Contents

1 Analyzing Runs 3

1.1 Matching Coefficients . . . . . . . . ... ... 3

1.2 The Alternating Strings Problem . . . . . ... ... ......... 4

1.3 Determining How Often There are an Even Numberof Runs ... 6
1.3.1 Determining the number of strings with= 2k runs . . . . . 6
1.3.2 Determining the expected valueudor strings withu = 2k runs 8
1.3.3 Determining the variance offor strings withu = 2kruns . . 11
1.3.4 Behaviorforalk . . . ... ... ... ... ... 13
1.3.5 Arbitrary Numbersof Headsand Tails . . . . . ... ... .. 15



CONTENTS



PROBABILITY LIFESAVER: Matching
Coefficients and the Theory of Runs

Steven J. Miller

June 12, 2019



CONTENTS



Chapter 1

Analyzing Runs

This is a supplemental chapterToe Probability Lifesaver

1.1 Matching Coefficients

Sometimes we can derive identities of binomial coefficievittout differentiating —
one common technique is matching coefficients. For examptesider

n n 2 n n n
> () -2 00"
k=0 k=0

becausd}) = (,,",)- Consider now the following sum
(M gk n n—k, k
> (1)t ()
k=0

as well as
(@+y)"(z+y)"
Expanding the product gives

2n

(@+y)"@+y)" = (@+y)™ =) (27> TR

=0\

note the coefficient af”y™ in this product is(ri?). The key observation is that (1.1) is
just thez™y" term of (z+y)?". This is because it can be interpreted as taking thg’
term of (z+y)™(z+y)". How do we get ar™y" term from multiplying(z +y)" with
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4 CHAPTER 1. ANALYZING RUNS

(z 4+ y)"? Well, the two factorgz + y)" give terms like("!)zy" " and( Jalynd,
which are then multiplied together. The only way we getrén™ is when] =n—1,
and we can do this for anye {0,1,...,n}. Thus thex"y™ term in(z + y)?" is

2n " n _
k=0

The proof is completed by taking= y = 1.

The reason arguments like this work is because if we have olgnpmials of
finite degree in finitely many variables, then if they take denitical values for all
values of the parameters then all the coefficients of the lynomials are equal. This
allowed us to take two expressions and equate the coeffioidrierms. Without this
observation, the equality of two polynomials (at all valeéthe parameters) would
not imply the equality of the coefficients. For example, assu? + 22y — Ty =
2?2 + 3zy — 5y? + y for all 2,y € C (of course these two polynomials are not always
equal); however, if thisvereto happen, we would be in trouble as in the first we have
22y and the second we hagey. Thus while some terms (such &%) have the same
coefficient, others do not.

Specifically, sayF(z,y) and G(x,y) are two polynomials of finite degree with
complex coefficients. Then if they are equal for all choicéspy € C we have
F(z,y) — G(z,y) is a polynomial of finite degree and it is zero for ally € C. Itis
an easy exercise to show this implies all the coefficient8(@f, y) — G(x, y) are zero
(i.e., all the coefficients of'(z, y) equal those ofi(x,y)). One way to see this is to
choose fixed values af. Sayz = a. Except for finitely many choices af, we would
getF(a,y)—G(a,y) is afinite degree polynomial and it has some non-zero coeffici
but it vanishes for all; € C. This is absurd as a polynomial of degekbas at most!
complex roots. We do not need to havandy range over all ofC; it suffices to have
them range over a large enough set, for examgléy| < R for someR > 0.

The biggest difficulty in successfully applying argumerttthis nature is figuring
out what to compare the observed sum to. Here we needed tdhvaewée should
comparey_,_, (Z)2 to the coefficient of:™y™ in (z +y)2". Writing (}) as(}) - (,,” ;)
suggests that we should compare it to a coefficiefiof y)"(x + y)"

1.2 The Alternating Strings Problem

Consider a string of.; + no coin tosses witn; heads and, tails. There are{”“””)
ways to order thex; heads ana tails. Assume all orderings are equally Ilkely Our
goal is to eventually study the number of alternating sginfiheads and tails. We
start with a simpler problem, namely trying to figure out hoany ways there are to
arrangen; heads ana, tails and observe runs (again HTT HTTT H would have

5 runs and: alterations).

