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Greetings again!

In this supplemental chapter we state and sketch the proof ofthe Change of Vari-
able Theorem, as well as cover some of the most important examples.



Chapter 1

Change of Variable Formula

In this chapter we review the Change of Variable formula. Fora first course in
probability, it’s usually sufficient to just know it in the big three special cases: polar
coordinates, cylindrical coordinates, and spherical coordinates. We state the results
in a bit more generality and try to motivate the result by giving many of the details
of the proof.

While the more linear algebra you know, the easier time you’ll have, for the most
part all we need are the concepts of a square matrix and its determinant. For a2× 2
matrix

A =

(

a b
c d

)

,

the determinant, denoted|A| or det(A), is

det(A) = ad− bc.

There’s a very nice geometric interpretation todet(A) here; it’s the area of the paral-
lelogram spanned by the vectors(a, b) and(c, d) (or by the vectors(a, c) and(b, d)).
The formula is more involved in higher dimensions, but a similar interpretation holds
(in three dimensions the determinant is the volume of the parallelpiped spanned by
the rowsor by the columns).

1.1 Statement

We begin by looking at what happens when we have a map from the plane to itself.
Thus we have two variables, sayx andy, and we change to new variablesu andv.
We first need to recall some notation from multivariable calculus.

A regionD ⊂ R
2 isx-simple if there are continuous functionsψ1 andψ2 defined

on [c, d] such that
ψ1(y) ≤ ψ2(y)

and
D = {(x, y) : ψ1(y) ≤ x ≤ ψ2(y) and c ≤ y ≤ d};
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similarly,D is y-simple if there are continuous functionsφ1(x) andφ2(x) such that

φ1(x) ≤ φ2(x)

and
D = {(x, y) : φ1(x) ≤ y ≤ φ2(x) and a ≤ x ≤ b}.

If D is bothx-simple andy-simple then we sayD is simple. A region that is either
x-simple, y-simple or simple is frequently called anelementary region. ADD
PICTURES!

Let’s look at the definition for ay-simple region. What it’s saying is that we
have two boundary curves,y = φ1(x) andy = φ2(x), such that the first curve is
the ‘bottom’ of our region and the second is the ‘top’. In other words, for eachx we
go up and first enter the region atφ1(x), we’re in our region for ally from φ1(x) to
φ2(x), and then once we leave the region atφ2(x) we never return (for thisx).

We can now state the Change of Variables Formula (in the plane).

Theorem 1.1.1 (Change of Variables Formula in the Plane) Let S be an elemen-
tary region in the xy-plane (such as a disk or parallelogram for example). Let
T : R

2 → R
2 be an invertible and differentiable mapping, and let T (S) be the

image of S under T . Then

∫ ∫

S

1 · dxdy =

∫ ∫

T (S)

1 ·
∣

∣

∣

∣

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∣

∣

∣

∣

dudv,

or more generally

∫ ∫

S

f(x, y) · dxdy =

∫ ∫

T (S)

f
(

T−1(u, v)
)

·
∣

∣

∣

∣

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∣

∣

∣

∣

dudv.

Some notes on the above.

1. We assume our mapT has an inverse function, denotedT−1. ThusT (x, y) =
(u, v) andT−1(u, v) = (x, y).

2. AsT is invertible, for each(x, y) ∈ S there’s one and only one(u, v) that it’s
mapped to, and conversely each(u, v) is mapped to one and only one(x, y).

3. The derivative ofT−1(u, v) = (x(u, v), y(u, v)) is the matrix

(DT−1)(u, v) =

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

,

and the absolute value of the determinant of the derivative (often called the
Jacobean and denotedJT ) is

∣

∣det
(

DT−1)(u, v)
)
∣

∣ =

∣

∣

∣

∣

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∣

∣

∣

∣

,

which implies the area element transforms as

dxdy =

∣

∣

∣

∣

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∣

∣

∣

∣

dudv.
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4. Note thatf takes as inputx andy, but when we change variables our new
inputs areu andv. The mapT−1 takesu andv and givesx andy, and thus we
need to evaluatef atT−1(u, v). Remember that we’re now integrating overu
andv, and thus the integrand must be a function ofu andv.

5. Note that the formula requires an absolute value of the determinant. The reason
is that the determinant can be negative, and we want to see howa small area
element transforms. Area is supposed to be positively counted. Note in one-
variable calculus that

∫ b

a
f(x)dx = −

∫ a

b
f(x)dx; we need the absolute value

to take care of issues such as this.

