Crypto Book Working Notes

Midge Cozzens, Steven J. Miller (sjm1@williams.edu) andMiePegden

January 4, 2011

Contents

1 Error Detecting and Correcting Codes 3
1.1 MotivatingRiddles L 5
1.1.1 Statements. 5
1.1.2 Solutions. 7
1.2 DefinitionsandSetup, 11
1.3 Examples of error detectingcodes 14
1.4 ComparisonofCodes 17
1.5 Errorcorrectingcodes. 18
1.6 More onthe Hammingr,4)code 21
1.7 AdditonalRiddle 24
2 Primality Testing and Factorization 27
2.1 BruteForce Approach., 29
2.2 Fermat’s FactoringMethod 32
2.3 Agrawal-Kayal-SaxenaPrimalityTest 36

CONTENTS

Chapter 1

Error Detecting and Correcting
Codes

We've discussed at great lengths why it's important to epicinformation. If we have
some information that we only want certain individuals ta, giewould be foolish to
shout it out, or write it out in English and leave it lying orettable for our friend to
read. So, clearly, there are times we want to encrypt our agessWe then transmit
it to our friend, who will then decode it and act accordinghgwever, what if the
message is garbled in the transmissions? As everyone knottsng is perfect, even
computers. We've all had experiences where a computer hgm@sr no reason, or
displays strange text. What happens if there is an erromimsmitting our message?
For example, we often use binary for our messages, and samgsadf Os and 1s. What
happens if one of the 1s is accidentally transmitted as aG¢erversa)? This leads to
the subject of error detection and, if possible, error adioa.

While our motivating example dealt with an encoded mesghgesame issues arise
in other situations too. Imagine we want to go to a website étctv some streaming
video, maybe our favorite baseball team is playing. Thewitght not be encrypted,
and a string of Os and 1s are sent to our computer, which createovie based on
these. If we're thousands of miles away and there are lotstefrnediate sites, there
could be many chances for digit errors; it would be terribldnére were so many of
these that we could not reconstruct the picture.

These transmission errors can have devastating consexpudrie following is one
of our favorite scenes froimdiana Jones and the Last Crusadie script below was
downloaded from http://www.scifiscripts.com/scriptsfizna3.txt.

Indy’s Speedboat bounces across the choppy waters headimg) i
direction of the docked steamship. Kazim and his men rustveomore
speedboats tied to the dock. They chase after Indy. Indyptgapvith the
Turkish Agent. As Indy grips his arms, we see a gun in the Agdrand.
It fires. As Indy fights with the Turk, he becomes aware of theegiboats
behind him and two enormous Freighters ahead of him, joiogether by

3

4 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

two giant ropes. Indy, having gained the advantage, leantsmpiof the
Turkish Agent.

Indy (to Elsa):Are you crazy?! You don't go between them!
Elsa can barely hear Indy over the noise of the motor.
Elsa: Go between them? Are you crazy?!

Indy finally delivers the punch that sends the Turkish Agerin{
overboard. Turning, Indy sees that Elsa has committed teedipat to a
course between the two Freighters, now being pushed evserdlmgether
by a Tugboat.

Indy: | said go around!
Elsa: You said go between them!
Indy: | said don't go between them!

It's purely academic at this point since the hulls of the tweighters
loom up on either side of them like cavern walls.

Unlike poor Indi and Elsa, it is not purely academic for usiasmillions of people
around the world. We haven't sent our messages yet, so wetinawdo think about
these issues. Is there a way to send our messages so thateifisha transmission
error, the recipient at least knows an error happened. Fample, Elsa didn't hear
the phrase You don't. If she knew that part of the message was missing, she could
ask Indi to repeat himself. Being able to detect errors is sngorisingly, called error
detection.

While error detection is great, it's incomplete. Frequgitts either expensive to
transmit a message again, or there may not be time. For erampihe situation above
Indi is in a life-and-death struggle, and he really can'psémd talk again. The ideal
situation is for our recipient to know that, not only was aroemade in transmission,
but to also be able to fix it and get the message that the seretrio send. This is
known as error correction. It's a lot harder than error di&ec but amazingly there
are really good algorithms to do this.