For example, let us say; = no, = 3 and we want to hav& runs. If we assume we
start with a head we could havéTTTHH or HHTTTH, and by symmetry if we
start with a tail we could hav€ HHHTT or TTHHHT.

In general, we have



1.2. THE ALTERNATING STRINGS PROBLEM 5

Theorem 1.2.1.Let there ber; heads andh, tails, and assume each of tlﬁ@n*lm)
arrangements are equally likely. Let theredeuns of heads and tails. Then

Y 2 H (e if u = 2k for a positive integek:
() + (e (") if u = 2k + 1 for a positive integek.

Proof. We consider: = 2k and leave the other case as an exercise. As there are an
even number of runs, we must either begin with a head and ethcavail, or we must
begin with a tail and end with a head. By symmetry, it is enotggbonsider just the
case when we start with a head and then multiply2byThe reason is if we have a
sequence likei HHTTHTTTHTHT we can reverse it and obtain a sequence that
starts with a tail and ends with a head.

Let us assume we will start with a head and end with a tail. @ens string of
ny heads. If we partition it intd: strings of heads, we can then put tails in after the
partitions, and we will hav@k runs; however, wenustput a partition after the final
head, as we must end with a tail. Further, we cannot put atipartiefore the first
head as wenuststart with a head. For example, if we partitibhH H H H by adding
partitions| to getH|H H H|H|, then we can add strings of tails after the partitions to
getHT ---THHHT---THT ---T for a total of6 runs. How many ways are there
to partitionn; heads intd: groupswith a partition occurring after the final head and
no partition allowed before the first hedd\ote there are; + 1 positions where we
can put a partition (before the first head, after the first hatidr the second head,. ,
after the last head); however, we shall see that two of thesiigns have their values
forced.

We must choose the last place for one partition, we cannatsshthe place be-
fore the first head, and then we must chobkse 1 of the remaining:; — 1 positions
for the other partitions. Thus the number of ways to &dghartitions when we must
add a patrtition after the final head and we cannot add onedéierfirst head is just
D) (e = (7). Asimilar argument shows there af& ") ways to partition
no tails into & groups, assuming we must have a partition before the fitshmai we
are not allowed to have a partition after the final tail.

We now intersperse the partitioned heads and tails. Conaite of the(’gjll)
partitions of then; heads and any of théf;j:ll) partitions of then, tails. Each such
pair gives rise to a sequence of heads and tails with exactly2k runs, and any
such sequence corresponds to a unique pair. For exampleedegveH |H H|H H H|

and|TTTT|T|TT;these unite to becomd@TTTTHHTHH.

Thus the number of partitions leading2é runs where the first coin is a head and
the last is a tail is jus{’! ') (*7)'). By symmetry this is the same as the number of
partitions where the first coin is a tail and the last is a heduiich completes the proof

of the theorem in the case of an even number of runs. O

Of course, in the arguments above< k£ < min(n,n2); for otherk the number
of strings with2k runs is zero.
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1.3 Determining How Often There are an Even Num-
ber of Runs

By differentiating identities we determine how often thare anevennumber of runs
when there are; heads ana tails and each of thé“;fl"?) strings are equally likely.
A similar argument is applicable for the case when there aredsl number of runs;
we concentrate here on the case of an even number to higtiightethods.

If u = 2k is the number of runs, then we know the number of ways to Bavens

is just
9 nl—l ng—l .
k—1 k—1

Without loss of generality, for notational conveniencaigstssume; > ns, SOk runs
from 1 to ny. Thus the number of strings with an even number of runs is just

nzz—12 nl—l ng—l
k-1 k—1)’
k=1

as there must be at least two runs (there is no way to havewesainless; = ny = 0,
which we shall assume we do not have). We first need to deterwiiat this sum is,
and then to determine the expected number Gvhenu = 2k is even) we will need

to sum .
i n1—1 ng—l
Z(2k)-2(k_1)<k_1).

