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Chapter 1

Analyzing Runs

This is a supplemental chapter toThe Probability Lifesaver.

1.1 Matching Coefficients

Sometimes we can derive identities of binomial coefficientswithout differentiating –
one common technique is matching coefficients. For example,consider

n
∑

k=0

(

n

k

)2

=

n
∑

k=0

(

n

k

)(

n

n− k

)

,

because
(

n
k

)

=
(

n
n−k

)

. Consider now the following sum

n
∑

k=0

(

n

k

)

xkyn−k ·

(

n

n− k

)

xn−kyk,

as well as
(x+ y)n(x+ y)n.

Expanding the product gives

(x+ y)n(x+ y)n = (x+ y)2n =

2n
∑

j=0

(

2n

j

)

xjy2n−j ;

note the coefficient ofxnyn in this product is
(

2n
n

)

. The key observation is that (1.1) is
just thexnyn term of(x+y)2n. This is because it can be interpreted as taking thexnyn

term of(x+y)n(x+y)n. How do we get anxnyn term from multiplying(x+y)n with
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4 CHAPTER 1. ANALYZING RUNS

(x + y)n? Well, the two factors(x + y)n give terms like
(

n
i

)

xiyn−i and
(

n
j

)

xjyn−j,
which are then multiplied together. The only way we get anxnyn is whenj = n − i,
and we can do this for anyj ∈ {0, 1, . . . , n}. Thus thexnyn term in(x+ y)2n is

(

2n

n

)

xnyn =

n
∑

k=0

(

n

k

)

xkyn−k ·

(

n

n− k

)

xn−kyk.

The proof is completed by takingx = y = 1.
The reason arguments like this work is because if we have two polynomials of

finite degree in finitely many variables, then if they take on identical values for all
values of the parameters then all the coefficients of the two polynomials are equal. This
allowed us to take two expressions and equate the coefficients of terms. Without this
observation, the equality of two polynomials (at all valuesof the parameters) would
not imply the equality of the coefficients. For example, assume x2 + 2xy − 7y =
x2 + 3xy − 5y2 + y for all x, y ∈ C (of course these two polynomials are not always
equal); however, if thiswereto happen, we would be in trouble as in the first we have
2xy and the second we have3xy. Thus while some terms (such asx2) have the same
coefficient, others do not.

Specifically, sayF (x, y) andG(x, y) are two polynomials of finite degree with
complex coefficients. Then if they are equal for all choices of x, y ∈ C we have
F (x, y) − G(x, y) is a polynomial of finite degree and it is zero for allx, y ∈ C. It is
an easy exercise to show this implies all the coefficients ofF (x, y)−G(x, y) are zero
(i.e., all the coefficients ofF (x, y) equal those ofG(x, y)). One way to see this is to
choose fixed values ofx. Sayx = a. Except for finitely many choices ofa, we would
getF (a, y)−G(a, y) is a finite degree polynomial and it has some non-zero coefficient
but it vanishes for ally ∈ C. This is absurd as a polynomial of degreed has at mostd
complex roots. We do not need to havex andy range over all ofC; it suffices to have
them range over a large enough set, for example|x|, |y| ≤ R for someR > 0.

The biggest difficulty in successfully applying arguments of this nature is figuring
out what to compare the observed sum to. Here we needed to see that we should
compare

∑n

k=0

(

n
k

)2
to the coefficient ofxnyn in (x+y)2n. Writing

(

n
k

)

as
(

n
k

)

·
(

n
n−k

)

suggests that we should compare it to a coefficient of(x+ y)n(x+ y)n.

1.2 The Alternating Strings Problem

Consider a string ofn1 +n2 coin tosses withn1 heads andn2 tails. There are
(

n1+n2

n2

)

ways to order then1 heads andn2 tails. Assume all orderings are equally likely. Our
goal is to eventually study the number of alternating strings of heads and tails. We
start with a simpler problem, namely trying to figure out how many ways there are to
arrangen1 heads andn2 tails and observeu runs (again,HHTTHTTTH would have
5 runs and4 alterations).

For example, let us sayn1 = n2 = 3 and we want to have3 runs. If we assume we
start with a head we could haveHTTTHH or HHTTTH , and by symmetry if we
start with a tail we could haveTHHHTT or TTHHHT .