The purpose of this chapter is to describe some of the isdiersar detection and
correction. These are vast subjects, pursued by both adeslend professionals. The
importance of both are clear. We'll just scratch the surfafdhese topics, but we will
get into enough detail to see some of the truly wonderful, angamethods. To do
the subject justice requires a little abstract algebraygbeory), linear algebra and
probability; however, we can go a long ways with just someneletary observations.
It's frequently the case that it is very hard for someone teehthe flash of insight that

1.1. MOTIVATING RIDDLES 5

leads to the discovery of one of these methods; howevenfign not that difficult to
follow in their footsteps and learn their method.

1.1 Motivating Riddles

Math riddles are more than a fun way for many of us to relaxy ten also serve as
a nice stepping stone to some advanced theory with integeapplications. This ia

particularly true for the two riddles below. The solutiorthe first introduces a concept
which is helpful in designing an error detection code, witile second riddle leads to
an idea that can actually correct errors!

Both of these riddles are well-known throughout the mathtemmaommunity. We've
had a little fun with the phrasing. Try and solve these befeegling the answers. For
the first, it's possible to get a less than optimal soluticat ik still better than trivial.
Both involve hats that are either white or black; the conioedd transmitting data is
clear when we replace white with 1 and black with 0.

We'll first state each riddle, and then give some explanatdyabout it. After that,
we’ll discuss a possible approach which is much worse tharbést possible. If you
want, you can of course skip the rest of this section and g@girto the the definitions
of error correcting and error detecting codes. The two dddiielow are merely meant
to help motivate the material, to help teach you how to look iclever way at some
problems, and to have some important ideas simmering inmpina as you read on.

1.1.1 Statements.

6 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

Riddle 1: Imagine 100 mathematicians are standing in a line, wearbigak or white
hat. Each mathematician canly see the color of the hats of the people in front| of
them. They close their eyes and you have to put a black or @&whiton each person.
You can do this any way you wish; you can give everyone a whate dr just throw
them on randomly. The first person sees no hats, the secosdnpsees just the hat
color of the first person, the second sees that hat coloredirgt two people, and sp
on until we reach the last person, who sees the hat colore®&ahn front of her.

When you say go, the last person says either ‘white’ or ‘Bldck not both;
immediately after she speaks the second to last person ghgs ‘@hite’ or ‘black’
but not both. This continues until the first person speakgingaeither ‘white’ or
‘black’ (but not both). After all 100 have spoken, we counthmany said the color
of their hat, and how many said the opposite color. For eackopewho said thei
color correctly, you give everyone in line one dollar; hoegvfor each person wh
was wrong, everyone in line gives you one dollar.

Remember, these are not 100 ordinary people. These are lib@nmaticians
and they are allowed to talk to each other and decide on @&gyrad maximize their
expected winnings. They are thus extremely intelligend,ifithere is a good idea the
will find it! You get to put the hats on any way you wish, they ¢eetook and the:™
person sees the hat colors of the- 1 people in front of them. What is the minimum
amount they can guarantee themselves earning? Or, to puther way, what is thg
smallestV such that, no matter what you do, at leAsbf the 100 mathematicians will
correctly say their hat color!

O

<

154

Remember, we want to find out how many people we can guaraayehsir hat
color correctly. Thus, if ever someone is guessing, we havassume they guess
wrong. One possible strategy is for everyone to just sayt&thhowever, you know
their strategy. If everyone is going to just say ‘white’, thall you have to do is give
everyone a black hat. In this cag€,= 0, which is really bad. If the hats were to be
placed randomly, then yes, this strategy should lead totdtaiithe people saying the
correct color, but that is not this problem. In this problem can be malicious!

So the mathematicians have to be a bit more clever. Eachrpeasmot be entirely
devoted to finding their hat color — they have to somehow hath@ther. After a little
thought, they come up with the following plan. All the evermrhered people say the
hat color of the person in front of them. By doing this, all td people know their hat
color! For example, if person 99 has a white hat then pers@safs ‘white’; while
she may be wrong, person 99 now says ‘white’ and is correchidfis their strategy,
you'll of course make sure all the even people have the oppbat color as the person
in front of them; however, there is nothing you can do aboetatid people. They will
alwaysget their hat color right, and thus with this strate§y= 50 (in other words, at
least half the people will always be right).

So, here’s the question: can you do better than= 50 (i.e., better than 50%)?
Amazingly, yes! See how well you can do. Can youlde= 66? Or N = 75? Clearly
the best possible i& = 99, as there is no way to ever help the last person. Is that
possible? Can we find a way so that 99 out of 100 are correct?

