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Greetings again!

One of the greatest challenges in a course is determining what level to pitch it.
This is perhaps most apparent in deciding what level of detail to give for proofs. For
us, the most important result is, as the name suggests, the Central Limit Theorem.
The purpose of this chapter is to quickly introduce you to a subject which is beau-
tiful and important in its own right, Complex Analysis, and see how it connects to
Probability and the Central Limit Theorem.



Chapter 1

Complex Analysis and the Central Limit
Theorem

In Chapter?? we gave a proof of the Central Limit Theorem using generatingfunc-
tions; unfortunately that proof isn’t complete as it assumed some results from Com-
plex Analysis. Moreover, we had to assume the moment generating function existed,
which isn’t always true.

We tried again in Chapter??; we proved the Central Limit Theorem by using
Fourier analysis. Instead of using the moment generating function, which can fail
to even exist, this time we used the Fourier transform (also called the characteristic
function), which has the very nice and useful property of actually existing! Unfortu-
nately, here too we needed to appeal to some results from Complex Analysis.

This leaves us in a quandary, where we have a few options.

1. We can just accept as true some results from Complex Analysis and move on.

2. We can try and find yet another proof, this time one that doesn’t need Complex
Analysis.

3. We can drop everything and take a crash course in Complex Analysis.

This chapter is for those who like the third option. We’ll explain some of the
key ideas of complex analysis, in particular we’ll show why it’s such a different
subject than real analysis. Obviously, it helps to have seenreal analysis, but if you’re
comfortable with Taylor series and basic results on convergence you’ll be fine.

It turns out that assuming a function of a real variable is differentiable doesn’t
mean too much, but assume a function of a complex variable is differentiable and all
of a sudden doors are opening everywhere with additional, powerful facts that must
be true. Obviously this chapter can’t replace an entire course, nor is that our goal.
We want to show you some of the key ideas of this beautiful subject, and hopefully
when you finish reading you’ll have a better sense of why the black-box results from
Complex Analysis (Theorems??and??) are true.

This chapter is meant to supplement our discussions on moment generating func-
tions and proofs of the Central Limit Theorem. We thus assumethe reader is familiar
with the notation and concepts from Chapters?? through??.
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1.1 Warnings from real analysis

The following example is one of my favorites from real analysis. It indicates why
real analysis is hard, almost surely much harder than you might expect. Consider the
functiong : R → R given by

g(x) =

{
e−1/x2

if x 6= 0

0 otherwise.
(1.1)

Using the definition of the derivative and L’Hopital’s rule,we can show thatg is
infinitely differentiable, and all of its derivatives at theorigin vanish. For example,

g′(0) = lim
h→0

e−1/h2 − 0

h

= lim
h→0

1/h

e1/h2

= lim
k→∞

k

ek2

= lim
k→∞

1

2kek2
= 0,

where we usedL’Hopital’s rule in the last step (limk→∞ A(k)/B(k) = limk→∞

A′(k)/B′(k) if limk→∞ A(k) = limk→∞ B(k) = ∞). (We replacedh with 1/k as
this allows us to re-express the quantities above in a familiar form, one where we can
apply L’Hopital’s rule.) A similar analysis shows that thenth derivative vanishes at
the origin for alln, i.e., g(n)(0) = 0 for all positive integern. If we consider the
Taylor series forg about 0, we find

g(x) = g(0) + g′(0)x+
g′′(0)x2

2!
+ · · · =

∞∑

n=0

g(n)(0)xn

n!
= 0;

however, clearlyg(x) 6= 0 if x 6= 0. We are thus in the ridiculous case where the
Taylor series (which converges for allx!) only agrees with the function whenx = 0.
This isn’t that impressive, as the Taylor series isforced to agree with the original
function at 0, as both are justg(0).