In general, we have
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Theorem 1.2.1. Let there ben1 heads andn2 tails, and assume each of the
(

n1+n2

n1

)

arrangements are equally likely. Let there beu runs of heads and tails. Then

u =

{

2
(

n1−1
k−1

)(

n2−1
k−1

)

if u = 2k for a positive integerk
(

n1−1
k

)(

n2−1
k−1

)

+
(

n1−1
k−1

)(

n2−1
k

)

if u = 2k + 1 for a positive integerk.

Proof. We consideru = 2k and leave the other case as an exercise. As there are an
even number of runs, we must either begin with a head and end with a tail, or we must
begin with a tail and end with a head. By symmetry, it is enoughto consider just the
case when we start with a head and then multiply by2. The reason is if we have a
sequence likeHHHTTHTTTHTHT we can reverse it and obtain a sequence that
starts with a tail and ends with a head.

Let us assume we will start with a head and end with a tail. Consider a string of
n1 heads. If we partition it intok strings of heads, we can then put tails in after the
partitions, and we will have2k runs; however, wemustput a partition after the final
head, as we must end with a tail. Further, we cannot put a partition before the first
head as wemuststart with a head. For example, if we partitionHHHHH by adding
partitions| to getH |HHH |H |, then we can add strings of tails after the partitions to
getHT · · ·THHHT · · ·THT · · ·T for a total of6 runs. How many ways are there
to partitionn1 heads intok groupswith a partition occurring after the final head and
no partition allowed before the first head? Note there aren1 + 1 positions where we
can put a partition (before the first head, after the first head, after the second head,. . . ,
after the last head); however, we shall see that two of these positions have their values
forced.

We must choose the last place for one partition, we cannot choose the place be-
fore the first head, and then we must choosek − 1 of the remainingn1 − 1 positions
for the other partitions. Thus the number of ways to addk partitions when we must
add a partition after the final head and we cannot add one before the first head is just
(

1
1

)(

1
0

)(

n1−1
k−1

)

=
(

n1−1
k−1

)

. A similar argument shows there are
(

n2−1
k−1

)

ways to partition
n2 tails intok groups, assuming we must have a partition before the first tail and we
are not allowed to have a partition after the final tail.

We now intersperse the partitioned heads and tails. Consider any of the
(

n1−1
k−1

)

partitions of then1 heads and any of the
(

n2−1
k−1

)

partitions of then2 tails. Each such
pair gives rise to a sequence ofn1 heads andn2 tails with exactly2k runs, and any
such sequence corresponds to a unique pair. For example, saywe haveH |HH |HHH |
and|TTTT |T |TT ; these unite to becomeHTTTTHHTHH .

Thus the number of partitions leading to2k runs where the first coin is a head and
the last is a tail is just

(

n1−1
k−1

)(

n2−1
k−1

)

. By symmetry this is the same as the number of
partitions where the first coin is a tail and the last is a head,which completes the proof
of the theorem in the case of an even number of runs.

Of course, in the arguments above1 ≤ k ≤ min(n1, n2); for otherk the number
of strings with2k runs is zero.
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1.3 Determining How Often There are an Even Num-
ber of Runs

By differentiating identities we determine how often thereare anevennumber of runs
when there aren1 heads andn2 tails and each of the

(

n1+n2

n1

)

strings are equally likely.
A similar argument is applicable for the case when there are an odd number of runs;
we concentrate here on the case of an even number to highlightthe methods.

If u = 2k is the number of runs, then we know the number of ways to have2k runs
is just

2

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

.

Without loss of generality, for notational convenience letus assumen1 ≥ n2, sok runs
from 1 to n2. Thus the number of strings with an even number of runs is just

n2−1
∑

k=1

2

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

,

as there must be at least two runs (there is no way to have zero runs unlessn1 = n2 = 0,
which we shall assume we do not have). We first need to determine what this sum is,
and then to determine the expected number ofu (whenu = 2k is even) we will need
to sum

n2−1
∑

k=1

(2k) · 2

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

.