1.1. MOTIVATING RIDDLES 7

The next riddle is famous in not just mathematics, but alsmemics. It too is a
hat problem, but unlike the last one (where you could put tite Hown however you
want), this time the hats are randomly assigned.

Riddle 2: Three mathematicians enter a room, and a white or black lpaced on
each person’s head. Each person is equally likely to haveite wha black hat, and
the hat assignment of one person has no affect on the hahassig to anyone else.
Each person can see the other people’s hats but not their own.

No communication of any sort is allowed, except for an ihismategy sessio
before the game begins. Once they have had a chance to lol& ather hats, eac
person has to decide whether or not to say ‘white’, ‘black'eanain silent. Everyong
must speak (or remain silent) at the same time. If everyorespeaks says the colo
of their hat, then everyone gets one million dollars; howgife&ven one person who
speaks says the wrong color for their hat, then everyons lmse million dollars. If no
one speaks, then no money is won or lost.

What is the best strategy for the mathematicians? In othedsyavhat is the largeg
value ofp so that, if this game is played many, many times, then the emadlicians
are expected to wip percent of the time, and lode— p percent of the time.

==

=

—

As mentioned above, a major difference between the twoeddl that here each
hat is randomly assigned; each person gets a white hat atfrntte and a black hat
half the time. There is a very simple strategy that ensushie mathematicians never
lose: no one ever speaks! Unfortunately, with this stratbgy also never win.

There is an easy way to make sure they win half the time. Onsppés told to
always say ‘white’ and the other two are told to always rensdamt. Half the time the
person will be correct in saying white, and half the time thaybe wrong. Thus, we
can easily gep = 1/2.

Is it possible to do better? It seems absurd to think abodinged p greater than
1/2. After all, each person who speaks says either whiteamkbland they are equally
likely to have a white or a black hat. Doesn’t this mean thatoame who speaks will
be right half the time and wrong half the time; further, if ragreople speak it's even
worse, as they only win if everyone who speaks is right. Itéf@re seems impossible
to come up with a better strategy, yet there is one, and trasegly will lead to error
correcting codes!

1.1.2 Solutions.

Hopefully you and some of your friends had time to play witeg@ riddles. If you
haven't, this is your last chance to think about them befesérg) the solutions!

8 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

First Riddle: There are several strategies for the first riddle, all of Wwhio far better
than just half are correct. We give just two. Let’s first revithe strategy that ensures
that at least half are correct. We had all the even peoplehgalydt color of the person
in front of them. We used one piece of information to get orexgiof information.
Can we do better?

Let's examine what person 3 sees. In front of him are two peophere are four,
and only four, possibilities: she sees WW, WB, BW, BB (whefeaurse W means a
white hat and B a black hat; the first letter denotes the haefgn 1 and the second
letter the hat of person 2). Further, person two gets to sespe@ne’s hat; there are
only two possibilities here: W or B. What we're going to do &vk the third person
say something which, when combined with what the secondpesses, will allow
first the second person and then the first person to dedugehtiitetolor. Let's have
the third person say ‘white’ if the two hats have the samergalad ‘black’ if the two
hats have opposite colors. As soon as the third person sieyghé first two people
know whether or not they have the same or opposite colorse¥f have the same, then
the second person just says the color of the first person hemdthe first person says
that color as well; if their colors are opposite, then theosekperson says the opposite
color of what he sees in front of him, and then the first persys she opposite color
of the second person.

For example, if the third person sees BW he says ‘black’, asis are different
colors. Seeing person 1 wearing a black hat, person two sdy&e’, and then person
one says ‘black’. In this way we can get make sure two out ofyetreee people are
correct. This means that we can take= 66, or almost two-thirds of the people are
guaranteed to say the correct color with this strategy.

Before reading on, see if you can improve our strategy. Canged four-fifths?
How far can you push this?

We now jump to the best strategy. It's absolutely amazingwaican make sure
that 99 out of 100 people are correct! How? The last persontsayp how many white
hats she sees, and how many black hats. The number of whitplnatthe number of
black hats must add up to 99, which is an odd number. Thus tres¢o be an odd
number of white hats or an odd number of black hats, but ndt. bdere’s the strategy:
the last person says ‘white’ if there is an odd number of whitts, and ‘black’ if there
is an odd number of black hats.