We can learn a lot from the above example. The first is that it’spossible for a
Taylor series to converge for allx, but only agree with the function at one point! It’s
not too impressive to agree at just one point, as by construction the Taylor serieshas
to agree at that point of expansion. The second, which is far more important, is that
a Taylor series does not uniquely determine a function!For example, bothsinx and
sinx+g(x) (with g(x) the function from equation (1.1)) have the same Taylor series
aboutx = 0.

The reason this is so important for us is that we want to understand when a
moment generating function uniquely determines a probability distribution. If our
distribution was discrete, there was no problem (Theorem??). For continuous dis-
tributions, however, it’s much harder, as we saw in equation(??) where we met two
densities that had the same moments.

Apparently, we must impose some additional conditions for continuous random
variables. For discrete random variables, it was enough to know all the moments;



Section 1.2: Complex Analysis and Topology Definitions• 5

this doesn’t suffice for continuous random variables. What should those conditions
be?

Recall that if we have a random variableX with densityfX , its kth moment,
denoted byµ′

k, is defined by

µ′
k =

∫ ∞

−∞

xkfX(x)dx.

Let’s consider again the pair of functions in equation (??). A nice calculus exercise
shows thatµ′

k = ek
2/2. This means that the moment generating function is

MX(t) =

∞∑

k=0

µ′
kt

k

k!
=

∞∑

k=0

ek
2/2tk

k!
.

For whatt does this series converge? Amazingly, this series converges only when
t = 0! To see this, it suffices to show that the terms do not tend to zero. Ask! ≤ kk,
for any fixedt, for k sufficiently largetk/k! ≥ (t/k)k; moreover,ek

2/2 = (ek/2)k,
so thekth term is at least as large as(ek/2t/k)k. For anyt 6= 0, this clearly does not
tend to zero, and thus the moment generating function has a radius of convergence
of zero!

This leads us to the following conjecture:If the moment generating function
converges for|t| < δ for someδ > 0, then it uniquely determines a density.We’ll
explore this conjecture below.

1.2 Complex Analysis and Topology Definitions

Our purpose here is to give a flavor of what kind of inputs are needed to ensure that
a moment generating function uniquely determines a probability density. We first
collect some definitions, and then state some useful resultsfrom complex analysis.

Definition 1.2.1 (Complex variable, complex function)Any complex numberz
can be written asz = x + iy, with x and y real and i =

√
−1. We denote the

set of all complex numbers byC. A complex function is a mapf from C to C; in
other wordsf(z) ∈ C. Frequently one writesx = ℜ(z) for thereal part, y = ℑ(z)
for the imaginary part, andf(z) = u(x, y) + iv(x, y) with u andv functions from
R2 toR.

There are many ways to write complex numbers. The most commonis the defi-
nition above; however, a polar coordinate approach is sometimes useful. One of the
most remarkable relations in all of mathematics is

eiθ = cos θ + i sin θ.

There are several ways to see this, depending on how much mathyou want to assume.
One way is to use the Taylor series expansions for the exponential, sine and cosine
functions. This gives another way of writing complex numbers; instead of1 + i we
could write

√
2 exp(iπ/4). A particularly interesting choice ofθ is π, which gives

eiπ = −1, a beautiful formula involving many of the most important constants in
mathematics!
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Noting i2 = −1, it isn’t too hard to show that

(a+ ib) + (x+ iy) = (a+ x) + i(b+ y)

(a+ ib) · (x+ iy) = (ax− by) + i(ay + bx).

Thecomplex conjugateof z = x + iy is z := x − iy, and we define theabsolute
value (or themodulus or magnitude) of z to be

√
zz, and denote this by|z|. This

is real valued, and equals
√
x2 + y2. If we were to writez as a vector, it would be

z = (x, y); note that in this case we see that|z| equals the length of the corresponding
vector.

We can write almost anything as an example of a complex function; one possible
function isf(z) = z2 + |z|. The question is when is such a function differentiable
in z, and what does that differentiability entail. Actually, before we answer this we
first need to state what it means for a complex function to be differentiable!