1.3.1 Determining the number of strings withu = 2k runs

Consider the polynomial

(x1 + y1)
n1−1(x2 + y2)

n2−1;

we shall see very shortly why this is a “natural” polynomial to examine. Using the
Binomial Theorem (Theorem??) we have

(x1 + y1)
n1−1 =

n1−1
∑

k1=0

(

n1 − 1

k1

)

xn1−1−k1

1 yk1

1 =

n1
∑

k1=1

(

n1 − 1

k1 − 1

)

xn1−k1

1 yk1−1
1

(x2 + y2)
n2−1 =

n2−1
∑

k2=0

(

n2 − 1

k2

)

xk2

2 yn2−1−k2

2 =

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1
2 yn2−k2

2 ;

we will see later why it is convenient to havexn1−k1

1 but xk2−1
2 ; we can write the

binomial theorem this way as
(

m
r

)

=
(

m
m−r

)

. Therefore

(x1 + y1)
n1−1(x2 + y2)

n2−1 =

[

n1
∑

k1=1

(

n1 − 1

k1 − 1

)

xn1−k1

1 yk1−1
1

]

·

[

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1
2 yn2−k2

2

]

.
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Consider what happens if we setx1 = x2 = x andy1 = y2 = y. Then the above
becomes

(x+ y)n1+n2−2 =

[

n1
∑

k1=1

(

n1 − 1

k1 − 1

)

xn1−k1yk1−1

]

·

[

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1yn2−k2

]

=

n1
∑

k1=1

n2
∑

k2=1

(

n1 − 1

k1 − 1

)(

n2 − 1

k2 − 1

)

xn1−1−k1+k2yn2−1+k1−k2 .

Now we use the uniqueness of polynomial expansions and equate coefficients. Con-
sider thexn1−1yn2−1 term in (1.3.1). There are two ways we can calculate it. Looking
at the left hand side, we have(x+y)n1+n2−2, and thus the term is just

(

n1+n2−2
n1−1

)

xn1−1yn2−1.
Looking at the right hand side we see the term we desire occurswhenk1 = k2. We
see now why we wrotexn1−k1

1 andxk2−1
2 ; this made it easy to combine the terms.

Denoting the common value ofk1 andk2 by k we obtain
(

n1 + n2 − 2

n1 − 1

)

xn1−1yn2−1 =

n2
∑

k=1

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

xn1−1yn2−1,

or cancelling thex’s and they’s
(

n1 + n2 − 2

n1 − 1

)

=

n2
∑

k=1

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

.

We have determined the sum in (1.3), the sum we needed to figureout how many
different strings there are withn1 heads,n2 tails andu = 2k runs! Namely, we have
shown

Lemma 1.3.1. The number of strings withn1 heads,n2 tails andu = 2k runs is

n2−1
∑

k=1

2

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

= 2

(

n1 + n2 − 2

n1 − 1

)

.

Some discussion is clearly in order as to how we knew we shouldconsider(x1 +
y1)

n1−1(x2+y2)
n2−1. This is the hardest step in all such proofs by matching or proofs

by differentiating identities, namely figuring outwhereto start. The answer is usually
suggested by trying to analyze the quantity being studied, looking for clues as to what
series or products we should consider.

In this case, we knew that we had to eventually have products like
(

n1−1
k−1

)(

n2−1
k−1

)

.

How can we get such terms? Well, the
(

n1−1
k−1

)

are the coefficients when we expand
(A+B)n1−1; we choseA = x1 andB = y1 to have some flexibility, and to distinguish
these terms from the other factors. For simply counting the number of strings with
u = 2k runs this extra degree of freedom or flexibility was not needed; however, it will
be crucial in trying to find the mean ofu whenu is even. Similarly the

(

n2−1
k−1

)

are the
coefficients from expanding(A + B)n2−1, and we chooseA = x2 andB = y2 for
the same reasons as before. By settingx1 = x2 = x andy1 = y2 = y in the end we
are arguing in a similar manner as in §1.1. This is a common andpowerful technique,
namely writing(x + y)n+m and(x + y)n(x + y)m and then deducing identities for
sums involving terms like

(

n
r

)(

m
a+r

)

for a fixeda.
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1.3.2 Determining the expected value ofu for strings with u = 2k

runs

We now turn to the sum in (1.3), which gives the expected valueof u = 2k; again,
remember that we are only considering strings withn1 heads,n2 tails and an even
numberu = 2k of runs. As by Lemma 1.3.1 there are2

(

n1+n2−2
n1−1

)

such strings and the

number of strings with2k runs is2
(

n1−1
k−1

)(

n2−1
k−1

)

, we need to determine

∑n2−1
k=1 (2k) · 2

(

n1−1
k−1

)(

n2−1
k−1

)

2
(

n1+n2−2
n1−1

) = 2

∑n2−1
k=1 k ·

(

n1−1
k−1

)(

n2−1
k−1

)

(

n1+n2−2
n1−1

) .