Why does this strategy work? Let’s say the last person seeghit® hats and
26 black hats. She therefore says ‘white’ as there is an odtbeu of white hats.
What should the second to last person do? The only differbatgeen what he sees
and what the last person sees is that he cannot see his hat Thkre are only two
possibilities: he sees 72 white hats and 26 black hats, oedé® &3 white hats and 25
black hats. He knows that there is an odd number of white hbate sees 72 white
hats, he knows that he must be wearing a white hat, as otrestlhiédast person would
not have said white. Similarly, if he sees 73 white hats treemhist be wearing a black
hat, as otherwise the last person wouldn’t have said theramodd number of white
hats.

The process continues. Each person keeps track of what Basaigl, and whether

1.1. MOTIVATING RIDDLES 9

or not initially there was an odd number of white or black h&sfore speaking each
person can see whether or not there are an odd number of wibiteok hats in front of
them, and speak accordingly. Let’s continue our exampléll ¥ég there are 73 white
hats, and for definiteness let's assume th& pérson has a white hat. Thus the last
person says ‘white’ as there is an odd number of white hats.sElcond to last person
now immediately says ‘white’, because he sees an even nuoflvenite hats (if he
didn’t have a white hat, the last person would have said Kjadlow let’s look at the
98" person. She knows that the last person saw an odd numbertef dis. The sec-
ond to last person said ‘white’. This means that there muanbsven number of white
hats on the first 98 people. Why? If there were an odd nhumbehiéwmats on the first
98 people, then the last person would see an even number td hdiis (because the
odd number from the first 98 plus the one white hat from thH€ 8&rson would add up
to an even number, which contradicts the last person seeimgléd number). So, the
98" person knows there are an even number of white hats on th88igstople. If she
sees 71 white hats then she says ‘white’, otherwise she bigk'.

The key concept in this strategy is thatpdrity . All we care about is whether
or not there is an even or an odd number of white hats on thedfirpeople. The last
person transmits this information, and the other peoplétugsely. In the next section
we’'ll expand on the notion of parity and use it to create anretetecting code.

Second Riddle: There is actually a strategy that will work 75% of the time wiise
hats are randomly placed! Here it is: each person looks abttier two. If you see
two hats of the same color, you say the opposite color; if yamita/o hats of opposite
colors, you stay silent.

That's it! It's simple to state, but does it work, and if so, y@hLet’s tackle whether
or not it works first. Imagine the three hat colors are WBW. THee first person sees
BW, the second sees WW and the third sees WB. Only the secasdrpsees two
hats of the same color. So only the second person speaksgshlack’ (the opposite
color); the other two people are silent. What if instead isWdWW? In this case,
everyone sees two hats of the same color, so everyone spe@lsaygs ‘black’, and
everyone is wrong.

Table 1.1 looks at who speaks, and if they are correct or ractr

There are several remarkable facts that we can glean frantabie. The first and
most important, of course, is that the strategy is succkesg#ctly three-fourths of the
time. This is truly amazing. Each person has an equal chaftaving a white or a
black hat, yet somehow we manage to do better than 50%. Hothisabe?

The answer lies in the three columns saying whether or ndt pacson is correct
or incorrect. While the outcome column is very nice for ouethpeople (saying they
win 6 out of 8 times), it is the individual right-wrong colurmithat reveal what is really
going on. Note each person is correct twice, incorrect twére silent four times.
Thus, each person is only correctly saying their hat coltfrtha time they speak (and
only a quarter of the time overall). Notice, however, theegidys M pattern in who is
correct and who is incorrect. We've somehow arranged it abttie wrong answers
are piled up together, and the correct answers are widelgratgul. In other words,

10 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

#1 #2 #3 #1 #2 #3 | Outcome
W W W | black black black| wrong wrong wrong| lose
W W B black right win
W B W black right win
B W W | black right win
W B B | white right win
B W B white right win
B B W white right win
B B B || white white white|| wrong wrong wrongl lose

Table 1.1: The various outcomes for our hat strategy. Thetfiree columns are the
hat colors of the three people, the next three columns aréeetth person says (if they
remain silent, we leave it blank), the next three columnsadrether or not a speaker
is correct, and the final column is whether or not the playensowlose.

when we are wrong, boy are we wrong! All three people err. Harewvhen we are
right only one person is speaking. We thus take 6 correct anddrect answers and
concentrate the incorrect answers together and spreatle@obtrect answers.

