the
claim still holds in this case.

Theorem 1.3.1 (Change of Variables Theorem: Polar Coordinates) Let
x = rcosf, y = rsinf
with » > 0 and § € [0, 2x); notetheinverse functionsare
r = a2 +1y2, 6 = arctan(y/z).

Let D be an elementary region in the xy-plane, and let D* be the corresponding
region in the r6-plane. Then

// f(z,y)dzdy :/ f(rcosf,rsinf)rdrdd.
D D~

For example, ifD is the regionz? +? < 1in thexy-plane thenD* is the rectan-
gle[0,1] x [0, 2] in therd-plane. A little thought shows why polar coordinates are
so useful. They allow us to convert a hard shape, a circle stmple shape, a rect-
angle. A rectangle is the easiest shape to integrate ovesh masier than a circle!
Think back to how the integral was defined, in one and in séd#n@ensions. We
had Riemann sums, breaking the regions up into rectanglietfiitogether nicely.
The hope is that, if we're integrating over a rectangulaiaegthe integration can
split into two one-dimensional integrals, where neithepateds on the other. This
reduces one two-dimensional problem to two one-dimensjodblems, and often
it's better to do more simple integrals than fewer compédabnes. If we were to
write down the bounds of integration for the unit circle, weuld haver goes from
—1to 1 andy goes from—+/1 — 22 to /1 — 22. Notice how one variable arises in
the bounds for the other. In polar coordinates, we have tpa@fgiantly simplerr
goes from 0 tal and@ goes from 0 t@®x.
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Theorem 1.3.2 (Change of Variables Theorem: Cylindrical Coordinates) Let
x = rcosf, y = rsind, z = z
withr > 0, 6 € [0, 27) and z arbitrary; note the inverse functions are
r = a2 +1y2, 0 = arctan(y/z), z = =

Let D bean elementary regionin xyz-space, and let D* bethe corresponding region
inrfz-space. Then

/// flx,y, z)dedydz = // f(rcosf,rsinf, z)rdrdfdz.
D D+

Similar to how polar coordinates convert a circle to a regkajcylindrical coor-
dinates convert a cylinder to a bd®l CTURES!

Theorem 1.3.3 (Change of Variables Theorem: Spherical Coordinates) Let
x = psingcosh, y = psingsinfh, z = pcos¢

with p > 0, 6 € [0,27] and ¢ € [0, ). Note that the angle ¢ is the angle made with
the z-axis, many books (such as physics texts) interchange the role of ¢ and 6. Let
D bean elementary region in xyz-space, and let D* be the corresponding regionin
plg-space. Then

/ / /D f(x,y, z)dzdydz

= / / f(psin ¢ cos b, psin ¢sin b, p cos ¢)p* sin ¢pdpdfdep.
D*

We get another box; this time we replace a sphere with a bxwdirth noting
the most common mistake here is to have incorrect boundgexjriation, typically
confusing which angle goes for and which goes tar. Another common mistake
is to have the volume element wrong, either forgettingsiné ¢ or havingsin? 6.
Sadly, there are two different notations used for sphedoatdinates. In our nota-
tion, ¢ is the angle made coming down from theaxis; lots of other books usge
for this angle. We chose to follow the convention that cdlis & as thery is re-
served for the angle in they-plane, and we can then ‘see’ spherical coordinates as
an extension of polar coordinates. In fact, taking profgttiwe see the component
of our point(z,y, z) in the zy-plane has lengtl sin ¢ (it's component along the
z-axis isp cos ¢), and the expressions far y andz come from now applying polar
coordinates to a vector of lengttsin ¢ with angled around thecy-plane.
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(3,4) (5,4)

(0,0) (2,0)
Figure 1.3: Region the unit square is mapped to ufidet y) = (2z + 3y, 4y).

Consider the change of variables= 2z + 3y andv = 4y. We'll show that this
map takes the unitsquaje 1] x [0, 1] (i.e., the set of pointér, y) with 0 < z,y < 1)
to a parallelogram, and then use the Change of Variable flartodind the area.