We shall ignore the factor of2
(

n1+n2−2
n1−1

)

−1
for now and concentrate on evaluating

n2−1
∑

k=1

k ·

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

.

Actually, it will be significantly easier to find, not the sum with k but the sum with
k − 1:

n2−1
∑

k=1

(k − 1) ·

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

;

clearly if we can evaluate this sum fork− 1 then by adding1 we can find the sum with
k.

We have seen in §1.3.1 that the sum overk of
(

n1−1
k−1

)(

n2−1
k−1

)

can be obtained by
looking at thexn1−1yn2−1 coefficient of(x1 + y1)

n1−1(x2 + y2)
n2−1 underx1 =

x2 = x andy1 = y2 = y. So, let us study again (1.3.1):

(x1 + y1)
n1−1(x2 + y2)

n2−1 =

[

n1
∑

k1=1

(

n1 − 1

k1 − 1

)

xn1−k1

1 yk1−1
1

]

·

[

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1
2 yn2−k2

2

]

.

We will now see the advantage of having two differentx’s and two differenty’s. Let
us take the derivative with respect toy1 and then multiply byy1. Thus we are applying
the operatory1 ∂

∂y1
; the advantage of multiplying byy1 after differentiating byy1 is

that we do not change the degree of any of the terms. Applyingy1
∂

∂y1
to the left hand

side of (1.3.1) gives

(n1 − 1)y1(x1 + y1)
n1−2(x2 + y2)

n2−1,

becausex1, y1, x2 andy2 are independent variables. When we applyy1
∂

∂y1
to the right

hand side of (1.3.1) we get

[

n1
∑

k1=1

(k1 − 1)

(

n1 − 1

k1 − 1

)

xn1−k1

1 yk1−1
1

]

·

[

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1
2 yn2−k2

2

]

.
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The above shows why it is easier to studyk − 1 rather thank: when we differentiate a
factor ofk − 1 comes down, notk. We have thus shown

(n1 − 1)y1(x1 + y1)
n1−2(x2 + y2)

n2−1

=

[

n1
∑

k1=1

(k1 − 1)

(

n1 − 1

k1 − 1

)

xn1−k1

1 yk1−1
1

]

·

[

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1
2 yn2−k2

2

]

.

NOW we takex1 = x2 = x andy1 = y2 = y and obtain

Lemma 1.3.2.

(n1 − 1)y(x+ y)n1+n2−3

=

[

n1
∑

k1=1

(k1 − 1)

(

n1 − 1

k1 − 1

)

xn1−k1yk1−1

]

·

[

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1yn2−k2

]

.

It is extremely important that we waited to setx1 equal tox2 andy1 equal toy2;
if we had set them equal first and then differentiated, we would have two pieces (from
when the operator hit the first sum and when it hit the second).The difficulty would be
the first sum would bring down a factor ofk1 − 1 and the second a factor ofn2 − k2.
With some book-keeping this could probably be made to work, but this is easier.

We now look at thexn1−1yn2−1 term of both sides of Lemma 1.3.2. First consider
the left hand side. We have one factor ofy automatically because of they outside.
There are

(

n1+n2−3
n1−1

)

ways to choosen1 − 1 factors of(x + y)n1+n2−3 to givex and
n2 − 2 factors to givey. Thus the coefficient ofxn1−1yn2−1 on the left hand side is

(n1 − 1)

(

n1 + n2 − 3

n1 − 1

)

.

We now determine thexn1−1yn2−1 term from the right hand side of Lemma 1.3.2.
As before, this term arises fromk1 = k2. Denoting this common value byk we find
the coefficient of thexn1−1yn2−1 term from the right hand side is

n2
∑

k=1

(k − 1)

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

.