Definition 1.2.2 (Differentiable) We say a complex functionf is (complex) differ-
entiable at z0 if it’s differentiable with respect to the complex variablez, which
means

lim
h→0

f(z0 + h)− f(z0)

h

exists, whereh tends to zero alonganypath in the complex plane. If the limit exists
we writef ′(z0) for the limit. Iff is differentiable, thenf(x+iy) = u(x, y)+iv(x, y)
satisfies theCauchy-Riemann equations:

f ′(z) =
∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+

∂v

∂y

(one direction is easy, arising from sendingh → 0 along the paths̃h and ih̃, with
h̃ ∈ R).

Here’s a quick hint to see why differentiability implies theCauchy-Riemann
equations – try and fill in the details. Since the derivative exists atz0, the key limit
is independent of the path we take to the pointx0 + iy0. Consider the pathx + iy0
with x → x0, and the pathx0 + iy with y → y0, and use results from multivariable
calculus on partial derivatives.

Let’s explore a bit and see which functions are complex differentiable. We let
h = h1 + ih2 below, withh → 0 + 0i.

• If f(z) = z then

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

z + h− z

h
= lim

h→0
1 = 1;

thus the function is complex differentiable and the derivative is 1.
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• If f(z) = z2 then

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

(z + h)2 − z2

h

= lim
h→0

z2 + 2zh+ h2 − z2

h

= lim
h→0

2zh+ h2

h
= lim

h→0
(2z + h)

= lim
h→0

2z + lim
h→0

h

= 2z + 0 = 2z.

We’re using the following properties of complex numbers:h/h = 1 and2zh+
h2 = (2z + h)h. Note how similar this is to the real valued analogue,f(x) =
x2.

• If f(z) = z then

lim
h→0

f(z + h)− f(z)

h
= lim

h→0

z + h− z

h
.

Unlike the other limits, this one isn’t immediately clear. Let’s writez = x+iy,
h = h1 + ih2 (and of coursez = x− iy, h = h1 − ih2). The limit is

lim
h→0

x− iy + h− ih2 − (x− iy)

h1 + ih2
= lim

h→0

h1 − ih2

h1 + ih2
.

This limit does not exist; depending on howh → 0 we obtain different an-
swers. For example, ifh2 = 0 (traveling along thex-axis) the limit is just
limh→0 h1/h1 = 1, while if h1 = 0 (traveling along they-axis) the limit is
just limh→0 −ih2/ih2 = −1. Thus this function isn’t complex differentiable
anywhere, even though it’s a fairly straightforward function to define.

If we continue to argue along these lines, we find that a function is complex dif-
ferentiable if thex andy dependence is in a very special form, namely everything is
a function ofz = x + iy. In other words, we don’t allow our function to depend on
z = x− iy. If we could depend on both, we could isolate outx (which isz + z) and
y (which is(z − z)/i). We can begin to see why being complex differentiable once
implies that we’re complex differentiable infinitely often, namely because of the very
special dependence onx andy. Also, in the plane there’s really only two ways to
approach a point: from above, or from below. In the complex plane, the situation is
strikingly different. There are so many ways we can move in two-dimensions, and
eachpath must give the same answer if we’re to be complex differentiable. This is
why differentiability means far more for a complex variablethan for a real variable.

To state the needed results from Complex Analysis, we also require some ter-
minology from Point Set Topology. In particular, many of thetheorems below deal
with open sets. We briefly review their definition and give some examples.
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Definition 1.2.3 (Open set, closed set)A subsetU of C is an open set if for any
z0 ∈ U there’s aδ such that whenever|z − z0| < δ thenz ∈ U (noteδ is allowed to
depend onz0). A setC is closed if its complement, C \ C, is open.

The following are examples of open sets inC.