The unit square is mapped to the parallelogram shown in Eifi#. To see this,
look and see where each vertex of the unit square is sent. We(ba)) goes to
(0,0), we have(1,0) goes to(2,0), (0,1) goes to(3,4) and finally(1, 1) goes to
(5,4). More generally, if we take a point of the forfm, 0) it's mapped to the point
(2z,0), so we see the intervi, 1] on thez-axis is mapped to the intervél, 2] on
thew-axis. A similar analysis shows all the other lines of thet square are mapped
to lines in theuv-plane. For example, consider the litg 1) with 0 < 2 < 1. This
is mapped to the lin€2z + 3, 4) in theuwv-plane, or equivalently the line froii3, 4)
(corresponding ta: = 0) to the point(5,4) (corresponding ta: = 1).

We need the inverse transformatitn', which gives us the andy correspond-
ing to a choice of: andv. We have to invert the relations

u = 2rx+3y, v = 4y.

The second is the easiest; we clearly need to lavev/4. Knowing this, we then
find

3v
:2 e
U x+4,
or
u v
r = - — —.
2 8

In other words, we have

T u,0) = (2(u,0), y(u,v)) = (%—%Z)

We now find the determinant of the derivative. First we coreput

£)-(07)

Ol

oz
(DT H(u,v) = ( o
ou
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The determinant is
1 1 3 1
-1 = - . — — . — -
det((DT™)(u,v)) = 5 4+ 3 0 3

and thus the absolute value of the determinantis
|det((DT ) (u,v))| = =,
which means
dedy — |det((DT_1)(u,v))|dudv = %dudv.

By the Change of Variables formula,$fis the original unit square imy-space
andP = T(S) is the parallelogram imv-space, we have

//Sld:cdy - //T(S)l\det((DT1)(u,v))]dudv = //T(S)lédudv_

As 1/8 is constant, we can pull it out of the integral and find

//ld:cdy = 1// lduduv;
s 8 T(S)

the left double integral is the area of the unit square, wihiéeright double integral
is the area of our parallelogram. We thus find

Area(S) = %Area(T(S)) = %Area(P),

or equivalently that the area of the parallelogram is 8:
Area(P) = 8Area(S) = 8-1 = 8.

We could consider more general maps from squares to pagiéghs, but this
illustrates the principle and proves a nice, known reshk: drea of a parallelogram
is its base times height. For our parallelogram, it has le@gtnd height 4, which do
multiply to give an area of 8.

Notice that we're able to deduce the formula for the paradjedm’s area by
knowing the area of the squdbecause the absolute value of the determinant of the
derivative matrix is constant (i.e., independentcéndv). This allows us to pull
out that common factor of 1/8 and leaves us with the intedgralaver the parallel-
ogram, which is thus its area. Whenever we have a change iables where the
determinant is constant, these calculations can oftewal®to deduce the area of
one region from knowing another. For example, you can usetthiind the area of
an ellipse knowing the area of a circle.

(&)

consider the change of variables= z/a andv = y/b, so

T(xvy) = (u(xvy)vv(xvy)) = (x/avy/b)

For the ellipse
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Equivalently the inverse mdp—! is
T (u,v) = (x(u,v),y(u,v)) = (au,bv).
Note this maps the ellipse to the unit disk
u? + v? <1,

and we know the area of the unit disk is just> = «! After a little bit of algebra,
you'll find the area of the ellipse isab.

Whenever we have an answer, a great way to check our work éetif & agrees
with previous results for special cases. For example, ifaket = b = r in the
ellipse problem above, it reduces to finding the area of decotradiusr. We know
that this is justrr?, and as expected our formutab equals this whem = b = r.
While this isn't a proof that our formula for the ellipse’saris correct, it's sugges-
tive that we're correct.