As always, the proof is concluded by the uniqueness of the coefficients. By match-
ing we obtain

Lemma 1.3.3.

n2
∑

k=1

(k − 1)

(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

= (n1 − 1)

(

n1 + n2 − 3

n1 − 1

)

.

We can now determine the mean ofk − 1, or better yet2(k − 1). From this it is
trivial to determine the mean of2k. Specifically
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Lemma 1.3.4.
∑n2−1

k=1 2(k − 1) · 2
(

n1−1
k−1

)(

n2−1
k−1

)

2
(

n1+n2−2
n1−1

) = 2
n1n2 − n1 − n2 + 1

n1 + n2 − 3
.

Proof. The denominator comes from Lemma 1.3.1, where we showed thisis the num-
ber of strings withn1 heads,n2 tails and an even number of runs. We cancel two of
the factors of2 and are left with one factor of2 in the numerator, and then use Lemma
1.3.3 to evaluate the numerator. The proof is completed by expanding out the binomial
coefficients. Letµu−2,evendenote the mean of two less than evenu (in other words, the
expected value of2(k − 1) whenu = 2k). Then

µu−2,even =
2(n1 − 1)

(

n1+n2−3
n1−1

)

(

n1+n2−2
n1−1

)

= 2(n1 − 1)

(

n1 + n2 − 3

n1 − 1

)

·

(

n1 + n2 − 2

n1 − 1

)

−1

=
2(n1 − 1)(n1 + n2 − 3)!

(n1 − 1)!(n2 − 2)!
·
(n1 − 1)!(n2 − 1)!

(n1 + n2 − 2)!

=
2(n1 + n2 − 3)!

(n1 − 2)!(n2 − 2)!
·

(n1 − 1)!(n2 − 1)!

(n1 + n2 − 2)(n1 + n2 − 3)!

=
2(n1 − 1)(n2 − 1)

n1 + n2 − 2

= 2
n1n2 − n1 − n2 + 1

n1 + n2 − 2
.

Note that as we write(n1+n2−2)! as(n1+n2−2) · (n1+n2−3)!, we are implicitly
assuming thatn1+n2− 2 ≥ 1. If this fails, i.e. ifn1+n2 ≤ 2, then the above algebra
could be wrong and those cases should be investigated separately (though if interpreted
properly, our formulas will still be correct in these cases).

By adding2 we get the mean ofu = 2k for evenu.

Theorem 1.3.5.Assume we haven1 heads,n2 tails, u = 2k runs and all strings are
equally likely. Then the expected number of runs is

µu,even = 2

[

n1n2 − n1 − n2 + 1

n1 + n2 − 2
+ 1

]

= 2
n1n2 − 1

n1 + n2 − 2
.

Whenever one derives a complicated formula, it is a good ideato test it in extreme
cases and see if it is reasonable. For example, the formula does not make sense if
n1 + n2 − 2 = 0. However, the only way that could happen, sincen1 andn2 are
non-negative integers, is if either both equal1 or one is0 and the other2. If one is0
and the other is2 then we have anodd number of runs, and this formula is only for
the case of an even number of runs. We are left with the case when n1 = n2 = 1.
We have two runs, eitherHT or TH . In this case we have2 n1n2−1

n1+n2−2 = 2 0
0 ; it is not

unreasonable to think00 should be interpreted as1 in this instance, and we would then
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get2 (the correct answer). However, some care is needed in using this formula when
n1 + n2 = 2, but this case can be handled directly.

Another good extreme to consider is whenn1 is much larger thann2 (or vice-versa,
but we have assumed without loss of generality earlier thatn1 ≥ n2). In this case, the
mean for sequences with an even number of runs is approximately 2n1n2

n1
or about2n2.

This is the correct behavior for suchn1 andn2. Why? Imagine we have millions of
time more heads (n1) than tails (n2). In that case it is extremely unlikely that any two
tails will be adjacent. Thus there will be strings of varyinglengths between the tails.
As there aren2 tails, this gives us2n2 runs (the heads before a tail, a tail, another string
of heads, a tail, another string of heads, a tail, and so on).