6. While we statedT is a differentiable mapping, our assumptions implyT−1 is
differentiable as well.

We occasionally need a more general version, such as when we study the chi-
square distribution in Chapter??.

Theorem 1.1.2 (Change of Variables) Let V and W be bounded open sets in R
n.

Let h : V →W be a 1-1 and onto map, given by

h(u1, . . . , un) = (h1(u1, . . . , un), . . . , hn(u1, . . . , un)) .

Let f :W → R be a continuous, bounded function. Then
∫

· · ·
∫

W

f(x1, . . . , xn)dx1 · · · dxn

=

∫

· · ·
∫

V

f (h(u1, . . . , un)) J(u1, . . . , uv)du1 · · · dun,

where J is the Jacobian

J =

∣

∣

∣

∣

∣

∣

∣

∂h1

∂u1

· · · ∂h1

∂un

...
. . .

...
∂hn

∂u1

· · · ∂hn

∂un

∣

∣

∣

∣

∣

∣

∣

.

1.2 Sketch of Proof

The Change of Variable Theorem (or Formula) is one of the mostimportant results
of multivariable calculus. The reason is that numerous problems have a natural coor-
dinate system where, if we look at it from the right perspective, the analysis greatly
simplifies. It’s very important to be able to convert from onecoordinate system to
another and be able to exploit the advantages of each.

Our first example is mapping the unit square to a rectangle (see Figure 1.1). Note
the original square,S, has area 1 and the region it maps to,T (S), has area 6. Thus
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Figure 1.1: Mapping the unit square viau = 2x andv = 3y, soT (x, y) = (2x, 3y).

dxdy corresponds to16dudv. If we compute the derivative matrix associated toT−1,
since

x(u, v) = u/2 and y(u, v) = v/3,

we find
(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

=

(

1
2 0
0 1

3

)

,

which has a determinant of1/6. This verifies the formula’s prediction, namely that
the conversion factor to go from area inxy-space to area inuv-space is1/6. In other
words,

∫ ∫

S

1 · dxdy =

∫ ∫

T (S)

1

6
· dudv;

clearly we don’t expect
∫ ∫

S
1 · dxdy to equal

∫ ∫

T (S)
1 · dudv. I think a great way

to view the absolute value of the determinant of the derivative matrix is that it gives
the exchange rate in converting from area in one space to the other.

We now sketch the proof of the formula. It’ll involve severalof the major con-
cepts in multivariable calculus, from the cross product to determinants and areas to
the definition of the derivative being that the tangent planeis a great approximation.
The proof below may safely be skipped; we’ve included it because the Change of
Variable Theorem is so important, and because the proof reviews a lot of concepts
from multivariable calculus.

Recall we have
T−1(u, v) = (x(u, v), y(u, v)).
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Figure 1.2: Mapping of the general case:x(u, v) andy(u, v). Note: to save time I’ve
writtenu0 + du for u0 + ∆u, and similarly for thev’s, above.FIX IMAGE AND
TEXT.

We want to see what a small rectangle inuv-space corresponds to inxy-space; see
Figure 1.2. Let’s look at where the four corners of the rectangle in theuv-plane are
mapped. Recall that if we have a functionf(u, v), then

f(u, v) = f(u0, v0) + (∇f)(u0, v0) · (u − u0, v − v0) + small

if (u, v) is close to(u0, v0). There are many ways to look at this. It’s a Taylor
expansion, it’s a definition of the derivative, it’s taking adirectional derivative.

As T−1 is differentiable, we can write

x(u, v) = x(u0, v0) + (∇x)(u0, v0) · (u − u0, v − v0) + small

y(u, v) = y(u0, v0) + (∇y)(u0, v0) · (u− u0, v − v0) + small,

so long as(u, v) is close to(u0, v0). This is simply the definition of the derivative
in several variables, namely the statement that we can approximate a complicated
function locally by a plane. What makes it a little confusingis thatx is now our
function name, not a coordinate (this is why we considered the example with a func-
tion f above). Thus, while the square with lengths∆u and∆v in uv-space doesn’t
map to exactly a square, rectangle or parallelogram inxy-space, it maps to almost a
parallelogram.