1. U1 = {z : |z| < r} for any r > 0. This is usually called theopen ball of
radius r centered at the origin.

2. U2 = {z : ℜ(z) > 0}. To see this is open, ifz0 ∈ U2 then we can write
z0 = x0 + iy0, with x0 > 0. Lettingδ = x0/2, for z = x + iy we see that if
|z − z0| < δ then|x− x0| < x0/2, which impliesx > x0/2 > 0; U2 is often
called the openright half-plane .

For examples of closed sets, consider the following.

1. C1 = {z : |z| ≤ r}. Note that if we takez0 to be any point on the boundary,
then the ball of radiusδ centered atz0 will contain points more thanr units
from the origin, and thusC1 isn’t open. A little work shows, however, thatC1

is closed (in fact,C1 is called theclosed ball of radiusr about the origin). We
prove it’s closed by showing its complement is open. What we need to do is
show that, given any point in the complement, there’s a smallball about that
point entirely contained in the complement. I urge you to draw a picture for
the following argument. Ifz0 ∈ C \ C1 then|z0| > r (as otherwise it would
be insideC1). If we takeδ < |z0|−r

2 then after some algebra we’ll find that if
|z − z0| < δ thenz ∈ C \ C1. ThusC \ C1 is open, soC1 is closed.

2. C2 = {z : ℜ(z) ≥ 0}. To see this set isn’t open, consider anyz0 = iy with
y ∈ R. A similar calculation as the one we did forU2 or C1 showsC2 is
closed.

For a set that is neither open nor closed, considerS = U1 ∪ C2.

We now state two of the most important properties a complex function could
have. One of the most important results in the subject is thatthese two seemingly
very different properties are actually equivalent!

Definition 1.2.4 (Holomorphic, analytic) LetU be an open subset ofC, and letf
be a complex function. We sayf is holomorphic onU if f is differentiable at every
pointz ∈ U , and we sayf is analytic onU if f has a series expansion that converges
and agrees withf onU . This means that for anyz0 ∈ U , for z close toz0 we can
choosean’s such that

f(z) =

∞∑

n=0

an(z − z0)
n.

As alluded to above, saying a function of a complex variable is differentiable
turns out to implyfar more than saying a function of a real variable is differentiable,
as the following theorem shows us.
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Theorem 1.2.5 Let f be a complex function andU an open set. Thenf is holo-
morphic onU if and only iff is analytic onU , and the series expansion forf is its
Taylor series.

The above theorem is amazing; its result seems to good to be true. Namely, as
soon as we knowf is differentiable once, it’s infinitely (real) differentiable andf
agrees with its Taylor series expansion! This is very different than what happens in
the case of functions of a real variable. For instance, the function

h(x) = x3 sin(1/x) (1.2)

is differentiable once and only once atx = 0, and while the functiong(x) from
(1.1) is infinitely differentiable, the Taylor series expansion only agrees withg(x) at
x = 0. Complex analysis is averydifferent subject than real analysis!

The next theorem provides a very nice condition for when a function is identically
zero. It involves the notion of a limit or accumulation point, which we define first.

Definition 1.2.6 (Limit or accumulation point) We sayz is a limit (or anaccumu-
lation) point of a sequence{zn}∞n=0 if there exists a subsequence{znk

}∞k=0 converg-
ing toz.

Let’s do some examples to clarify the definitions.

1. If zn = 1/n, then0 is a limit point.

2. If zn = cos(πn) then there are two limit points, namely1 and−1. (If zn =
cos(n) theneverypoint in [−1, 1] is a limit point of the sequence, though this
is harder to show.)

3. If zn = (1+ (−1)n)n +1/n, then0 is a limit point. We can see this by taking
the subsequence{z1, z3, z5, z7, . . . }; note the subsequence{z0, z2, z4, . . . }
diverges to infinity.

4. Let zn denote the number of distinct prime factors ofn. Then every positive
integer is a limit point! For example, let’s show5 is a limit point. The first five
primes are 2, 3, 5, 7 and 11; considerN = 2 · 3 · 5 · 7 · 11 = 2310. Consider
the subsequence{zN , zN2 , zN3 , zN4, . . . }; asNk has exactly 5 distinct prime
factors for eachk, 5 is a limit point.

