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Greetings again!

In this supplemental chapter we develop the theory of order statistics in order to
prove The Median Theorem. This is a beautiful result in its own, but also extremely
important as a substitute for the Central Limit Theorem, andallows us to say non-
trivial things when the CLT is unavailable.



Chapter 1

Order Statistics and the Median Theorem

The Central Limit Theorem is one of the gems of probability. It’s easy to use and
its hypotheses are satisfied in a wealth of problems. Many courses build towards a
proof of this beautiful and powerful result, as it truly is ‘central’ to the entire subject.

Not to detract from the majesty of this wonderful result, however, what happens
in those instances where it’s unavailable? For example, oneof the key assumptions
that must be met is that our random variables need to have finite higher moments,
or at the very least a finite variance. What if we were to consider sums of Cauchy
random variables? Is there anything we can say?

This is not just a question of theoretical interest, of mathematicians generalizing
for the sake of generalization. The following example from economics highlights
why this chapter is more than just of theoretical interest. For years many financial
models assumed that price changes were drawn from normal random variables; how-
ever, Mandelbrot (of fractal geometry fame) and others haveargued that these models
are inconsistent with real world data. They were led to this belief by looking at large
fluctuation days; the number of such days with very large changes was magnitudes
higher than normal theory predicts. In other words, the probability of observing as
many days with such high percentage drops in the major stock markets under the
assumption that price changes come from normal distributions is so small that this
hypothesis must be discarded. In its place they suggest a complicated model, which
at its core has Cauchy distributions and infinite variance.

Thus, if we (or our friends or colleagues) care about economics, it might be more
than just an academic question as to what replaces the Central Limit Theorem when
the variances are infinite. The replacement involves, not the mean, but the median.
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Themedian µ̃ of a random variableX are all pointsx such that

Prob(X ≤ x) ≥ 1

2
and Prob(X ≥ x) ≥ 1

2
.

If our density is continuous, any pointx such that half the probability occurs before
x and half occurs afterx is a median. We’ll discuss this definition in much greater
detail below.

There is much that can be said and proved, at least in the special case when our
random variables are symmetric about some point (typicallythe probabilities will be
symmetric about the origin, so that the probability densityp satisfiesp(x) = p(−x)).
For such distributions the median is the same as the mean. Thus instead of looking
at the sample mean we can study the sample median; the advantage is that there are
situations where the sample median converges to a nice distribution while the sample
mean does not.

The exposition gets a bit involved; to simplify the descriptions, it’s convenient to
use big-Oh notation. We describe this in great detail inADD REF. If you haven’t
seen this notation before, you should spend some time reading ADD REF now; if
you have seen this before, the quick summary below should suffice.

Definition 1.0.1 (Big-Oh Notation) A(x) = O(B(x)), read “A(x) is of order (or
big-Oh)B(x)”, means there is aC > 0 and anx0 such that for allx ≥ x0, |A(x)| ≤
C B(x). This is also writtenA(x) ≪ B(x) or B(x) ≫ A(x).

Big-Oh notation is a convenient way to handle lower order terms. For example,
if we writeF (x) = x5 +O(x2), this means that asx tends to infinity, the main term
of F (x) grows likex5, and the correction (or error) terms are at most some constant
timesx2. Useful examples include forr, ǫ > 0, asx → ∞ we havexr = O(ex) and
log x = O(xǫ).

The main result is:

Median Theorem: Let a sample of sizen = 2m + 1 with n large be taken from
an infinite population with a density functionf(x̃) that is nonzero at the population
medianµ̃ and continuously differentiable in a neighborhood ofµ̃. The sampling dis-
tribution of the median is approximately normal with meanµ̃ and variance 1

8f(µ̃)2m .

In many cases, this theorem is a good substitute for the Central Limit Theorem.
Note the commonalities between the two. Both involve an average of sample values,
and both have a sample statistic converging to a normal distribution. There are,
however, major differences between the two. The most glaring, of course, is that
we’re looking at different quantities (the mean versus the median). The next is that
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the Median Theorem allows the density to have infinite variance. Finally, it’s worth
noting that the Central Limit Theorem requires us to standardize our sample statistic;
no such standardization is required here.

Before developing the analogue of the Central Limit Theoremfor the median,
we study a subject of interest in its own right, order statistics. These will be essential
in our analysis of the median. In this chapter we’ll use results on the multinomial
distribution, Taylor series expansions, and Stirling’s formula; you should consult
those sections of the book if you have any questions on these.

1.1 Definition of the Median

Key points for this section:

1. The definition of the median.

2. Examples of finding the median.

3. Applications to estimating means.

The definition of the median is one of the most cumbersome statements you’ll
find about a concept that seems obvious. It’s quite unfortunate, as the informal defi-
nition, which works in many cases, sadly fails in some cases;this failure requires us
to have the wordy monstrosity below.

The quick and painless definition of the median is the point where half the prob-
ability comes before it and half comes after it. As mentionedabove, this definition
isn’t quite right, but it does express the general idea quickly. As always, we’ll con-
sider our densities as either being discrete or continuous.We’ll first look at some
examples and use those to get a better sense as to what the right definition of median
should be.

Let’s study a discrete distribution first. Imagine we have a fair die. Then the
possible outcomes are 1, 2, 3, 4, 5 and 6, and each occurs with probability 1/6. We
want to find a valuẽµ such that half the probability occurs beforeµ̃ and half occurs
afterwards. Looking at a plot of the cumulative distribution function (which we give
in Figure 1.1), we see thatany number in[3, 4) works; note we include the left
endpoint but not the right endpoint.