While such sanity checks are not proofs, they help us see if our formulas are rea-
sonable, as well as possibly catching missing factors. For example, if we had dropped
a factor of2 earlier we would have found the mean wasn1n2−1

n1+n2−2 , and this would not
have the right behavior forn1 significantly larger thann2. We also saw that the−2 in
the denominator is reasonable.

We can also try a special case, for examplen1 = 2, n2 = 1. In this case if we want
an even number of runs we must haveHHT or THH . Thus all strings with an even
number of runs have2 runs, and our formula does give2 whenn1 = 2 andn2 = 1.
This helps check the−1 factor.

Thus, while it is still possible that we have made an algebra error somewhere, we
should have a high degree of confidence in the result.

1.3.3 Determining the variance ofu for strings with u = 2k runs

Theorem 1.3.6. Assume we haven1 heads,n2 tails, u = 2k runs and all strings are
equally likely. Then the variance in the number of runs is

σ2
u,even = 4

(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2(n1 + n2 − 3)
.

Proof. As u = 2k is even, we need to find Var(2k) = E[(2k)2] − E[2k]2. We can
simplify the calculations by noting that the variance ofu = 2k is the same as the
variance ofu− 2 = 2(k − 1). While we know the mean of bothu = 2k andu − 2 =
2(k − 1), it will turn out to be easier to calculateE[(2k − 2)2] thanE[(2k)2].

Thus we must evaluate
∑n2−1

k=1 [2(k − 1)]
2
· 2
(

n1−1
k−1

)(

n2−1
k−1

)

2
(

n1+n2−2
n1−1

) = 4

∑n2−1
k=1 (k − 1)2 ·

(

n1−1
k−1

)(

n2−1
k−1

)

(

n1+n2−2
n1−1

) .

As before, the starting point is (1.3.1):

(x1 + y1)
n1−1(x2 + y2)

n2−1 =

[

n1
∑

k1=1

(

n1 − 1

k1 − 1

)

xn1−k1

1 yk1−1
1

]

·

[

n2
∑

k2=1

(

n2 − 1

k2 − 1

)

xk2−1
2 yn2−k2

2

]

.

We apply the operatorx2y1
∂2

∂x2∂y1
. The reason for this choice is that the two derivatives

bring down a factor of(k1−1)(k2−1); the presence ofx2y1 means the degree of each
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term is unchanged (in all four variablesx1, x2, y1, y2). Settingx1 = x2 = x and
y1 = y2 = y and matching coefficients will complete the proof, as looking at the
coefficient ofxn1−1yn1−1 will causek1 = k2, and this will give us the sum we desire.

Specifically, after applyingx2y1
∂2

∂x2∂y1
the left hand side of (1.3.1) is

(n1 − 1)(n2 − 1)x2y1(x1 + y1)
n1−2(x2 + y2)

n2−2,

while the right hand side of (1.3.1) is
[

n1
∑

k1=1

(k1 − 1)

(

n1 − 1

k1 − 1

)

xn1−k1

1 yk1−1
1

]

·

[

n2
∑

k2=1

(k2 − 1)

(

n2 − 1

k2 − 1

)

xk2−1
2 yn2−k2

2

]

.

Settingx1 = x2 = x andy1 = y2 = y, (1.3.3) and (1.3.3) give

(n1 − 1)(n2 − 1)xy(x+ y)n2+n2−4 =

[

n1
∑

k1=1

(k1 − 1)

(

n1 − 1

k1 − 1

)

xn1−k1yk1−1

]

·

[

n2
∑

k2=1

(k2 − 1)

(

n2 − 1

k2 − 1

)

xk2−1yn2−k2

]

.

We match thexn1−1yn1−1 term on both sides. The left hand side is easy. As we have
anxy outside, we see we need to choosen1 − 2 morex’s andn2 − 2 morey’s. The
right hand side is just the sum overk1 = k2. Denoting this common value byk we find

(n1−1)(n2−1)

(

n1 + n2 − 4

n1 − 2

)

xn1−1yn2−1 =

n2
∑

k=1

(k−1)2
(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

xn1−1yn2−1,

or equivalently

n2
∑

k=1

(k − 1)2
(

n1 − 1

k − 1

)(

n2 − 1

k − 1

)

= (n1 − 1)(n2 − 1)

(

n1 + n2 − 4

n1 − 2

)

.