The arguments above explain how it works, but it doesn'tyesgly why it works.
To understand the why, we have to delve a bit deeper, andhidgsekplanation that
plays such a central role in error correcting codes. We haspmaae of eight possible
hat assignments:

{WWW, WWB, WBW, BWW, WBB, BWB, BBW, BBB}.

Each assignment is equally likely; thus one-eighth of theetive have WWW, one-
eighth of the time we have WWB, and so on. We partition our epato two disjoint
subsets:

{WWW, WWB, WBW, BWW}, {WBB, BWB, BBW, BBB}.

What is so special about this partition is how the elemerggaated. In the first set,
the second, third and fourth elements differ from the firstrednt, which is WWW, in
only one place. To put it another way, if we start with WWW we gy of the next
three elements by changimgne and only one hat colorFurther, and this is the key
point, the only way we can get something in the second set T&MW is to change

at least two hat colorsWe have a similar result for the second set. The first, second
and third elements can be obtained from BBB by switching tixate of their colors;
further, nothing in the first set can be switched into BBB saelee change at least two
hats.

This partitioning of the outcome space is at the heart of olut®n. We have split
the eight elements into two sets of four. The first set is eMd@&/W or anything that
can be made into WWW by switching exactly one hat. The secetid gither BBB or
anything that can be made into BBB by switching exactly orte Rarther, these two
sets are disjoint — they have no elements in common, andhleyssplit our space into
two equal groups. Later in this chapter we’ll see how thidipian can be used to build
an error correcting code.

1.2. DEFINITIONS AND SETUP 11

1.2 Definitions and Setup

It's time to switch from our informal discussion to a moreaigus description of error
detection and correction. To do so, we need a few definitidfesve repeatedly talked
about codes in this chapter (error correcting codes, egtating codes). What do we
mean by this? Acodeis a collection of strings formed from a givetiphabet. The
alphabet might be the standard one for the English languagemight be the binary
set{0, 1}. If the alphabet has just two elements we refer to it &mary code; if the
alphabet hag elements we say we have arary code The elements of the code are
called thecode words If every codeword has the same length, we hafieeal length
code

In practice, here’'s what happens. We have some message erdstm that we
want to transmit. We choose a code, ggy We then use an encoding function to
convert our data to a string of elements in the cadeWe transmit that string, and
then our compatriot on the other end converts the string.bakkwon’t discuss in too
much detail the process of encoding, as we've talked at ¢gegths about that in the
cryptography chapters. Instead, here we're going to cdnatenon the transmission
of the encoded string. The issues of tantamount importamess twill be detecting
transmission errors and, when possible, correcting them.

Let’s look at some examples.

Example 1.2.1.TakeA = {a,b,¢,...,z,y, z} as our alphabet, and lef' be the set of
all finite strings of elements iAd. Clearly C is a code; moreover, every English word
isin C, as are nonsense words like gwerty and noitadnuof. It is rioiesl length code,
as ‘the’ and ‘bulldog’ are both valid code words, and they balifferent lengths.

Example 1.2.2. TakeA = {0, 1} as our alphabet, and let’ be the set of all strings of
elements inAd of length 4. We easily see th@tis a code; further, it is a fixed length
code, as each code word has length 4.

Exercise 1.2.3.Consider the two codes from the above examples.

1. For the code from Example 1.2.1, how many code words are thielength
exactly 2? Of length at most two?

2. For the code from Example 1.2.2, how many code words are thielength
exactly 2? Of length at most two?

Exercise 1.2.4.Consider the binary code
{0, 1, 10, 11, 100, 101, 110, 111},

and say you receive the messdgd@1. It's possible that this message is the codeword
110 followed by the codeword 1; it could also be the codewofdllbwed by the
codeword 101, or 11 followed by 0 followed by 1. Could it bethimg else, and if so,
what?

The last exercise illustrates a grave defect of some codesnahny cases, just
because we receive a message does not mean we know what Wals'sé@nportant

12 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

to note that we are not talking about receiving an encryptesisage and being unable
to decryptit. That's not the issue at all. The problem is weeiee a collection of code
words and we don’t know how to parse them. In the last exandples 1101 mean the
message 110 1, or does it mean 1 101, or perhaps even 11 0 1®ig befortunately
no way to know. Perhaps a more enlightening example wouldhesé¢ letters and
English words. Consider the string HITHERE. Should this bespd as ‘HI THERE’
or ‘HIT HERE'?