Why? Let’s takex to be a positive real number. Then

Prob(die is at most x) =

6∑

n=1

n≤x

1

6
.

This means that for anyx ∈ [3, 4), the probability of being at mostx is just the
probability of being either a 1, 2 or 3; this is just1/6 + 1/6 + 1/6 or 1/2.

There are a lot of important things to learn from the above example. The first is
that the median isn’t always unique; there could be a range ofvalues. Second, the
medians don’t have to generate an open interval or a closed interval; our example
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Cumulative Distribution Function for a Fair Die

Figure 1.1: Plot of the cumulative distribution function (CDF) for a fair die. Note
the CDF is zero forx < 1, is a nice step function for1 ≤ x < 7, and is identically 1
for x ≥ 7.

above is an open interval.

Let’s look at a more complicated example. We’ll assume the only possible out-
comes are 1, 2, 3, 4, 5 and 6, and thatProb(X = n) = n/21. This is clearly a
probability density, as the values are all non-negative andsum to 1. We may in-
terpret this by viewing this as a study of a weighted die. We plot the cumulative
distribution function in Figure 1.2.

We see

Prob(X < 5) =
1

21
+

2

21
+

3

21
+

4

21
=

10

21
≈ 0.47619.

Thus no value less than 5 can be the median, as the probabilityof beingstrictly less
than 5 is less than 50%. Similarly, we see

Prob(X > 5) =
6

21
≈ 0.285714.

Thus no value 5 or larger can be the median! Only one possibility is left, namely that
5 is the median, and the median is unique in this problem. In this case, we have

Prob(X ≤ 5) =
15

21
≈ 0.714286 and Prob(X ≥ 5) =

11

21
≈ 0.52381.

Notice how different the answer is in the second example to the first. With the
weighted die, there is a unique median. The lesson to be gleaned from all of this is
that, unfortunately, what the median is can depend wildly onthe distribution. Some-
times there is a unique median; sometimes there is an interval of medians.

For the continuous distributions that we meet in a typical probability course, the
situation is fortunately much nicer. In fact, as long as the density never vanishes
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Cumulative Distribution Function for a Weighted Die

Figure 1.2: Plot of the cumulative distribution function (CDF) for a weighted die,
where the probability of rolling ann is n/21. Note the CDF is zero forx < 1, is a
nice step function for1 ≤ x < 7, and is identically 1 forx ≥ 7.

except on an interval of the form(−∞, a), (−∞, a], [b,∞) or (b,∞), there is a
unique median! Unlike the discrete case, for continuous densities the cumulative
distribution function is continuous. This means there are no jumps, and it’s the jumps
that caused all the headaches above!

Let’s take one of the standard favorites, the exponential distribution with density

f(x) =

{
e−x if x ≥ 0

0 otherwise.

The cumulative distribution is easily calculated; it’s

F (x) =

∫ x

−∞
f(t)dt =

{
0 if x ≤ 0

1− e−x if x ≥ 0.

The median is the valuẽµ such thatF (µ̃) = 1/2. For this density, that means

1− e−µ̃ =
1

2
.

which after some algebra is seen to beµ̃ = log 2.

We end with one last example to show that things be annoying for continuous
random variables as well. Consider the density depicted in Figure 1.3, with cumula-
tive distribution function given in Figure 1.4. Note that there is no unique median;
any number in[−1, 1] is a median. This degeneracy is due to the fact that there is
no probability of taking on a value in[−1, 1], and thus the cumulative distribution
function is flat from−1 to 1.
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Figure 1.3: Plot of the density functionf(x) = 1
4 − 1

4 ||x| − 2| for 1 ≤ |x| ≤ 3 and
0 otherwise.
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Cumulative distribution function of the continuous random variable

Figure 1.4: Plot of the cumulative distribution function for the densityf(x) = 1
4 −

1
4 ||x| − 2| for 1 ≤ |x| ≤ 3 and 0 otherwise.
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To sum up, even though we would like to think of the median as that point where
half the probability falls before and half falls after, thisdefinition isn’t quite right.
For most distributions, either there is no unique median, orthere is a median but the
probabilities are not 50%.

We end with a very important observation:

Let X be a random variable with densityp that is symmetric about its meanµ; this
meansp(µ− t) = p(µ+ t). Then the mediañµ equals the meanµ.

The utility of this point of view will become more and more apparent as we pro-
ceed through the chapter. For distributions that are symmetric about the mean, if we
can estimate the median then we get for free an estimate of themean!

As always, whenever we’re looking for an example of a probability density that
has a mean but no variance, we should immediately think of a Cauchy distribution
(or a cousin). For example, consider the density

f(x) =
1

π

1

1 + (x− µ)2
.

It is debateable as to whether or not this distribution has a mean. If it were to have
one, it would clearly beµ. Why might it not have a mean? The problem is what does

∫ ∞

−∞
xf(x)dx

mean? Everything is fine if we interpret the integral as

lim
A→∞

∫ A

−A

xf(x)dx,

as in this case it’s a finite integral of an odd function, and thus zero; if however we
interpret it as

lim
A,B→∞

∫ B

−A

xf(x)dx

then the answer depends on howA andB tend to infinity. For example, ifB = 2A
then the integral is

lim
A→∞

∫ 2A

A

x

π(1 + (x− µ)2)
dx.