Let’s see where the four corners of the rectangle map to. Expanding the gradient
we find

x(u, v) = x0 +
∂x

∂u
(u− u0) +

∂x

∂v
(v − v0) + small

y(u, v) = y0 +
∂y

∂u
(u − u0) +

∂y

∂v
(v − v0) + small.

Note thatx(u0, v0) is what we’re callingx0 and y(u0, v0) is what we’re calling
y0, the base point of the square. For definiteness we’re assuming the four corners’
orientations are preserved under the mapping (we had to choose how to draw / discuss
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things). We have

(x(u0 +∆u, v0), y(u0 +∆u, v0)) =

(

x0 +
∂x

∂u
∆u, y0 +

∂y

∂u
∆u

)

(x(u0, v0 +∆v), y(u0, v0 +∆v)) =

(

x0 +
∂x

∂v
∆v, y0 +

∂y

∂v
∆v

)

.

The original rectangle inuv-space had sides given by the vectors(u0+∆u, v0)−
(u0, v0) and(u0, v0+∆v)−(u0, v0). Thus the area is equivalent to that of a rectangle
given by the vectors(∆u, 0) and(0,∆v), for an area of∆u∆v.

What about the region it’s mapped to? It’s essentially a parallelogram; this is the
content of the functionT−1 being differentiable. The side(u0 +∆u, v0)− (u0, v0)
which was equivalent to the vector(∆u, 0) corresponds to

(x(u0 +∆u, v0)− (x0, y0)),

which is approximately
(

∂x

∂u
∆u,

∂y

∂u
∆u

)

;

similarly the other side is basically
(

∂x

∂v
∆v,

∂y

∂v
∆v

)

.

To find the area of a parallelogram with sides−→w 1 and−→w 2 we need only take the
cross product. We must be careful, though. The cross producttakes as input two
vectors with three components and outputs a vector with three components. We can
consider our vectors as living in three-dimensional space by appending a zero as the
third component, and then the area of the parallelogram is the length of the cross
product. We must compute

(

∂x

∂u
∆u,

∂y

∂u
∆u, 0

)

×
(

∂x

∂v
∆v,

∂y

∂v
∆v, 0

)

.

Recall this is given by
∣

∣

∣

∣

∣

∣

∣

−→
i

−→
j

−→
k

∂x
∂u

∆u ∂y
∂u

∆u 0
∂x
∂v

∆v ∂y
∂v

∆v 0

∣

∣

∣

∣

∣

∣

∣

=

(

0, 0,

(

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)

∆u∆v

)

,

and the length is clearly just
∣

∣

∣

∣

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∣

∣

∣

∣

∆u∆v,

or equivalently

dxdy ∼
∣

∣

∣

∣

∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

∣

∣

∣

∣

dudv.

The outline above highlights the key ideas in the proof. One of course needs to
perform a careful analysis of the error terms, but you’ve seen the main ideas. The
key observation is that locally any differentiable map is linear (and takes rectangles to
parallelograms), and then we piece the contributions over the entire region together.
The absolute value of the determinant of the derivative map gives us the exchange
rate between the two different areas.
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1.3 Special Cases

We’ll first state the big three special cases, and then do a fewexamples. Briefly,
change of variables allows us to convert integrals over complicated regions to inte-
grals over simpler regions, at a cost of a more complicated integrand. Often this is
a good exchange; in other words, in many problems it’s betterto have to integrate a
harder function over a simpler area than a simpler function over a harder area. We
won’t prove the theorems below, which are essentially consequences of the Change
of Variable Formula in 2 and 3 dimensions. We have to say essentially as there’s
one minor, annoying technicality. Our map is supposed to be singly valued, but for
the three maps below, multiple points(r, θ) are mapped to(0, 0). Fortunately(0, 0)
is the only point where this breaks down, and a more involved proof shows that the
claim still holds in this case.

Theorem 1.3.1 (Change of Variables Theorem: Polar Coordinates) Let

x = r cos θ, y = r sin θ

with r ≥ 0 and θ ∈ [0, 2π); note the inverse functions are

r =
√

x2 + y2, θ = arctan(y/x).

Let D be an elementary region in the xy-plane, and let D∗ be the corresponding
region in the rθ-plane. Then

∫ ∫

D

f(x, y)dxdy =

∫ ∫

D∗

f(r cos θ, r sin θ)rdrdθ.