k=1
1.3.1 Determining the number of strings withu = 2k runs
Consider the polynomial
(1 +y0)™  Hwa +42)™

we shall see very shortly why this is a “natural” polynomialexamine. Using the
Binomial Theorem (Theorer??) we have

ni—1 -1 ni—1—ki ki A A
(z1 + 1) = Z Ky Ty Yy = Z ki —1 Ty hn

k1:0 k1:1
2 -1 N (ng—1
— 2 — k —1—k 2 ko— —k
CRTOEREED Dl (i St DY VR S
ka=0 2 ko=1 N2
we will see later why it is convenient to hav&* " but z52~!; we can write the
binomial theorem this way &s") = (, ). Therefore

ni na
S na—1 n1 =1\ piky k-1 nz —1
(a1 +30)" M@z )t = [Z (kl—l)xll ' Hz%_l)x

ki1=1 ko=1

2

kz*l n27k2
Y

2
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Consider what happens if we set = x5 = 2 andy; = y» = y. Then the above

becomes
i ny —1 Inﬁklyqu . i ng — 1 Ikrlynrb
ki —1 ko —1

(w4 gy

klzl kz:l
ni no
_ Z Z ny—1\ (ng —1 In1717k1+k2yn271+k1*k2
ki —1/\ka—1 '
klzl k2:1

Now we use the uniqueness of polynomial expansions and egoefficients. Con-
sider thex™ ~y™2—1 termin (1.3.1). There are two ways we can calculate it. Logki
atthe left hand side, we haye+y)™ 722, and thus the termis jué’fl:l’?l_g)xnl —lyna—l,
Looking at the right hand side we see the term we desire ocghenk; = ko. We

see now why we wrote}* " andz52~'; this made it easy to combine the terms.
Denoting the common value &f andk, by k& we obtain

ny +ng — 2 ni—1, no—1 __ S np—1 ng —1 ni—1, no—1

<n1—1 )x AR S | Y E A
k=1

or cancelling ther's and they’s

n1+n2—2 71122 n1—1 TL2—1
ny —1 B k—1)\k-1)
k=1
We have determined the sum in (1.3), the sum we needed to fauiraow many

different strings there are with; headsy., tails andu = 2k runs! Namely, we have
shown

Lemma 1.3.1. The number of strings with; headsy., tails andu = 2k runs is

"22‘:12<n1 - 1> <n2— 1> B 2<n1—|—n2—2)
k—1)\k-1) nm—-1 )
k=1

Some discussion is clearly in order as to how we knew we shoaridider(z; +
y1)™ ~(zo +y2)"2 L. Thisis the hardest step in all such proofs by matching oofsro
by differentiating identities, namely figuring owhereto start. The answer is usually
suggested by trying to analyze the quantity being stud@akihg for clues as to what
series or products we should consider.

In this case, we knew that we had to eventually have prodiketg}' ') (%2 7').
How can we get such terms? Well, tl(f%l__ll) are the coefficients when we expand
(A+B)™~1; we chosed = x; andB = y; to have some flexibility, and to distinguish
these terms from the other factors. For simply counting thealer of strings with
u = 2k runs this extra degree of freedom or flexibility was not needewever, it will
be crucial in trying to find the mean afwhenuw is even. Similarly th 722:11) are the
coefficients from expandingA + B)"2~!, and we choosel = z; and B = y, for
the same reasons as before. By seting= x2 = x andy; = y» = y in the end we
are arguing in a similar manner as in 81.1. This is a commorpametrful technique,
namely writing(z + y)"*™ and(z + y)"(z + y)™ and then deducing identities for

sums involving terms likg”) (") for a fixeda.
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1.3.2 Determining the expected value of for strings with u = 2k
runs

We now turn to the sum in (1.3), which gives the expected value = 2k; again,
remember that we are only considering strings withheadsn. tails and an even
numberu = 2k of runs. As by Lemma 1.3.1 there aﬁé“;l’f;r") such strings and the

number of strings witt2k runs is2("' ') (27!), we need to determine

P20 () SRR () ()
2("0) (")

We shall ignore the factor (ﬁ("ﬁ"j{?) ! for now and concentrate on evaluating

nilk' (T;cl—_ll) @2—_11)'

k=1

Actually, it will be significantly easier to find, not the sunitlv & but the sum with

k—1:
’n.gfl
ny — 1 ng — 1
k—1)- :
o () (R0
k=1
clearly if we can evaluate this sum fbr- 1 then by adding we can find the sum with
k.
We have seen in §1.3.1 that the sum okesf ("' ~') (*7}') can be obtained by
looking at thez™ ~1ym2~1 coefficient of (z; + y1)™* ~!(z2 + y2)"2~! underz; =
2o = x andy; = yo = y. So, let us study again (1.3.1):