Forx large, the integrand is essentially1/πx, and thus the integral diverges. Thus,
annoying as it is to say it, the Cauchy distribution might noteven have a mean; how-
ever, it does have a median, and the median is readily seen to beµ. Thus the median
can serve as a surrogate to the mean.

If the previous example felt a bit unsatisfying as the mean didn’t even exist,
consider instead

g(x) =
3
√
3

4π

1

1 + |x− µ|3 .
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It turns outg is a probability density. While it’s clearly non-zero, it’snot at all
apparent that it integrates to 1. The easiest way to see this is to use Cauchy’s residue
theorem from Complex Analysis, but this is heavy machinery.Fortunately, it’s clear
that if we consider

h(x) =
C

1 + |x− µ|3

then there is some choice ofC such that this integrates to 1, namely

C =

(∫ ∞

−∞

1

1 + |x− µ|3 dx
)−1

.

There is some constant that works; the actual value is immaterial. Now the mean
clearly exists, as its defining integral is

∫ ∞

−∞

3
√
3

4π

x

1 + |x− µ|3 dx;

the integrand decays like1/x2 and thus there are no convergence issues. Unfortu-
nately this distribution has infinite variance, which meansthe Central Limit Theorem
won’t be available to estimate its mean. We’ll see below, however, that wecanesti-
mate the median, and as the median and the mean are equal, we can use the median
estimate for the mean.

1.2 Order Statistics

Key points for this section:

1. The definition of order statistics.

2. Finding the densities of order statistics.

Suppose that the random variablesX1, X2, . . . , Xn constitute a sample of sizen
from an infinite population with continuous density. Often it’s useful to reorder these
random variables from smallest to largest. In reordering the variables, we rename
them so thatY1 is a random variable whose value is the smallest of theXi, Y2 is the
next smallest, and so on, withYn the largest of theXi. Yr is called therth order
statistic of the sample.

We write this more explicitly as

Y1 = min
i
(X1, . . . , Xn), . . . , Yn = max

i
(X1, . . . , Xn).

If we had

X1 = 5, X2 = 23, X3 = 1, X4 = 44, X5 = 6,

then
Y1 = 1, Y2 = 5, Y3 = 6, Y4 = 23, Y5 = 44.
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There are many reasons we might want to know all we can about these order
statistics. For three of these the applications are fairly obvious, namely forY1 (the
smallest value),Yn (the largest value), and the median. Ifn is odd the median is
justYn/2+1, while if n is even the median is any value in[Yn/2, Yn/2+1]. We’ll give
just one real world reason. Imagine we’re building an elevator or a bridge, and our
random variables are the weight on the bridge at various times during the day. We
should be very concerned with how much weight it can bear. This would thus be a
situation where we care about the distribution of the maximum.

OK. You’re hopefully now somewhat convinced that we care about these order
statistics. How do we find them? It turns out that we can derivean expression for the
probability density of therth order statistic.

Theorem 1.2.1 For a random sample of sizen from an infinite population having
valuesx and continuous densityf(x), the probability density of therth order statistic
Yr is given by

gr(yr) =
n!

(r − 1)!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1

f(yr)

[∫ ∞

yr

f(x) dx

]n−r

.

The theorem holds under weaker conditions than stated above; we can replace
continuity with many things, such as the density being bounded. We’ll phrase it as
we have above as this is general enough to cover many cases of interest, and leads to
slightly easier proofs.

As always, our first thought after encountering such a long and involved formula
is to explore some special cases. The simplest is to imaging that n = 1. If this
happens, then there is only one possible order statistic, namelyr = 1, and the density
collapses tof(y1). This follows from some algebra, using0! = 1 and anything raised
to the zeroth power is 1.

We should look for some other simple tests, as the one above feels like cheating;
we’re not really looking at order statistics ifn is just 1! Thus, let’s considern ≥ 2
and compare the densities ofY1 andYn. There are a lot of commonalities between
the two. In each case the ratio of factorials equalsn, both have a lone evaluation of
f , and both have just one of the integrals raised to a non-zero power. To highlight
the commonalities and differences, we use the same dummy variable for each, and
find

f1(y) = nf(y)

(∫ ∞

y

f(x)dx

)n−1

fn(y) = nf(y)

(∫ y

−∞
f(x)dx

)n−1

.

Let’s look at this and try and get a feel for what it’s saying. In situations like this, it’s
a good idea to go for the extremes; imaginey is near infinity near negative infinity. If
y is very large, then

∫∞
y

f(x)dx is very small, while
∫ y

−∞ f(x)dx is very close to 1.
Thus, fory large,f1(y) is much smaller thanfn(y). If instead we looked aty near
negative infinity, we would findf1(y) is much larger thanfn(y). This makes perfect
sense! ClearlyY1 ≤ Yn, as the smallest value cannot exceed the largest! Thus we
expect more of the mass ofY1 to occur for ‘small’y thanYn, and similarly for large
y we expectYn to have more mass.
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It’s good advice to always try quick arguments like this whenever you see a the-
orem. Test it. Look at special cases. This is a great way to geta feel for what it’s
saying. Only after playing with the formula should you turn to the proof. Speaking
of the proof, it’s sadly a little long and technical in places. It’s fine to just skim it
(or even skip it). We chose to include the proof as it highlights a lot of the powerful
methods used to prove probability results in the field.

Proof of Theorem 1.2.1:Let h be a positive real number. We divide the real line into
three intervals:(−∞, yr), [yr, yr + h], and(yr + h,∞). You should think ofh as a
verysmall quantity which tends to zero.