5. If zn = n2 then there are no limit points, aslimn→∞ zn = ∞.

6. Letz0 be any odd, positive integer, and set

zn+1 =

{
3zn + 1 if zn is odd

zn/2 if zn is even.

It’s conjecturedthat 1 is always a limit point (and if somezm = 1, then the
next few terms have to be4, 2, 1, 4, 2, 1, 4, 2, 1, . . . , and hence the sequence
cycles). This is the famous3x+1 problem. Kakutani called it a conspiracy to
slow down American mathematics because of the amount of timepeople spent
on this; Erdös said mathematics isn’t yet ready for such problems. See [?, ?, ?]
for some nice expositions, but be warned that this problem can be addictive!
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We can now state the theorem which, for us, is the most important result from
Complex Analysis. It’s the basis of the black box results.

Theorem 1.2.7 Letf be an analytic function on an open setU , with infinitely many
zerosz1, z2, z3, . . . . If limn→∞ zn ∈ U , thenf is identically zero onU . In other
words, if a function is zero along a sequence inU whose accumulation point is also
in U , then that function is identically zero inU .

Note the above isvery different than what happens in real analysis. Consider
again the function from (1.2),

h(x) = x3 sin(1/x).

This function is continuous and differentiable. It’s zero wheneverx = 1/πn with
n an integer. If we letzn = 1/πn, we see this sequence has0 as a limit point,
and our function is also zero at0 (see Figure 1.1). It’s clear, however, that this

-0.03 -0.02 -0.01 0.01 0.02 0.03

-0.00002

-0.000015

-0.00001

-5.´10-6

5.´10-6

0.00001

0.000015

Figure 1.1: Plot ofx3 sin(1/x).

function isnot identically zero. Yet again, we see a stark difference between real and
complex valued functions. As a nice exercise, show thatx3 sin(1/x) is not complex
differentiable. It will help if you recalleiθ = cos θ+i sin θ, orsin θ = (eiθ−e−iθ)/2.

1.3 Complex analysis and moment generating func-
tions

We conclude our technical digression by stating a few more very useful facts. The
proof of these requires properties of theLaplace transform, which is defined by
(Lf)(s) =

∫∞

0 e−sxf(x)dx. The reason the Laplace transform plays such an im-
portant role in the theory is apparent when we recall the definition of the moment
generating function of a random variableX with densityf :

MX(t) = E[etX ] =

∫ ∞

−∞

etxf(x)dx;
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in other words, the moment generating function is the Laplace transform of the den-
sity evaluated ats = −t.

Remember that ifFX andGY are the cumulative distribution functions of the
random variablesX andY with densitiesf andg, then

FX(x) =

∫ x

−∞

f(t)dt

GY (y) =

∫ y

−∞

g(v)dv.

We remind the reader of the two important results we assumed in the text (Theorems
??and??), which we restate below. After stating them we discuss their proofs.

Theorem 1.3.1 Assume the moment generating functionsMX(t) andMY (t) exist in
a neighborhood of zero (i.e., there’s someδ such that both functions exist for|t| < δ).
If MX(t) = MY (t) in this neighborhood, thenFX(u) = FY (u) for all u. As the
densities are the derivatives of the cumulative distribution functions, we havef = g.

Theorem 1.3.2 Let {Xi}i∈I be a sequence of random variables with moment gen-
erating functionsMXi

(t). Assume there’s aδ > 0 such that when|t| < δ we have
limi→∞ MXi

(t) = MX(t) for some moment generating functionMX(t), and all
moment generating functions converge for|t| < δ. Then there exists a unique cumu-
lative distribution functionF whose moments are determined fromMX(t) and for
all x whereFX(x) is continuous,limi→∞ FXi

(x) = FX(x).