_ o — Lo —1 e — _ e —1 1 ma—
(o1 + 900" ) = [Z R ERG ] | lZ (2ot ]

ki1=1 ko=1

We will now see the advantage of having two differefst and two different)’s. Let
us take the derivative with respectgpand then multiply byy;. Thus we are applying
the operatorylaiyl; the advantage of multiplying by, after differentiating byy; is

that we do not change the degree of any of the terms. App!g/li%% to the left hand
side of (1.3.1) gives ‘

(n1 — Dya(r +y1)™ a2 +y2)™ 7,

because:, 41, z2 andy, are independent variables. When we apﬁlyfj—l to the right
hand side of (1.3.1) we get ‘

ni n2
nl—l nq— _ ng—l 1 no—
lz(’“_l)(kl—1)xll “yr 1] ' [Z (k2—1)x§2 v k]

ki1=1 ko=1
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The above shows why it is easier to study 1 rather thark: when we differentiate a
factor of k — 1 comes down, nat. We have thus shown

(1 — Dya(ar +y1)™ (2 +y2)™2 "

mn1 n — 1 o 7 n2 o — 1 1o
— lZ(k1_1)<ki_1>I11 k1yi€1 1] . [Z (k2_1>I§2 1y22 k2]'

k1:1 kz:l
NOW we takexr; = x5 = 2 andy; = y» = y and obtain

Lemma 1.3.2.

(1 — Dy(z 4 y)™ 22

_ lzl (ht — 1)<Zl - 1)xn1—k1yk1—1] . li (Zz - 1)xk2—1yn2—k21 .
1— 9 —

k1=1 ko=1

It is extremely important that we waited to set equal tox, andy; equal toys;
if we had set them equal first and then differentiated, we dbalve two pieces (from
when the operator hit the first sum and when it hit the secorB.difficulty would be
the first sum would bring down a factor 8f — 1 and the second a factor af — k.
With some book-keeping this could probably be made to waukihis is easier.

We now look at ther™ ~1ym2~1 term of both sides of Lemma 1.3.2. First consider
the left hand side. We have one factoripofiutomatically because of theoutside.
There are("™ "2 ~%) ways to choose, — 1 factors of(z + y)™ *"2~3 to givex and
ny — 2 factors to givey. Thus the coefficient af™* ~'y™2~1 on the left hand side is

(n1_1)("1+”2_3>.

nl—l

We now determine the™ ~1ym2~1 term from the right hand side of Lemma 1.3.2.
As before, this term arises froky = k5. Denoting this common value bywe find
the coefficient of the:™ ~1y2~! term from the right hand side is

Sen( ()

As always, the proof is concluded by the uniqueness of th#ficieaits. By match-
ing we obtain

Lemma 1.3.3.
2 ny —1 ng — 1 _ ny+ng—3
;(k_l)(k—l)(k—l)_(nl_l)( ny— 1 )

We can now determine the mean/of- 1, or better ye®(k — 1). From this it is
trivial to determine the mean @f.. Specifically
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Lemma 1.3.4.
22:21 2(k—1)- 2(721:11) (7;@2:11) — 2”1n2 —ny—na+1
2(7117-15-171_21—2) - N+ ng — 3 .

Proof. The denominator comes from Lemma 1.3.1, where we showedtthis num-
ber of strings withn; headsy, tails and an even number of runs. We cancel two of
the factors oR and are left with one factor & in the numerator, and then use Lemma
1.3.3 to evaluate the numerator. The proof is completed pgmding out the binomial
coefficients. Lef,—2 evendenote the mean of two less than evefin other words, the
expected value di(k — 1) whenu = 2k). Then

2(”1 _ 1)(n1+n273)

_ ni—1
Hu—2even = (n1+n2_2)
nlfl

-1
= 2m-n (") (M)
2(”1 — 1)(”1 + ng — 3)' . (7’L1 - 1)'(”2 — 1)'
(nl—l)!(n2—2)! (n1+n2—2)!
2(ny +ng — 3)! . (n1 —1)!(”2—1)!
(n1—2)!(n2—2)! (n1 —|—n2—2)(n1+n2—3)'
2(7?,1 — 1)(7?,2 — 1)
ni+ ng — 2
n1n2—n1—n2—|—1

= 2

ni+no —2

Note that as we writén, +ns — 2)! as(ny +n2 —2) - (n1 +n9 — 3)!, we are implicitly
assuming that; +no — 2 > 1. If this fails, i.e. ifn; +ns < 2, then the above algebra
could be wrong and those cases should be investigated selpdtaough if interpreted
properly, our formulas will still be correct in these cases) O

By adding2 we get the mean af = 2k for evenu.