The main idea of our proof is the following: let’s compute theprobability that
r − 1 values lie in the first interval, one lies in the middle andn − r lie in the last.
We would like to say that is just

Prob(Yr ∈ [yr, yr + h]) =

∫ yr+h

yr

gr(yr)dyr;

unfortunately, we can’t. The problem is that we could have two or three or even
more of the random variables in[yr, yr + h]; if for example exactly two were in the
middle interval then our calculation above would be slightly off. This isn’t too big
of an issue, though. We’ll see that it’s very unlikely to havetwo or more values in
this interval, as it’s of sizeh with h → 0. A careful analysis will show that we don’t
have to worry about this case in the limit. We’ll then use the Mean Value Theorem
to conclude that the integral is essentiallygr(yr)h plus something very very small,
and from this we’ll get the claimed density.

Now, to the details! We first find the probability thatYr falls in the middle of
these three intervals, andno other value from the sample falls in this interval. In
order for this to be the case, we must haver − 1 values falling in the first interval,
one value falling in the second, andn − r falling in the last interval. We need a
basic fact about multinomial distributions (seeADD REF??). You should review
that section if the argument here seems incomplete. We haven values,X1, . . . , Xn.
We need to choose exactlyr− 1 to lie in the first interval,1 in the middle, andn− r
in the last. There are

(
n

r−1

)
ways to choose ther− 1 values to lie in the first interval.

Of the remainingn− (r − 1) values, we have to choose 1 to lie in the middle; there
are
(
n−(r−1)

1

)
ways to do this. Finally, we haven− r remaining values, all of which

lie in the last interval; there is just
(
n−r
n−r

)
ways to do that. Combining all these pieces,

we have the combinatorial piece of the density: the number ofways to have exactly
r − 1 in the first interval, 1 in the middle andn− r in the last is just

(
n

r − 1

)(
n− (r − 1)

1

)(
n− r

n− r

)
=

n!

(r − 1)!(n− (r − 1))!
· (n− (r − 1))!

1!(n− r)!

=
n!

(r − 1)!(n− r)!
;

this is also the multinomial coefficient
(

n
r−1,1,n−r

)
(though we don’t really need this

for our proof).
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We’ve made good progress. We’ve shown that

Prob(Yr ∈ [yr, yr + h] and Yi 6= [yr, yr + h] if i 6= r) =

n!

(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1
[∫ yr+h

yr

f(x) dx

]1 [∫ ∞

yr+h

f(x) dx

]n−r

.

(1.1)

We need also consider the case of two or more of theYi lying in [yr, yr + h].
This is the most technical part of the argument. We’ll brieflydescribe the answer
now, and save the full details for later. The idea is that thisprobability must be small.
What do we mean by small? We mean it must be of orderh2 or smaller, which we
write asO(h2). This means there is some universal constantC such that, for allh
sufficiently small, the probability is at mostCh2. The probability any one value lies
in this interval is just

∫ yr+h

yr

f(x)dx, and this integral is of sizeh; thus ‘roughly’ the
probability of at least two being in this interval should be the square of this. Again,
this is merely a sketch; we’ll give the full details for thosewho wish them at the end.
Let’s just accept this for now and move on with the rest of the proof.

The consequence of the arguments above is that we may remove the constraint
that exactly oneYi ∈ [yr, yr + h] in (1.1) at a cost of at mostO(h2). For our
purposes, it doesn’t matter if there’s exactly one or instead several values in this
interval; as long as there is at least one thenYr is in this interval. We thus find that

Prob(Yr ∈ [yr, yr + h]) =

n!

(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1
[∫ yr+h

yr

f(x) dx

]1 [∫ ∞

yr+h

f(x) dx

]n−r

+ O(h2).

We now apply the Mean Value Theorem. IfF is an anti-derivative off , then the
Mean Value Theorem applied toF can be written either as

F (b)− F (a)

b− a
= F ′(c)

or
∫ b

a

f(x)dx = (b − a) · f(c).

. We find that for somech,yr
with yr ≤ ch,yr

≤ yr + h, we have

∫ yr+h

yr

f(x) dx = h · f(ch,yr
). (1.2)

We denote the point provided by the Mean Value Theorem bych,yr
in order to em-

phasize its dependence onh andyr.
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We can substitute this result into the expression in (1.2). We divide the result by
h (the length of the middle interval[yr, yr + h]), and consider the limit ash → 0:

lim
h→0

Prob(Yr ∈ [yr, yr + h])

h

= lim
h→0

n!
(r−1)!1!(n−r)!

[∫ yr

−∞ f(x) dx
]r−1 [∫∞

yr+h
f(x) dx

]1 [∫∞
yr+h

f(x) dx
]n−r

h

+ lim
h→0

O(h2)

h

= lim
h→0

n!
(r−1)!1!(n−r)!

[∫ yr

−∞ f(x) dx
]r−1

h · f(ch,yr
)
[∫∞

yr+h
f(x) dx

]n−r

h

= lim
h→0

n!

(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1

f(ch,yr
)

[∫ ∞

yr+h

f(x) dx

]n−r

=
n!

(r − 1)!1!(n− r)!