The proof of these theorems follow from results in complex analysis, specifically
the Laplace and Fourier inversion formulas. To give an example as to how the results
from complex analysis allow us to prove results such as these, we give most of the
details in the proof of the next theorem. Wedeliberatelydo not try and prove the
following result in as great generality as possible!
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Theorem 1.3.3 Let X andY be two continuous random variables on[0,∞) with
continuous densitiesf andg, all of whose moments are finite and agree. Suppose
further that:

1. There is someC > 0 such that for allc ≤ C, e(c+1)tf(et) ande(c+1)tg(et)
are Schwartz functions (see Definition??). This isn’t a terribly restrictive as-
sumption;f andg need to have decay in order for all moments to exist and
be finite. As we’re evaluatingf andg at et and nott, there’s enormous decay
here. The meat of the assumption is thatf andg are infinitely differentiable
and their derivatives decay.

2. The (not necessarily integral) moments

µ′
rn(f) =

∫ ∞

0

xrnf(x)dx and µ′
rn(g) =

∫ ∞

0

xrng(x)dx

agree for some sequence of non-negative real numbers{rn}∞n=0 which has a
finite accumulation point (i.e.,limn→∞ rn = r < ∞).

Thenf = g (in other words, knowing all these moments uniquely determines the
probability density).

Proof: We sketch the proof, which is long and sadly a bit technical. Remember the
purpose of this proof is to highlight why our needed results from Complex Analysis
are true. Feel free to skim or skip the proof, but we urge you toread the example at
the end of this section, where we return to the two densities that are causing us so
much heartache. Leth(x) = f(x)− g(x), and define

A(z) =

∫ ∞

0

xzh(x)dx.

Note thatA(z) exists for allz with real part non-negative. To see this, letℜ(z) denote
the real part ofz, and letk be the unique non-negative integer withk ≤ ℜ(z) < k+1.
Thenxℜz ≤ xk + xk+1, and

|A(z)| ≤
∫ ∞

0

xℜ(z) [|f(x)|+ |g(x)|] dx

≤
∫ ∞

0

(xk + xk+1)f(x)dx +

∫ ∞

0

(xk + xk+1)g(x)dx = 2µ′
k + 2µ′

k+1.

Results from analysis now imply thatA(z) exists for allz. The key point is thatA
is also differentiable. Interchanging the derivative and the integration (which can be
justified; see Theorem??), we find

A′(z) =

∫ ∞

0

xz(log x)h(x)dx.

To show thatA′(z) exists, we just need to show this integral is well-defined. There
are only two potential problems with the integral, namely whenx → ∞ and when
x → 0. For x large, xz log x ≤ xℜ(z)+1 and thus the rapid decay ofh gives
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∣∣∫∞

1
xz(log x)h(x)dx

∣∣ < ∞. For x near0, h(x) looks likeh(0) plus a small er-
ror (remember we’re assumingf andg are continuous); thus there’s aC so that
|h(x)| ≤ C for |x| ≤ 1. Note

lim
ǫ→0

∫ 1

ǫ

∣∣∣∣
∫ ∞

0

xz(log x)h(x)dx

∣∣∣∣ ≤ lim
ǫ→0

1

∫ 1

ǫ

1 · (− logx) · Cdx.

The anti-derivative oflog x is x log x − x, and limǫ→0(ǫ log ǫ − ǫ) = 0. This is
enough to prove that this integral is bounded, and thus from results in analysis we
getA′(z) exists.

We (finally!) use our results from complex analysis. AsA is differentiable once,
it’s infinitely differentiable and it equals its Taylor series forz with ℜ(z) > 0. There-
foreA is an analytic function which is zero for a sequence ofzn’s with an accumula-
tion point, and thus it’s identically zero. This is spectacular – initially we only knew
A(z) was zero ifz was a positive integer or ifz was in the sequence{rn}; we now
know it’s zero for allz with ℜ(z) > 0. This remarkable conclusion comes from
complex analysis; it’s here that we use it.