Theorem 1.3.5. Assume we have, heads; tails, u = 2k runs and all strings are
equally likely. Then the expected number of runs is

— 9 nlng—nl—n2+1+1 . ning — 1
Hu,even = R = ity —2

Whenever one derives a complicated formula, it is a goodtidéast it in extreme
cases and see if it is reasonable. For example, the form@a dot make sense if
n1 + ng — 2 = 0. However, the only way that could happen, singeandn, are
non-negative integers, is if either both equiar one isO and the otheg. If one isO
and the other i€ then we have andd number of runs, and this formula is only for
the case of an even number of runs. We are left with the case whe= n, = 1.
We have two runs, eithef T or T H. In this case we havienffﬁ;g = 2%; it is not

unreasonable to thin8< should be interpreted dsin this instance, and we would then
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get2 (the correct answer). However, some care is needed in usisformula when
ni1 + ne = 2, but this case can be handled directly.

Another good extreme to consider is whenis much larger than, (or vice-versa,
but we have assumed without loss of generality earlierithat n.). In this case, the
mean for sequences with an even number of runs is approxXin2ste*2 or about2n,.
This is the correct behavior for sueh andn,. Why? Imagine we have millions of
time more heads) than tails ¢2). In that case it is extremely unlikely that any two
tails will be adjacent. Thus there will be strings of varyleggths between the tails.
As there aren, tails, this gives u&ns runs (the heads before a tail, a tail, another string
of heads, a tail, another string of heads, a tail, and so on).

While such sanity checks are not proofs, they help us seerifasmulas are rea-
sonable, as well as possibly catching missing factors. ¥@amele, if we had dropped
a factor of2 earlier we would have found the mean V\% and this would not
have the right behavior fog; significantly larger tham,. We also saw that the 2 in
the denominator is reasonable.

We can also try a special case, for example= 2, ny = 1. In this case if we want
an even number of runs we must ha/diT" or TH H. Thus all strings with an even
number of runs have runs, and our formula does gi®ewhenn; = 2 andn, = 1.
This helps check the 1 factor.

Thus, while it is still possible that we have made an algebmar somewhere, we
should have a high degree of confidence in the result.

1.3.3 Determining the variance ofu for strings with « = 2k runs

Theorem 1.3.6. Assume we have, headsy, tails, © = 2k runs and all strings are
equally likely. Then the variance in the number of runs is
2 g (- 1)%(ng —1)*

Ou,even — (n1 + ns — 2)2(n1 +ng — 3)'

Proof. As u = 2k is even, we need to find Vi&k) = E[(2k)?] — E[2k]2. We can
simplify the calculations by noting that the variancewf= 2k is the same as the
variance ofu — 2 = 2(k — 1). While we know the mean of both = 2k andu — 2 =
2(k — 1), it will turn out to be easier to calculal&l(2k — 2)?] thanE[(2k)?].

Thus we must evaluate

i G- DP2(R) () B k- D (G ()
2(") (")

As before, the starting pointis (1.3.1):

. P — N (ng—1 e — _ 2 (e —1 1 ma—
(1 4+y1)" oo+ ) = [Z (/41—1)5”11 DY (kz—1)x§2 |

k1=1 ko=1

We apply the operataf,y, %. The reason for this choice is that the two derivatives

bring down a factor ofk; — 1)(k2 — 1); the presence af2y; means the degree of each
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term is unchanged (in all four variables, xs, y1,y2). Settingz; = 2 = x and
y1 = y2 = y and matching coefficients will complete the proof, as logkat the
coefficient ofz™ ~1y™ ~! will causek; = ko, and this will give us the sum we desire.

Specifically, after applying.y; %;ﬁ the left hand side of (1.3.1) is

n2—2

n1_2($2 +y2) 9

(n1 — 1)(n2 — D)zaya (z1 + y1)
while the right hand side of (1.3.1) is
ue TV AL Bl A U WY I - TV AL Rl ) PN S
Lz_l(kl 1) <k1 _ 1>:1:1 Y1 ] Lz_l(ké 1) <k2 . 1>I2 Yo ] .