[∫ yr

−∞
f(x) dx

]r−1

f(yr)

[∫ ∞

yr

f(x) dx

]n−r

. (1.3)

Thus the proof is reduced to showing that the left hand side above isgr(yr). Let
gr(yr) be the probability density ofYr. Let Gr(yr) be the cumulative distribution
function ofYr. Then

Prob(Yr ≤ y) =

∫ y

−∞
gr(yr)dyr = Gr(y),

andG′
r(y) = gr(y). Thus the left hand side of (1.3) equals

lim
h→0

Prob(Yr ∈ [yr, yr + h])

h
= lim

h→0

Gr(yr + h)−Gr(yr)

h
= gr(yr),

where the last equality follows from the definition of the derivative. This completes
the proof. 2

The technique employed in this proof is a common method for calculating prob-
ability densities. We first calculate the probability that arandom variableY lies in
an infinitesimal interval[y, y + h]. This probability isG(y + h) − G(y), whereg
is the density ofY andG is the cumulative distribution function (soG′ = g). The
definition of the derivative yields

lim
h→0

Prob(Y ∈ [y, y + h])

h
= lim

h→0

G(y + h)−G(y)

h
= g(y).

As promised, we now turn to showing that there is negligibly small probability
of two or more values of theXi’s lying in the interval[yr, yr + h]. This part may
be safely skipped, as it’s the technical justification for one of the steps in the proof.
Using the law of total probability, this is just 1 minus the probability that either none
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of theXi’s lie in this interval or exactly one does. Thus this probability is

1−
(∫

x 6∈[yr,yr+h]

f(x)dx

)n

−
(
n

1

)(∫

x∈[yr,yr+h]

f(x)dx

)
·
(∫

x 6∈[yr,yr+h]

f(x)dx

)n−1

. (1.4)

To evaluate the above, we use
∫

x 6∈[yr,yr+h]

f(x)dx = 1−
∫ yr+h

x=yr

f(x)dx.

It is here that we finally start using our assumptions. As we’re assumingf is con-
tinuous, a result from analysis gives that it’s bounded on the interval[yr, yr + 1] by
some number, sayB. The integral is therefore at mostBh; let’s let I(h) denote the
value of this integral:

I(h) =

∫ yr+h

x=yr

f(x)dx.

Substituting into (1.4) gives that the probability of two ormore of theXi’s being in
the interval is

1− (1− I(h))n − nI(h) (1− I(h))n−1

= 1−
(
1− nI(h) +

(
n

2

)
I(h)2 + · · ·

)
− nI(h)

(
1−

(
n− 1

1

)
I(h) + · · ·

)

= 1− 1 + nI(h)−
(
n

2

)
I(h)2 + · · · − nI(h) + n

(
n− 1

1

)
I(h)2 + · · ·

= B2I(h)2 +B3I(h)3 + · · ·+BnI(h)n.

Notice that the constant term canceled, theI(h) term canceled, and all that remains
is terms withI(h) to the second or higher power. We’ll spare you the rest of the
details, but clearly ash → 0 the sum is dominated by theI(h)2 piece, and thus
there is some constantB (which of course can depend onn, r, andyr) such that the
probability of two or more of theXi’s lying in [yr, yr + h] is O(h2) ash tends to
zero.

1.3 Examples of Order Statistics

After developing the general theory, it’s fun to apply it to some special cases. Let’s
calculate the distribution of the largest and smallest values ofn independent mea-
surements from the uniform distribution on[0, 1]. SoX1, . . . , Xn are independent,
identically distributed uniform random variables on[0, 1]. Their densityf satisfies

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise.

From Theorem 1.2.1, we find

g1(y1) = nf(y1)

(∫ ∞

y1

f(x)dx

)n−1

.
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Clearlyg1(y1) = 0 unless0 ≤ y1 ≤ 1; if that happens, then

g1(y1) = nf(y1)(1− y1)
n−1 = n(1− y1)

n−1;

note the smallery1 is the larger the density (as one would expect). ForYn, we argue
similarly and find

gn(yn) = nf(yn)

(∫ yn

−∞
f(x)dx

)n−1

= nf(yn)(yn − 0)n = nynn .

Not surprisingly,Yr exhibits the opposite behavior toY1.

As always, there is a simple trick we can do to see if our answers above are
consistent. Note our random variables are symmetric functions about1/2; in other
words, the density satisfiesf(1/2 + u) = f(1/2 − u). One consequence of this
is thatXi and1 − Xi have the same distribution, andmin (X1, . . . , Xn) = max
(1−X1, . . . , 1−Xn). To put it another way, the probabilityY1 equalsa should be
the same as the probability thatYn equals1 − a. In other words, we should have
g1(1 − yn) = gn(yn); after doing a little algebra (including a change of variables)
we see that wedohave this, and happily all is consistent:

g1(1− yn) = nf(1− yn)

(∫ ∞

1−yn

f(x)dx

)n−1

= nf(yn)

(∫ −∞

yn

f(1− v)(−dv)

)n−1

= nf(yn)

(∫ yn

−∞
f(v)dv

)n−1

= gn(yn).

It’s interesting to compute some properties ofY1 (or, equivalently,Yn). The most
important, of course, is the mean or expected value. It is

E[Y1] =

∫ 1

0

y1g1(y1)dy1

=

∫ 1

0

y1 · n(1− y1)
n−1dy1.

There are many ways to evaluate this integral. Probably the easiest is to integrate by
parts. Letu = y1, du = dy1, dv = n(1− y1)

n−1dy1 andv = −(1− y1)
n. Then

E[Y1] = uv
∣∣∣
1

0
−
∫ 1

0

vdu

= y1(1− y1)
n
∣∣∣
1

0
+

∫ 1

0

(1− y1)
ndy1

= (0− 0) +
−(1− y1)

n+ 1

∣∣∣
1

0

=
1

n+ 1
.
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Is this answer reasonable? The simplest case is ifn = 1, in which caseY1 = X1. As
X1 is uniform on[0, 1], its average value is 1/2, which is precisely what we get here.
As n increases the mean decreases, which again is reasonable asY1 is the minimum
of a larger and larger set, and thus it has a greater and greater chance of being small.
As an aside, it’s worth remarking that the expected value ofYn is n

n+1 .