For example, ifD is the regionx2+y2 ≤ 1 in thexy-plane thenD∗ is the rectan-
gle [0, 1]× [0, 2π] in therθ-plane. A little thought shows why polar coordinates are
so useful. They allow us to convert a hard shape, a circle, to asimple shape, a rect-
angle. A rectangle is the easiest shape to integrate over; much easier than a circle!
Think back to how the integral was defined, in one and in several dimensions. We
had Riemann sums, breaking the regions up into rectangles which fit together nicely.
The hope is that, if we’re integrating over a rectangular region, the integration can
split into two one-dimensional integrals, where neither depends on the other. This
reduces one two-dimensional problem to two one-dimensional problems, and often
it’s better to do more simple integrals than fewer complicated ones. If we were to
write down the bounds of integration for the unit circle, we would havex goes from
−1 to 1 andy goes from−

√
1− x2 to

√
1− x2. Notice how one variable arises in

the bounds for the other. In polar coordinates, we have the significantly simplerr
goes from 0 to1 andθ goes from 0 to2π.
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Theorem 1.3.2 (Change of Variables Theorem: Cylindrical Coordinates) Let

x = r cos θ, y = r sin θ, z = z

with r ≥ 0, θ ∈ [0, 2π) and z arbitrary; note the inverse functions are

r =
√

x2 + y2, θ = arctan(y/x), z = z.

LetD be an elementary region in xyz-space, and letD∗ be the corresponding region
in rθz-space. Then

∫ ∫ ∫

D

f(x, y, z)dxdydz =

∫ ∫ ∫

D∗

f(r cos θ, r sin θ, z)rdrdθdz.

Similar to how polar coordinates convert a circle to a rectangle, cylindrical coor-
dinates convert a cylinder to a box.PICTURES!

Theorem 1.3.3 (Change of Variables Theorem: Spherical Coordinates) Let

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ

with ρ ≥ 0, θ ∈ [0, 2π] and φ ∈ [0, π). Note that the angle φ is the angle made with
the z-axis; many books (such as physics texts) interchange the role of φ and θ. Let
D be an elementary region in xyz-space, and let D∗ be the corresponding region in
ρθφ-space. Then

∫ ∫ ∫

D

f(x, y, z)dxdydz

=

∫ ∫ ∫

D∗

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdρdθdφ.

We get another box; this time we replace a sphere with a box. It’s worth noting
the most common mistake here is to have incorrect bounds of integration, typically
confusing which angle goes to2π and which goes toπ. Another common mistake
is to have the volume element wrong, either forgetting thesin2 φ or havingsin2 θ.
Sadly, there are two different notations used for sphericalcoordinates. In our nota-
tion, φ is the angle made coming down from thez-axis; lots of other books useθ
for this angle. We chose to follow the convention that calls this φ as thenθ is re-
served for the angle in thexy-plane, and we can then ‘see’ spherical coordinates as
an extension of polar coordinates. In fact, taking projections we see the component
of our point(x, y, z) in the xy-plane has lengthρ sinφ (it’s component along the
z-axis isρ cosφ), and the expressions forx, y andz come from now applying polar
coordinates to a vector of lengthρ sinφ with angleθ around thexy-plane.
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Figure 1.3: Region the unit square is mapped to underT (x, y) = (2x+ 3y, 4y).

Consider the change of variablesu = 2x+ 3y andv = 4y. We’ll show that this
map takes the unit square[0, 1]×[0, 1] (i.e., the set of points(x, y)with 0 ≤ x, y ≤ 1)
to a parallelogram, and then use the Change of Variable formula to find the area.

The unit square is mapped to the parallelogram shown in Figure 1.3. To see this,
look and see where each vertex of the unit square is sent. We have (0, 0) goes to
(0, 0), we have(1, 0) goes to(2, 0), (0, 1) goes to(3, 4) and finally(1, 1) goes to
(5, 4). More generally, if we take a point of the form(x, 0) it’s mapped to the point
(2x, 0), so we see the interval[0, 1] on thex-axis is mapped to the interval[0, 2] on
theu-axis. A similar analysis shows all the other lines of the unit square are mapped
to lines in theuv-plane. For example, consider the line(x, 1) with 0 ≤ x ≤ 1. This
is mapped to the line(2x+3, 4) in theuv-plane, or equivalently the line from(3, 4)
(corresponding tox = 0) to the point(5, 4) (corresponding tox = 1).

We need the inverse transformationT−1, which gives us thex andy correspond-
ing to a choice ofu andv. We have to invert the relations

u = 2x+ 3y, v = 4y.