We change variables, and replacex with et anddx with etdt. The range of
integration is now−∞ to ∞, and we seth(t)dt = h(et)etdt. We now have

A(z) =

∫ ∞

−∞

etzh(t)dt = 0.

Choosingz = c+ 2πiy with c less than theC from our hypotheses gives

A(c+ 2πiy) =

∫ ∞

−∞

e2πity
[
ecth(t)

]
dt = 0.

Our assumptions imply thatecth(t) is a Schwartz function, and thus it has a unique
inverse Fourier transform. As we know this transform is zero, it implies thatecth(t) =
0, orh(x) = 0, or f(x) = g(x). 2

We needed the analysis at the end on the inverse Fourier transform as our goal
is to show thatf(x) = g(x), not thatA(z) = 0. It seems absurd thatA(z) could
identically vanish withoutf = g, but we must rigorously show this.

What if we lessen our restrictions onf andg; perhaps one of them isn’t continu-
ous? Perhaps there’s a unique continuous probability distribution attached to a given
sequence of moments such as in the above theorem, but if we allow non-continuous
distributions there could be additional possibilities. This topic is beyond the scope
of this book, requiring more advanced results from analysis; however, we wanted to
point out where the dangers lie, where we need to be careful.

After proving Theorem 1.3.3, it’s natural to go back to the two densities that are
causing so much trouble, namely (see (??))

f1(x) =
1√
2πx2

e−(log2 x)/2

f2(x) = f1(x) [1 + sin(2π log x)] .
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We know these two densities have the same integral moments (theirkth moments are
ek

2/2 for k a non-negative integer). These functions have the correct decay; note

e(c+1)tf1(e
t) = e(c+1)t · e

−t2/2

√
2πet

,

which decays fast enough for anyc to satisfy the assumptions of Theorem 1.3.3. As
these two densities are not the same,somecondition must be violated. The only
condition left to check is whether or not we have a sequence ofnumbers{rn}∞n=0

with an accumulation pointr > 0 such that thern th moments agree. Using more
results from Complex Analysis (specifically, contour integration), we can calculate
the(a+ ib)th moments. We find

(a+ ib)th moment of f1 is e(a+ib)2/2

and

(a+ ib)th moment of f1 is e(a+ib)2/2 +
i

2

(
e(a+i(b−2π))2/2 − e(a+i(b+2π))2/2

)
.

While these moments agree forb = 0 anda a positive integer, there’s no sequence of
real moments having an accumulation point where they agree.To see this, note that
whenb = 0 theath moment off2 is

ea
2/2 + e(a−2iπ)2/2

(
1− e4iaπ

)
, (1.3)

and this is never zero unlessa is a half-integer (i.e.,a = k/2 for some integer
k). In fact, the reason we wrote (1.3) as we did was to highlightthe fact that it’s
only zero whena is a half-integer. Exponentials of real or complex numbers are
never zero, and thus the only way this can vanish is if1 = e4iaπ. Recalling that
eiθ = cos θ + i sin θ, we see that the vanishing of theath moment is equivalent to
1− cos(4πa)− i sin(4πa) = 0; the only way this can happen is ifa = k/2 for some
k. If this happens, the cosine term is 1 and the sine term is 0.

1.4 Exercises

Problem 1.4.1 Let f(x) = x3 sin(1/x) for x 6= 0 and setf(0) = 0. (a) Show that
f is differentiable once when viewed as a function of a real variable, but that it is not
differentiable twice. (b) Show thatf is not differentiable when viewed as a function
of a complex variablez; it might be useful to note thatsinu = (eiu − e−iu)/2i.

Problem 1.4.2 If we’re told that all the moments off are finite andf is infinitely
differentiable, must there be someC such that for allc < C we havee(c+1)tf(et) is
a Schwartz function?
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