For a nice exercise, see if you can find a nice formula for the minimum and the
maximum of 2, 3 or 4 independent standard exponentials (i.e., f(x) = e−x for x ≥ 0
and0 otherwise). Can you generalize your answer?

1.4 The Sample Distribution of the Median

Okay. We’ve spent a lot of time and written down a multitude ofexplicit equations
for all the order statistics, and we’ve done some calculations. It’s time to get some
dividends! Specifically, it’s time to really see why this is such an important topic.

In addition to the smallest (Y1) and largest (Yn) order statistics, we’re often inter-
ested in thesample median, X̃. For a sample of odd size,n = 2m+ 1, the sample
median is defined asYm+1. If n = 2m is even, the sample median is defined as
1
2 (Ym + Ym+1).

As always, let’s assume our random variable has a continuousdensity. We’ll
prove a relation between the sample median and thepopulation median µ̃. By
definition,µ̃ satisfies ∫ µ̃

−∞
f(x) dx =

1

2
. (1.5)

It is convenient to re-write the above in terms of the cumulative distribution func-
tion. If F is the cumulative distribution function off , thenF ′ = f and (1.5) becomes

F (µ̃) =
1

2
.

We are now ready to consider the distribution of the sample median. This is the
big theorem of the chapter; as discussed, it serves as a good substitute to the Central
Limit Theorem in many cases.

Theorem 1.4.1 (Sample Median)Let a sample of sizen = 2m+1 with n large be
taken from an infinite population with a density functionf(x) (in other words, we
haven independent, identically distributed random variables with densityf ) that is
nonzero at the population mediañµ and continuously differentiable in a neighbor-
hood ofµ̃. The sampling distribution of the median is approximately normal with
meanµ̃ and variance 1

8f(µ̃)2m .

While this is an extremely important theorem, and one of the key applications of
order statistics, the proof is long. It’s frequently omitted in a first course in probabil-
ity; there is no harm in skipping it. Because most books don’toffer a proof, it can be
frustrating for those who want to understand what’s really going on, as you have to
track down a proof somewhere. So, partly for completeness and, as always, partly to
emphasize the techniques and methods of the proofs, we provide a proof below. As
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the argument is long, you should skim it first to take in the main points, and then if
you desire go back and try to follow it step by step.

For those going forward with the proof, here’s a quick outline of what you’ll see;
the list of topics should show you why we think the proof merits inclusion! We’ll
use Stirling’s formula to estimate the factorials, Taylor series to expand our func-
tions about the median, and the definition ofex to understand the limiting behavior.
This last step involves some delicate analysis, specifically handling how powers con-
verge to exponentials. It’s very easy to make a mistake here,and we’ll show a nice
technique to attack problems like this. We’ll end by doing some algebra to help us
recognize that the limit converges to being normally distributed.

Proof: Let the median random variablẽX have values̃x and densityg(x̃). The
median is simply the(m+1)th order statistic, so its distribution is given by Theorem
1.2.1:

g(x̃) =
(2m+ 1)!

m!m!

[∫ x̃

−∞
f(x̃) dx

]m
f(x̃)

[∫ ∞

x̃

f(x) dx

]m
.

We first find an approximation for the constant factor in this equation. For this, we
use Stirling’s formula (seeADD REF), which tells us thatn! = nne−n

√
2πn(1 +

O(n−1)). We’ll consider values sufficiently large so that the terms of order1/n need
not be considered. Rather then clutter the already long argument with more careful
book-keeping, we’ll argue at this level of informality; theinterested reader can go
through and add the details. Hence

(2m+ 1)!

m!m!
=

(2m+ 1)(2m)!

(m!)2

≈ (2m+ 1)(2m)2me−2m
√
2π(2m)

(mme−m
√
2πm)2

=
(2m+ 1)4m√

πm
.

As F is the cumulative distribution function,F (x̃) =
∫ x̃

−∞ f(x) dx, which implies

g(x̃) ≈ (2m+ 1)4m√
πm

[F (x̃)]m f(x̃) [1− F (x̃)]m .

It’s generally a good idea to replace complicated functionswith simpler ones.
Thus, we’ll use the Taylor series expansion ofF (x̃) aboutµ̃, which is just

F (x̃) = F (µ̃) + F ′(µ̃)(x̃− µ̃) +O((x̃ − µ̃)2).

Becausẽµ is the population median,F (µ̃) = 1/2. Further, sinceF is the cumulative
distribution function,F ′ = f and we find

F (x̃) =
1

2
+ f(µ̃)(x̃− µ̃) +O((x̃ − µ̃)2). (1.6)

This approximation is only useful if̃x−µ̃ is small; in other words, we needlimm→∞
|x̃ − µ̃| = 0. Fortunately this is easy to show, and a proof is included at the end of
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this section. So as not to lose the flow of the argument, let’s assume this holds for
now and continue.