The second is the easiest; we clearly need to havey = v/4. Knowing this, we then
find

u = 2x+
3v

4
,

or

x =
u

2
− 3v

8
.

In other words, we have

T−1(u, v) = (x(u, v), y(u, v)) =

(

u

2
− 3v

8
,
v

4

)

.

We now find the determinant of the derivative. First we compute

(DT−1)(u, v) =

(

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

)

=

(

1
2 − 3

8
0 1

4

)

.
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The determinant is

det((DT−1)(u, v)) =
1

2
· 1
4
+

3

8
· 0 =

1

8
,

and thus the absolute value of the determinant is

∣

∣det((DT−1)(u, v))
∣

∣ =
1

8
,

which means

dxdy −→
∣

∣det((DT−1)(u, v))
∣

∣ dudv =
1

8
dudv.

By the Change of Variables formula, ifS is the original unit square inxy-space
andP = T (S) is the parallelogram inuv-space, we have
∫ ∫

S

1dxdy =

∫ ∫

T (S)

1
∣

∣det((DT−1)(u, v))
∣

∣ dudv =

∫ ∫

T (S)

1 · 1
8
dudv.

As 1/8 is constant, we can pull it out of the integral and find
∫ ∫

S

1dxdy =
1

8

∫ ∫

T (S)

1dudv;

the left double integral is the area of the unit square, whilethe right double integral
is the area of our parallelogram. We thus find

Area(S) =
1

8
Area(T (S)) =

1

8
Area(P ),

or equivalently that the area of the parallelogram is 8:

Area(P ) = 8Area(S) = 8 · 1 = 8.

We could consider more general maps from squares to parallelograms, but this
illustrates the principle and proves a nice, known result: the area of a parallelogram
is its base times height. For our parallelogram, it has length 2 and height 4, which do
multiply to give an area of 8.

Notice that we’re able to deduce the formula for the parallelogram’s area by
knowing the area of the squarebecause the absolute value of the determinant of the
derivative matrix is constant (i.e., independent ofu andv). This allows us to pull
out that common factor of 1/8 and leaves us with the integral of 1 over the parallel-
ogram, which is thus its area. Whenever we have a change of variables where the
determinant is constant, these calculations can often allow us to deduce the area of
one region from knowing another. For example, you can use this to find the area of
an ellipse knowing the area of a circle.

For the ellipse
(x

a

)2

+
(y

b

)2

≤ 1,

consider the change of variablesu = x/a andv = y/b, so

T (x, y) = (u(x, y), v(x, y)) = (x/a, y/b).
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Equivalently the inverse mapT−1 is

T−1(u, v) = (x(u, v), y(u, v)) = (au, bv).

Note this maps the ellipse to the unit disk

u2 + v2 ≤ 1,

and we know the area of the unit disk is justπ12 = π! After a little bit of algebra,
you’ll find the area of the ellipse isπab.

Whenever we have an answer, a great way to check our work is to see if it agrees
with previous results for special cases. For example, if we takea = b = r in the
ellipse problem above, it reduces to finding the area of a circle of radiusr. We know
that this is justπr2, and as expected our formulaπab equals this whena = b = r.
While this isn’t a proof that our formula for the ellipse’s area is correct, it’s sugges-
tive that we’re correct.

For our next problem, letD be the unit diskx2 + y2 ≤ 1, and let’s evaluate the
integral

∫ ∫

D

cos(x2 + y2)dxdy.

This problem screams polar coordinates, as we’re integrating over a circle and
the integrand only depends onr, the distance from the center of the circle. We have
dxdy goes tordrdθ, and the unit disk becomes0 ≤ r ≤ 1 and0 ≤ θ ≤ 2π. We
replacef(x, y) with f(r cos θ, r sin θ), and thus find

∫ ∫

D

cos(x2 + y2)dxdy =

∫ 2π

θ=0

∫ 1

r=0

cos(r2 cos2 θ + r2 sin2 θ)rdrdθ

=

∫ 2π

θ=0

∫ 1

r=0

cos(r2)rdrdθ

=

∫ 2π

θ=0

1

2

[
∫ 1

r=0

cos(r2)2rdr

]

dθ

=

∫ 2π

θ=0

1

2



sin(r2)

∣

∣

∣

∣

∣

1

0



 dθ

=

∫ 2π

θ=0

sin 1

2
dθ

=
sin 1

2
· 2π = π sin 1.