Therefore we have

E[(2k − 2)2] =
4(n1 − 1)(n2 − 1)

(

n1+n2−4
n1−2

)

(

n1+n2−2
n1−1

) .

We can simplify the above expression to make it easier to subtractE[(2k − 2)]2:

E[(2k − 2)2] = 4(n1 − 1)(n2 − 1)
(n1 + n2 − 4)!

(n1 − 2)!(n2 − 2)!
·
(n1 − 1)!(n2 − 1)!

(n1 + n2 − 2)!

= 4(n1 − 1)(n2 − 1)
(n1 + n2 − 4)!

(n1 − 2)!(n2 − 2)!
·

(n1 − 1)(n1 − 2)!(n2 − 1)(n2 − 2)!

(n1 + n2 − 2)(n1 + n2 − 3)(n1 + n2 − 4)!

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)(n1 + n2 − 3)

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
·
n1 + n2 − 2

n1 + n2 − 3
.
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We must now subtractE[(2k− 2)]2. It is easiest algebraically to use the expression for
E[(2k − 2)]2 from the second to last line of (1.3.1). This yields

Var(2k − 2) = 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
·
n1 + n2 − 2

n1 + n2 − 3
−

[

2(n1 − 1)(n2 − 1)

n1 + n2 − 2

]2

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2

[

n1 + n2 − 2

n1 + n2 − 3
− 1

]

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2
·

1

n1 + n2 − 3

= 4
(n1 − 1)2(n2 − 1)2

(n1 + n2 − 2)2(n1 + n2 − 3)
,

and Var(2k − 2) = Var(2k).

For largen1 andn2,

Var(2k) ∼ 4
n2
1n

2
2

(n1 + n2)3
.

If n1 is much larger thann2, the mean is approximately2n2 and the variance is ap-

proximately4n2
2

n1
.

1.3.4 Behavior for allu

We briefly describe what happens if we don’t restrict to the case whenu, the number
of runs, is even. The main result is that

Theorem 1.3.7.Assume we haven1 heads,n2 tails,u runs and all strings are equally
likely; u may be either even or odd and we assumen1, n2 ≥ 1. Then the expected
number of runsu is 2n1n2

n1+n2
+ 1 and the variance is2n1n2(2n1n2−n1−n2)

(n1+n2)2(n1+n2−1) . For n1 and
n2 large, the expected number of runs is approximately2 n1n2

n1+n2
and the variance is

approximately4 n2
1n

2
2

(n1+n2)3
.

Note our results on the expected number and variance ofu (whenu is forced to
be even) are consistent with the above, at least whenn1 andn2 are large. This isn’t
surprising, as whenn1 andn2 are large it is reasonable to think that there are about as
many strings with an odd number of runs as an even number of runs.

Sketch of the proof.To prove Theorem 1.3.7 we would need to investigate the case
whenu = 2k + 1. The starting point is the second part of (1.2.1), which tells us how
many ways there are to haveu = 2k+1 runs. We need to know how many strings there
are withn1 heads andn2 tails so that we can find the probabilities of havingu = 2k or
u = 2k + 1 runs. This is just

(

n1+n2

n1

)

as we choosen1 of then1 + n2 positions to be
heads.

In determining the mean and variance whenu = 2k − 2 we divided the number of
strings with2k runs by2

(

n1+n2−2
n1−1

)

, which is the number of strings withn1 heads,n2
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tails and an even number of runs. What we can do is multiply ourresults on the mean
and variance in this case by

2
(

n1+n2−2
n1−1

)

(

n1+n2

n1

) ,

which now divides the contribution by the total number of strings and not just the total
number of strings with an even number of runs.

The proof is completed by determining the contributions to the mean and the vari-
ance from theu = 2k + 1 terms. These contributions are found in a similar manner
(i.e. by differentiating identities) as theu = 2k terms. We leave the details to the
reader.

For completeness, we sketch the key steps in the algebra to finish the proof. We
need to find the mean. For the terms with an even number of runs we need to average
2k and for the terms with an odd number of runs we average2k + 1.

For the even terms, we showed that there are2
(

n1+n2−2
n−1

)

strings, and there are
(

n1+n2

n1

)

total strings. We multiply the mean in Theorem 1.3.5 by
2(n1+n2−2

n−1 )
(n1+n2

n2
)

.