This problem cannot exist if all codewords have the sametterifjwe had a binary
code where each codeword is of length 3, then the only wayrseb10101010 is as
110, 101, 010 (of course, 110, 101 and 010 should then be corttswn our code!). It
is because of this issue that we restrict our attention ta fieegth codes.

Exercise 1.2.5.0f course, a code can still have each message uniquely dereiple
even ifitisn’t a fixed length code.

1. Imagine our code is the set
{1, 1001, 111000111000}.
Is this code uniquely decipherable?
2. Imagine our code is the set
{1, 10001, 111000111}.
Is this code uniquely decipherable?

3. Consider an-ary codeC = {ci,ca, ..., ¢, } with the length of; equal to/;.
McMillan proved that if the cod€’ is uniquely decipherable, then

"1
Zrei < L
=1

unfortunately, this sum can be finite without the code bemiguely decipher-
able. Consider the cod€ of all binary words of length at most 10 with an even
number of 1s. Thus 100100011 isdh as is00100001, but not1000000011.
ShowC cannot be uniquely decipherablelint: remember that 0001 is a code
word of length 4, and is different from the code word 1.

From here on, we’ll mostly concentrate on fixed length biragles with alphabet
{0,1}. We need one last definition. Théamming distance between two binary
strings (both of the same length, sayis the number of places where the two strings
differ. We could denote this distance function #yamming, bUt as we won’t use any
other distance functions, let's keep the notation simptejast writed for the distance
function. The Hamming distance is always an integer, of seur

For example, imagine = 10 and our two strings are 0011100101 and 0011100001.
These two strings are almost identical; the only differdretaveen them is in the eighth
position. Thus we would write

d(0011100101,0011100001) = 1.

1.2. DEFINITIONS AND SETUP 13

A very important example is the binary code

{111, 110, 101, 011, 100, 010, 001, 000}.

We have
d(111,111) = 0
d(111,110) = d(111,101) = d(111,011) = 1
d(111,100) = d(111,010) = d(111,001) = 2
d(111,000) = 3.

If you view the two code words as points irdimensional space, the Hamming
distance measures how far apart they are, given that we dgmwaik parallel to the
coordinate axes. Thu&(0, 0), (1,1)) = 2; we can either take the path

(0,0) — (0,1) — (1,1)

or the path
(0,0) — (1,0) — (1,1).

This is different than the normal distance between the twotppwhich is found using
the Pythagorean theorem (in this case, it would g — 0)2 + (1 — 0)2 = v/2).

Theminimum distance of a codeC' is the smallest distance between two distinct
code words irC. We denote this by(C), and we may write it as

d(C) = min d(wy,ws).

wy Awy

If we didn’t force the two code words to be distinct, then tha@imum distance of any
code would be zero, akw, w) = 0; thus this is a necessary constraint. Tieeximum
distance of a code”' is the maximum distance between two distinct code words.

Exercise 1.2.6.Let C be the binary code of words of length 5 with an odd number of
1s. What is the minimum distance of the codgint: the number of code words is
(3)+ (3) + (2) =5+ 10+ 1 = 16. This is a small enough number to be manageable;
in other words, you could write down all the different coderd& but then you would
have to look at all pairs of distinct code words, and there(éﬁ = 120 different
pairs! Fortunately you don't have to investigate all of #heairs; you just have to find

the minimum. Try proving that the minimum cannot equal 1.

Exercise 1.2.7.Let C be the binary code of words of length 10 with exactly eight 1s.
What is the minimum distance of the code? What is the maxinstande? Hint:
there are(lgo) = 10!/812! = 45 code words inC'; you clearly want a faster way then
enumerating all of these!

Exercise 1.2.8.Let C be the binary code of words of length 10. What is the minimum
distance of the code?

14 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

We end this section with another definition that we’'ll neede $dy a cod€ is
k-error detecting if the following holds: no matter what code word 6fwe choose,
if we change at most digits then the resulting string is not a code wordaf If C
is k-error detecting but natk + 1)-error detecting, then we s&y is exactly k-error
detecting If a code cannot detect any errors, it is O-error detecting.