Consider the cylinderC given byx2 + y2 ≤ 9 and−1 ≤ z ≤ 2. Evaluate
∫ ∫ ∫

C

f(x, y, z)dxdydz

where
f(x, y, z) = z

√

x2 + y2.
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If we wanted to write down the integral explicitly in Cartesian coordinates, we
would have

∫ 2

z=−1

∫ 3

y=−3

∫

√
9−y2

x=−
√

9−y2

z
√

x2 + y2dxdydz.

To see this, note that on the boundaryx2 + y2 = 9, so if we have chosen a value
of y thenx ranges from−

√

9− y2 to
√

9− y2; these are not integrals we desire to
evaluate! For cylindrical coordinates, we have

dxdydz −→ rdrdθdz,

and
x = r cos θ, y = r sin θ, z = z.

Our functionf(x, y, z) becomesf(r cos θ, r sin θ, z), or in our case

z
√

x2 + y2 −→ z
√

r2 cos2 θ + r2 sin2 θ = zr.

The bounds of integration arez ranges from−1 to 2, θ ranges from 0 to2π, andr
ranges from 0 to 3. We thus have
∫ ∫ ∫

C

f(x, y, z)dxdydz =

∫ 2

z=−1

∫ 2π

θ=0

∫ 3

r=0

f(r cos θ, r sin θ, z)rdrdθdz

=

∫ 2

z=−1

∫ 2π

θ=0

∫ 3

r=0

z
√

r2 cos2 θ + r2 sin2 θrdrdθdz

=

∫ 2

z=−1

∫ 2π

θ=0

∫ 3

r=0

zr · rdrdθdz

=

∫ 2

z=−1

z

∫ 2π

θ=0

[
∫ 3

r=0

r2dr

]

dθdz

=

∫ 2

z=−1

z

∫ 2π

θ=0





r3

3

∣

∣

∣

∣

∣

3

0



 dθdz

=

∫ 2

z=−1

z

∫ 2π

θ=0

27

3
dθdz

= 9

∫ 2

z=−1

z

[
∫ 2π

θ=0

dθ

]

dz

= 9

∫ 2

z=−1

z2πdz

= 18π

∫ 2

z=−1

zdz

= 18π
z2

2

∣

∣

∣

∣

∣

2

−1

= 18π

[

4

2
− 1

2

]

= 18π · 3
2

= 27π.
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Finally, consider the unit sphereS given byx2 + y2 + z2 ≤ 1. Let’s find

∫ ∫ ∫

S

f(x, y, z)dxdydz

for

f(x, y, z) =
1

(x2 + y2 + z2)
.

Writing the integral out explicitly in Cartesian coordinates gives

∫ 1

z=−1

∫

√
1−z2

y=−
√
1−z2

∫

√
1−y2−z2

x=−
√

1−y2−z2

f(x, y, z)dxdydz,

and these bounds of integration are horrible! We now convertto spherical coordi-
nates:

x = ρ sinφ cos θ, y = ρ sinφ sin θ, z = ρ cosφ,

with

0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π.

Our functionf(x, y, z) becomes

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ) =
1

ρ2

after some simple algebra. Finally,

dxdydz −→ ρ2 sinφdρdθdφ.



16 • Change of Variable Formula

Note: remember, other textbooks change the role of θ and φ, especially physics
books. We thus have

∫ ∫ ∫

S

f(x, y, z)dxdydz

=

∫ π

φ=0

∫ 2π

θ=0

∫ 1

ρ=0

f(ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)ρ2 sinφdρdθdφ

=

∫ π

φ=0

∫ 2π

θ=0

∫ 1

ρ=0

1

ρ2
ρ2 sinφdρdθdφ

=

∫ π

φ=0

∫ 2π

θ=0

∫ 1

ρ=0

sinφdρdθdφ

=

∫ π

φ=0

∫ 2π

θ=0

sinφ

[
∫ 1

ρ=0

dρ

]

dθdφ

=

∫ π

φ=0

sinφ

[
∫ 2π

θ=0

dθ

]

dφ

= 2π

∫ π

φ=0

sinφdφ

= 2π

[

− cosφ

∣

∣

∣

∣

∣

π

0

]

= 2π [(− cosπ)− (− cos 0)]

= 2π (1 + 1)

= 4π.
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