Settingz; = 2 = z andy; = y» = ¥, (1.3.3) and (1.3.3) give

(m1 = 1)(n2 = Day(ae +y)=trt = lz (k1 —1) (Zi B D x’”’“y’“l]

k1:1
2 ne — 1
[ arees].
ko —1
k2:1

We match the:™* ~1y™ 1 term on both sides. The left hand side is easy. As we have
anxy outside, we see we need to choase— 2 morex’s andns — 2 morey’s. The
right hand side is just the sum ovier = k». Denoting this common value bywe find

_ _ ny+ng—4 ni—1 no—1 __ - 12 ny — 1\ (ng —1 ny1—1, na—1
(n1—1)(n2 1)( ni —2 )w ! _;(k DA L P L
or equivalently

n2
ni—1\ (ngy —1 ny+ng —4
k=1
Therefore we have

4(ny — 1)(ng — 1) (™ 1m2%)

E[(2k —2)?] = G5 12

nlfl

We can simplify the above expression to make it easier taacti[(2k — 2)]?:

(7’L1 —+ ng — 4)' ' (nl - 1)'(”2 - 1)'
(n1—2)!(n2—2)! (nl +n2—2)!

(7’L1 +n2—4)! . (nl—1)(n1—2)!(n2—1)(n2—2)!
(n1 —2)!(ng —2)! (n1 +n2 —2)(n1 +n2 — 3)(n1 +nz — 4)!

(n1 —1)*(np — 1)

(7’L1 + ng — 2)(TL1 + ng — 3)

4(n1 —1)%(ny —1)2 n1+ng —2
(n1+n2—2)2 n1+n2—3'

E[(2k — 2)?] 4(ny —1)(ng — 1)

= 4(n1 — 1)(TL2 — 1)
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We must now subtrad[(2k — 2)]2. It is easiest algebraically to use the expression for
E[(2k — 2)]? from the second to last line of (1.3.1). This yields

(ni—1)2ne—1)% ni+ns—2 [2(ny—1)(ny—1)71°

(n1+n2—2)2 .n1+n2—3_[ ni+no—2
e

(n1+n2—2)2 ni+no—3

(n1 —1)%(ngy — 1)? 1

(n1+n2—2)2 .n1+n2—3

(1 = 1)%(n2 — 1)

(7’L1 —+ ng — 2)2(n1 —+ ng — 3)’

Var(2k —2) = 4

and Va(2k — 2) = Var(2k). O
For largen; andns,
2,,2
Var(2k) ~ 4%.
(n1+n2)

If n1 is much larger thams, the mean is approximateBn, and the variance is ap-
2
proximately4 2.

1.3.4 Behavior for allu

We briefly describe what happens if we don't restrict to theecahenu, the number
of runs, is even. The main result is that

Theorem 1.3.7.Assume we havwe, headsy. tails, © runs and all strings are equally

likely; « may be either even or odd and we assumen, > 1. Then the expected
‘e 2nin : r2ning(2ning—ni—na)

number of runs: is —nlini + 1 and the vgrlance '“(_n1+n2)2(n1+n2—1) . For 7_11 and_

no large, the expected number of runs is apprOX|maTZen@%2 and the variance is

H n2n2
apprommatelylm.
Note our results on the expected number and varianee (afhenw is forced to
be even) are consistent with the above, at least wheandn, are large. This isn’t
surprising, as when; andns are large it is reasonable to think that there are about as
many strings with an odd number of runs as an even number ef run

Sketch of the proofTo prove Theorem 1.3.7 we would need to investigate the case
whenu = 2k + 1. The starting point is the second part of (1.2.1), whiclstaf how
many ways there are to have= 2k+ 1 runs. We need to know how many strings there
are withn, heads ana,, tails so that we can find the probabilities of having- 2k or
u = 2k + 1 runs. This isjus("lyflm) as we choose, of then; + n» positions to be
heads.

In determining the mean and variance whes 2k — 2 we divided the number of
strings with2k runs by2(”17j1”_21*2), which is the number of strings witty, headsn.
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tails and an even number of runs. What we can do is multiplyresults on the mean

and variance in this case by
+na—2
2(n177,1n—21 )
(711+712) ’
ni
which now divides the contribution by the total number ofrgls and not just the total
number of strings with an even number of runs.