For the odd terms, from (1.2.1) we have two sums to study. To analyze the contri-
bution from

∑

k

(

n1 − 1

k

)(

n2 − 1

k − 1

)

we see this can be interpreted by looking at thexn2−2yn2 term of

∑

k1

(

n1 − 1

k1

)

xn1−1−k1

1 yk1

1

∑

k2

(

n2 − 1

k − 1

)

xk2−1
2 yn2−k2

2

when we setx1 = x2 = x andy1 = y2 = y. We see this term is thexn2−2yn2 term of

(x1 + y1)
n1−1(x2 + y2)

n2−1

when we setx1 = x2 = x andy1 = y2 = y, and that term is just
(

n1+n2−2
n1−2

)

xn1−2yn2 .
Note this allows us to determine the sum of these binomial coefficients. We need to
evaluate the sum with a factor of2k + 1. To evaluate the sum with a factor ofk we
apply the operatory1 ∂

∂y1
; to handle the+1 in 2k+1 we just need to count the number

of terms, which from above is
(

n1+n2−2
n1−2

)

. Therefore, the contribution from these terms
with oddu from (1.2.1) to the mean is just

2(n1 − 1)

(

n1 + n2 − 3

n1 − 2

)

+

(

n1 + n2 − 2

n1 − 2

)

while the other terms with oddu in (1.2.1) give (by a similar argument or by symmetry)
a contribution of

(

n1 + n2 − 3

n2 − 2

)

+

(

n1 + n2 − 2

n2 − 2

)

.
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We then must go through a lot of algebra - after adding all of these contributions we
divide by the number of strings,

(

n1+n2

n1

)

. In adding the various terms it is often conve-

nient to pull out factors of (n1+n2−3)!
(n1−2)!(n2−2)! . In the end we show the mean is2n1n2

n1+n2
+ 1.

It is convenient to notice that

(n1+n2)(n1+n2−1)(n1+n2−2) = n3
1+n3

2+3n2
1n2+3n1n

2
2−3n2

1−3n2
2−6n1n2+2n1+2n2.

Exercise 1.3.8.Calculate the contributions from theu = 2k+1 terms and rescale the
contributions from theu = 2k terms to complete the proof of Theorem 1.3.7.

1.3.5 Arbitrary Numbers of Heads and Tails

So far we assumed that there weren1 heads,n2 tails and all strings were equally likely.
Let us assume now that we haveN coin tosses where each toss has probabilityp of
being a head andq = 1 − p of being a tail. Thus,n2 = N − n1. For eachn1 there
are

(

N
n1

)

strings; all of these strings are equally likely, each occurring with probability
pn1qN−n1 . Our main result is

Theorem 1.3.9.Assume we toss a coin with probabilityp of heads a total ofN times.
The expected number of runsµu(p) is 2p(1− p)(N − 1) + 1. In particular, if the coin
is fair (sop = q = 1

2 ) then the expected number of runs isN+1
2 .

Proof. If there aren1 heads then the expected number of runs is2n1(N−n1)
N

+ 1, and
there are

(

N
n1

)

such strings, each occurring with probabilitypn1qN−n1 . Thus the ex-
pected number of runsµu(p) is

µu =

N
∑

n1=0

[

2n1(N − n1)

N
+ 1

]

·

(

N

n1

)

pn1qN−n1

= 2

N
∑

n1=0

n1(N − n1)

N

N !

n1!(N − n1)!
pn1qN−n1 +

N
∑

n1=0

(

N

n1

)

pn1qN−n1

= 2pq

N−1
∑

n1=1

(N − 1)!

(n! − 1)!(N − n1 − 1)!
pn1−1qN−n1−1 + (p+ q)N

= 2pq(N − 1)

N−1
∑

n1=1

(N − 2)!

(n1 − 1)!(N − n1 − 1)!
pn1−1qN−n1−1 + (p+ q)N

= 2p(1− p)(N − 1)(p+ q)N−2 + (p+ q)N .

As q = 1− p the above becomes

µu(p) = 2pq(N − 1) + 1.

In the special case thatp = q = 1
2 we have

µu

(

1

2

)

=
N + 1

2
.
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Exercise 1.3.10.Calculate the variance ofµu(p).