For our next problem, leD be the unit diske? + y? < 1, and let’s evaluate the

integral
// cos(z? + y*)dxdy.
D

This problem screams polar coordinates, as we're integyaiver a circle and
the integrand only depends enthe distance from the center of the circle. We have
dxdy goes tordrdf, and the unit disk becomés< r < 1 and0 < 6 < 27w. We
replacef (z,y) with f(r cos 6, r sin 6), and thus find

// cos(z? + y*)dxdy = / / cos(r? cos® 6 + 12 sin? 0)rdrdf
D 0 r=0
= / / cos(r?)rdrd
6=0 Jr=0
1

1
= / [/ cos(r2)2rdr] de
0=0 2 r=0
2 1 1
= / — [sin(r?)| | d6
=0 2 0
2w 1
_ / sinl
6=0 2

1
= T 2m = mwsinl.

Consider the cylindef given byz? + y? <9 and—1 < z < 2. Evaluate

[ [ [ e aye

f(@,y,2) = zv/x? +y2

where
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If we wanted to write down the integral explicitly in Cartasicoordinates, we
would have

/ / / z\/gc2 + y2dxdydz.
1 3 Jp=— _

To see this, note that on the bounda?y+ y* = 9, so if we have chosen a value
of y thenz ranges from-/9 — 42 to 1/9 — y2; these are not integrals we desire to
evaluate! For cylindrical coordinates, we have

drdydz — rdrdfdz,

and
r = rcosf, y = rsinf, z = z.

Our functionf (z, y, z) becomes (r cos 6, rsin 8, z), or in our case

T2+ Y2 — 2V1r2cos20 +r2sin0 = 2.

The bounds of integration areranges from-1 to 2,6 ranges from 0 t@x, andr
ranges from 0 to 3. We thus have

/// flz,y, z)dedydz = / / f (rcosf,rsinb, 2)rdrdfdz
C —1J6
= / / / z\/rQ cos2 0 + r2 sin? Ordrdfdz
=— 0 r=0
2 27
= / / / zr - rdrdfdz
=—1J6=0
2 27 3
/ z [/ r2dr} dfdz
—— 6=0 =0
/2 /27r
- 0
/ / —d@dz
0=
= 9/ z {/ d@} dz
z=—1 6=0
2
= 9/ 22mwdz
z=—1
2
= 1871'/ zdz
z=—1

2

dfdz

2
A
— 1872
™9
—1
e At
- Tl
3
— 187.2
Ty

= 27w
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Finally, consider the unit sphefegiven byz? + y? + 22 < 1. Let’s find

///Sf(w’yvz)dwdydz

for

1

fev.2) = gy

Writing the integral out explicitly in Cartesian coordiratgives

Vi=2zZ 1 —y —z2
[y, z)dxdydz,
/ —1/ —V1=22 / —y/1—y2—22

and these bounds of integration are horrible! We now corteespherical coordi-
nates:

x = psingcosh, y = psingsinfh, z = pcoso,

with

o
IN
b
IN
“}—‘
o
IN

0 < 2w 0

IN
ASS
IN
3

Our functionf(z, y, z) becomes

1

f(psingcosf, psingsinb, pcos¢) = —
p

after some simple algebra. Finally,

dedydz —  p*sin ¢dpdfde.
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Note: remember, other textbooks change the role of 6 and ¢, especially physics
books. We thus have

[ [ s 2dsaya:
s
T 2w 1
= / / / f(psin¢cos, psin gsin b, pcos ¢)p* sin pdpdfde
¢=0J6=0Jp=0
T 2w 1 1
= / / / — p* sin ¢pdpdfdg
¢=0J6=0 J p=0 P
T 2 1
= / / / sin ¢dpdfdep
¢=0J6=0Jp=0
T 2 1
= / / sin ¢ [/ dp} dbde
$=0J6=0 p=0
T 27
= / sin ¢ [ / de} do
$=0 6=0

= 27T/7T sin ¢pdo
@

=0
|
[(—cosm) — (— cos0)]
(14+1)

= 27 l— cos ¢

21
= 27
= A4r.
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