The proof is completed by determining the contributiondi®mean and the vari-
ance from they = 2k + 1 terms. These contributions are found in a similar manner
(i.e. by differentiating identities) as the = 2k terms. We leave the details to the
reader. O

For completeness, we sketch the key steps in the algebraigh fime proof. We
need to find the mean. For the terms with an even number of rensewd to average
2k and for the terms with an odd number of runs we avetdge 1.

For the even terms, we showed that there 23((@*"2 2) strings, and there are

nitng—2

(”1;1”2) total strings. We multiply the mean in Theorem 1.3. ? n_l j
For the odd terms, from (1.2.1) we have two sums to study. &tyaa the contri-

bution from
(nl — 1) (ng — 1)
Z k k-1
k

we see this can be interpreted by looking atttie—2y"> term of
Z nl - 1 xnl 1— klykl Z n2 - 1 xkz*lyﬂg*kz
kl 1 1 kL—1 2 2
kl k2
when we set; = x5 = x andy; = y» = y. We see this term is the”>—2y"2 term of
(z1+y1)™ Nz 4 y2)™
when we set; = z, = z andy; = y» = y, and that term isjus(tm?:?;?)a:m”ym.
Note this allows us to determine the sum of these binomiafficeents. We need to

evaluate the sum with a factor 8% + 1. To evaluate the sum with a factor bfwe
apply the operatoy, 83 ; to handle thet-1in 2k + 1 we just need to count the number

of terms, which from above |€ 1tnz = 2) Therefore, the contribution from these terms
with oddu from (1.2.1) to the mean is just

n1+no—3 ni+no —2
2(n1_1)( ny —2 )+( ny —2 )

while the other terms with oddin (1.2.1) give (by a similar argument or by symmetry)

a contribution of
ni+no—3 ny+no—2
+ .
Nnog — 2 ng — 2



1.3. DETERMINING HOW OFTEN THERE ARE AN EVEN NUMBER OF RUNS

We then must go through a lot of algebra - after adding all es¢éhcontributions we
divide by the number of stringé’,“n*l”z). In adding the various terms it is often conve-

nient to pull out factors o 71(”_12*72’3_)! . In the end we show the mean$8112 4 1,
. . . 1 ) (n2—2)! ni+nsz
Itis convenient to notice that

(n1+n2)(n1+n2—1)(n1+ne—2) = ni4+ni+3ning+3n1n3—3n3—3n3—6n1n2+2n1+2ns.

Exercise 1.3.8.Calculate the contributions from the= 2k 4 1 terms and rescale the
contributions from the, = 2k terms to complete the proof of Theorem 1.3.7.

1.3.5 Arbitrary Numbers of Heads and Tails

So far we assumed that there wereheadsn, tails and all strings were equally likely.
Let us assume now that we hadé coin tosses where each toss has probabilibf
being a head ang = 1 — p of being a tail. Thusp, = N — ny. For eachn; there
are (i\i) strings; all of these strings are equally likely, each ogagrwith probability

p"1 g™V =1, Our main result is

Theorem 1.3.9. Assume we toss a coin with probabilitypf heads a total ofV times.
The expected number of rupg(p) is 2p(1 — p)(N — 1) + 1. In particular, if the coin
is fair (sop = ¢ = 3) then the expected number of runshig.

Proof. If there aren; heads then the expected number of run%@i’éjx,_—’“) +1,and
there are(fl\i) such strings, each occurring with probability ¢ —™*. Thus the ex-
pected number of runs, (p) is

N
- 2TL1(N—7’Ll) N n1 N—ny
HPu = Z[ N +1] (m)p q

n1:0

N
nl(N — TLl) N! N— N N—
2 1 ni 1 ni
Z N nll(N—nl)!p 4 + Z ny b

ny =0 ni =0

N-1
(N =1)! 1 Neni—1 N
= 2 1 n1
pq > RS +(p+q)

ni =1

= (N —2)!

= w01 ) o

n1:1
= 2pA-pWN-Dp+" 7+ @@+9".
As ¢ = 1 — p the above becomes
fu(p) = 2pg(N — 1) + 1.
In the special case that= ¢ = % we have

1\ N+1
palsz) = —5—
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Exercise 1.3.10.Calculate the variance qi,, (p).