Let t = x̃− µ̃ (which is small and tends to 0 asm → ∞). We want to substitute
our Taylor series expansion into (1.6). Actually, we need toexpand even further –
this is sadly an instance where the standard, first order Taylor series does not provide
enough control! The problem is each term has an error of sizeO(t2). When we
multiply them together there is also an error of sizeO(t2), and this is the same order
of magnitude as the secondary term,(f(µ̃)t)2. The remedy is to be more careful in
expandingF (x̃) and1−F (x̃). A careful analysis shows that theirt2 terms are equal
in magnitude but opposite in sign. Thus they will cancel in the calculations below.
In summary, we really need to useF (x̃) = 1

2 + f(µ̃)(x̃ − µ̃) + f ′(µ̃)
2 (x̃ − µ̃)2 plus

an error of sizeO((x − µ̃)3) (and similarly for1− F (x̃)). We find

g(x̃) ≈ (2m+ 1)4m√
πm

[
1

2
+ f(µ̃)t+

f ′(µ̃)

2
(x̃− µ̃)2 +O(t3)

]m

f(x̃)

[
1−

(
1

2
+ f(µ̃)t+

f ′(µ̃)

2
(x̃ − µ̃)2 +O(t3)

)]m
.

By rearranging and combining factors, we find that

g(x̃) ≈ (2m+ 1)4m√
πm

f(x̃)

[
1

4
− (f(µ̃)t)2 +O(t3)

]m

=
(2m+ 1)f(x̃)√

πm

[
1− 4m(f(µ̃)t)2

m
+O(t3)

]m
. (1.7)

Remember that one definition ofex is

ex = exp(x) = lim
n→∞

(
1 +

x

n

)n
;

seeADD REF ?? for a review of properties of the exponential function. It’snot
immediately clear that we can use this, as we havem in both the numerator and the
denominator; however,t is supposed to be quite small, and we’ll show later it’s so
small thatmt2 cannot be that large with respect tom. So, for now let’s not worry
about justifying this step and just use the exponential relation. While we’re at it, let’s
also ignore higher powers oft for the moment. We find for largem that

g(x̃) ≈ (2m+ 1)f(x̃)√
πm

exp
(
−4mf(µ̃)2t2

)

≈ (2m+ 1)f(x̃)√
πm

exp

(
− (x̃− µ̃)2

1/(4mf(µ̃)2)

)
. (1.8)

Since, as shown below,̃x can be assumed arbitrarily close toµ̃ with high probability,
we can assumef(x̃) ≈ f(µ̃). To prove that there is negligible error in replacing
f(x̃) with f(µ̃), we use the mean value theorem and find

f(x̃)− f(µ̃) = f ′(cx̃,µ̃) · (x̃− µ̃);

here we have written the constant ascx̃,µ̃ to emphasize the fact that we evaluate
the first derivative in the interval[x̃, µ̃]. As we have assumedf is continuously
differentiable and|x̃ − µ̃| is small, we may boundf ′(cx̃,µ̃) Thus we may replace
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f(x̃) with f(µ̃) at a cost ofO(t), wheret = x̃ − µ̃ tends to zero withm. We
therefore have

g(x̃) ≈ (2m+ 1)f(µ̃)√
πm

exp

(
− (x̃− µ̃)2

1/(4mf(µ̃)2)

)
.

Looking at the exponential part of the expression forg(x̃), we see that it appears to
be a normal density with meañµ andσ2 = 1/(8mf(µ̃)2). If we were instead to
compute the variance from the normalization constant, we would find the variance to
be

m

2(2m+ 1)2f(µ̃)2

We see that the two values are asymptotically equivalent, thus we can take the vari-
ance to beσ2 = 1/(8mf(µ̃)2). Thus to complete the proof of the theorem, all that
we need to is prove that we may ignore the higher powers oft and replace the product
with an exponential in passing from (1.7) to (1.8). Using theidentity

wm = exp (log(wm)) = exp (m logw) .

We have
(
1− 4m(f(µ̃)t)2

m
+O(t3)

)m

= exp
(
m log

(
1− 4(f(µ̃)t)2 + O(t3)

))
.

(1.9)

We use the Taylor series expansion oflog(1 − x):

log(1− x) = −x+O(x2);

we only need one term in the expansion ast is small. Thus (1.9) becomes
(
1− 4m(f(µ̃)t)2

m
+O(t3)

)m

= exp
(
−m · 4(f(µ̃)t)2 +O(mt3)

)

= exp

(
− (x̃− µ̃)2

1/(4mf(µ̃)2)

)
· exp(O(mt3)).

In §1.5 we’ll show that asm → ∞, mt3 → 0. Thus theexp(O(mt3)) term above
tends to1, which completes the proof. 2

Our justification of ignoring the higher powers oft and replacing the product
with an exponential in passing from (1.7) to (1.8) is a standard technique. As it’s so
important, we repeat again why we can do this. We are just replacing some quantity
(1 − P )m with (1 − P )m = exp(m log(1 − P )). We then Taylor expand the loga-
rithm, and look at the limit asm → ∞.

ADD REF TO CLT CHAPTER WHERE CAN GO WRONG – PRODUCT
ONE TO INFINITY ONE TO ZERO

1.5 Technical bounds for proof of Median Theorem

In proving the Median Theorem, we assumed that we could ignore higher powers of
t = X̃ − µ̃. We are able to do this because, with high probability,t is small. Here
we provide a more formal statement of this fact, as well as a proof.
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Lemma 1.5.1 Supposef(x) is a continuously differentiable function in some neigh-
borhood ofµ̃. Then for anyc > 0, we have

lim
m→0

Prob(|X̃ − µ̃| ≥ c) = 0.

Proof: This is equivalent to proving that

lim
m→0

Prob(X̃ ≤ µ̃− c) = 0 and lim
m→0

Prob(X̃ ≥ µ̃+ c) = 0.

We will prove only the first of these two statements as the proof of the second is very
similar.

By (1.6), we can approximate the density of the median as

g(x̃) ≈ (2m+ 1)4mf(x̃)√
πm

([F (x̃)] [1− F (x̃)])m .

We consider the factor([F (x̃)] [1− F (x̃)])
m. It is convenient to writeθ = F (x̃)

and consider the functionh(θ) = θ(1 − θ). This function will attain its maximum
for the same value ofθ = F (x̃) as([F (x̃)] [1− F (x̃)])

m, and it’s a simple exercise
in calculus to show that this value isθ = 1/2. This condition holds only for̃x = µ̃.
We furthermore note that forθ < 1/2, h′(θ) = 1− 2θ > 0, soh is increasing. Since
F (x̃) = 1

2 precisely wheñx = µ̃, this means that for̃x ≤ µ̃− c, the maximum value
of g(θ) occurs forx̃ = µ̃− c. We therefore have for̃x ≤ µ̃− c,

(F (x̃) [1− F (x̃)])
m ≤ (F (µ̃− c) [1− F (µ̃− c)])

m

< (F (µ̃) [1− F (µ̃)])
m

=
1

4m
. (1.10)

We chooseα so thatα4 = F (µ̃ − c) (1− F (µ̃− c)). Equation (1.10) then tells us
that forx̃ ≤ µ̃− c,

(F (x̃) [1− F (x̃)])
m ≤

(α
4

)m
≤ 1

4m
.

In particular, we note thatα < 1.
We now begin to look at the probability that̃X is at most̃µ− c. We have

Prob(X̃ ≤ µ̃− c) =

∫ µ̃−c

−∞
g(x̃) dx̃

≈
∫ µ̃−c

−∞

(2m+ 1)4m√
πm

f(x̃)F (x̃)m(1− F (x̃))m dx̃

<
(2m)4m√

m

∫ µ̃−c

−∞
f(x̃)F (x̃)m(1− F (x̃))m dx̃.

In the last step, we use the fact that form sufficiently large (m > 1, in fact),2m <
2m+1√

π
. This simplifies the expression as a factor of2m is easier to work with than
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the factor of2m+ 1. We now apply our bound onF (x̃)(1− F (x̃)) to find that

Prob(X̃ ≤ µ̃− c) <
(2m)4m√

m

∫ µ̃−c

−∞
f(x̃)

(α
4

)m
dx̃

=
(2m)4m√

m

(α
4

)m ∫ µ̃−c

−∞
f(x̃) dx̃

< 2αm√
m

∫ µ̃

−∞
f(x̃) dx̃.

In obtaining the rightmost expression, we have used the factthatf(x̃) is nonneg-
ative everywhere and positive in a neighborhood ofµ̃, so that

∫ µ̃−c

−∞ f(x̃) dx̃ <
∫ µ̃

−∞ f(x̃) dx̃. Since µ̃ is the median of the population, by definition, we have
∫ µ̃

−∞ f(x̃) dx̃ = 1
2 , so that

Prob(X̃ ≤ µ̃− c) < αm√
m.

Sinceα < 1, it follows that the right side of this inequality must converge to0 asm
goes to infinity, so the probability on the right side must likewise converge to0. 2

Problem 1.5.2 Letα ∈ (0, 1). Prove

lim
m→∞

αm√
m = 0.

In fact, this expression tends to zero exponentially fast. Letδ = 1−α. Show that for
m sufficiently large,

αm√
m ≤ A

(
1− δ

2

)m

= Ae−Bm,

whereA andB are constants (withB = log
(
1− δ

2

)
.

1.6 The Median of Normal Random Variables

Consider the case of a normal population with meanµ and varianceσ2. The normal
density is symmetric about the meanµ̃, hencẽµ = µ. Furthermore, we have

f(µ̃) = f(µ)

=
1√
2πσ2

exp

(
− (µ− µ)2

2σ2

)

=
1√
2πσ2

,

which implies that
1

8mf(µ̃)2
=

πσ2

4m
.
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For largen = 2m + 1, we therefore see that the distribution of the median (from
a normal distribution with meanµ and varianceσ2) will be approximately normal
with meanµ and varianceπσ2/4m.

What can we say about the population mean? Either from the Central Limit
Theorem, or calculating directly as the sum of normal randomvariables is normal, we
see that the sample mean is normally distributed with meanµ and varianceσ2/n =
σ2/(2m+ 1).

So, both the sample median and the sample mean converge to being normally
distributed with meanµ; however, the sample median has variance approximately
πσ2/4m, while the mean has varianceσ2/(2m+ 1). If we take the ratio of the two,
we find

Variance of Sample Median

Variance of Sample Mean
≈ πσ2/4m

σ2/(2m+ 1)
=

π

2

2m+ 1

2m
.

For largem, this ratio is aboutπ/2 ≈ 1.57. What does this mean? It means that
while the sample median and sample mean have the same expected value, the sample
median has larger fluctuations. How should we interpret this? The cleanest is that
the sample mean will do a better job; it’s ‘tighter’ about thetrue value.

The moral of this example is that, as nice as the Median Theorem is, it’s most
emphaticallynot a replacement for the Central Limit Theorem whenever the mean
and the median are equal. The Central Limit Theorem can give better results; the
Median Theorem should be kept in reserve for situations where the Central Limit
Theorem isn’t applicable (for instance, when we have a distribution like the Cauchy
which has infinite variance, and possibly even undefined mean!).
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