Example 1.2.9.Let’s consider the binary code
{00, 01, 10, 11}.

This code unfortunately cannot detect any errors. Why? We hdixed length code
(of length 2). There are four possible code words of lengdn®,all of them are in our
code. If we change any digit of any code word, we end up withhencode word.

The above example shows us that, in order té{eeror detecting (for some > 1),
it is necessary that our code is only a subset of all possiblelsv If we have a binary
code of fixed length, then there ar@™ possible code words. Clearly if every word is
in our code then we cannot detect any errors. The questianiezhow many words
can we include and have a 1-error detecting code, and whictisian these be? We
can then of course ask the same question for a 2-error degextide, and a 3-error
detecting code, and so on.

Exercise 1.2.10.Let’s consider the binary code
{00, 11}.

Show this is a 1-error detecting code but not a 2-error détgctode, and thus is
exactly a 1-error detecting code.

Example 1.2.11.Consider the binary code
{000, 111}.

Is this code exactly 2-error detecting? It can detect on@rand it can detect two
errors, but it cannot tell if one or two errors were made. Foxaeple, if we receive
011 what was the intended message? Was it 111 (and thus therene error) or 000
(and thus there were two errors)? We can thus detect that emm Bas occurred, but
we don’t know what the error is.

1.3 Examples of error detecting codes

Remember we have two problems. The first is to construct an éetecting code, and
the second is to construct an error correcting code. In #g§an we tackle the first
problem, and give a variety of error detecting codes. Reneendur goal here isot
to figure out what message was sent, but rather to determiaethetor not there was a
transmission error. This is a much easier problem. Mostettdes we’'ll see here are
exactly 1-error detecting. It's not unreasonable to emigkatese codes. Hopefully

1.3. EXAMPLES OF ERROR DETECTING CODES 15

the probability of making an error is small; if that is the eas’s unlikely we’ll have
two or more errors in our message.

In this section we'll briefly describe several different&gof error detecting codes,
and then discuss them in greater detail in the followingisecboth historically and
mathematically. Another reason for this approach is thafftén helps to see new
material multiple times, and thus we’ll give two slightlyfidrent presentations. Here
we’ll mostly state the various codes, while in the next sective’ll dwell on them a bit
more.

Example 1.3.1.Let’s imagine our code is
C = {1000, 0100, 0010, 0010, 1110, 1101, 1011, 0111}; (1.1)

this is a fixed length binary code (the length is 4), made up aflsywith an odd
number of 1s. The minimum distance of this code is 2. This eaeén by brute force
computation, though that is unenlightening. A better way isote that if we take any
two words with exactly one 1 then they differ in two placesl similarly if we take two
words with exactly three 1s. What happens if we take one dfedicthe 1 from the
code word with exactly one 1 aligns with one of the 1s from theelwith exactly three
1s, then the O of the word with three 1s aligns with the O, baitoter two 1s do not,
and thus the separation is 2; a similar argument gives 2 wheritdoes not align.
Imagine we receive the messdyj@1. We were expecting a code word frarf it
is impossible that this was the message. Why? Our messadge ha®ne of the eight
words in(1.1) however, all of the code words have an odd number of 1spaatl has
an even number of 1s. Therasthave been an error!

This is terrific — we know there was a mistake, and we can asthfomessage to
be resent. We unfortunately cannot tell where the erroréshaps the message was
supposed to b6100, or perhaps it was meant to heé01. We can't tell, but we do
know an error was made.

Exercise 1.3.2.Consider the code froifl.1). Imagine you receive the message
1110110101001011.

Could this have been the intended message? What if you eeceiv
1110101100110100.

Could that have been the intended message?
There are many other error detecting codes. Here is another.

Example 1.3.3(Parity code) Let C is the binary code of all words of length 4 such
that the sum of the digits of a code word is divisible by 2 (aki¢ively, we say the sum
of the digits is congruent to 0 modulo 2). There are thtis= 16 binary code words of
length 4; half of these have digits summing to zero modulot/2W¥We can choose the
first three digits any way we wish, and then the last digit isdd on us. For example,
if we have 101 then the final digit must be a 0, while if we ha@:thé final digit must

16 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

be a 1. There ar@® = 8 ways to choose the first three digits, so there are 8 code
words. Thus

C = {0000, 0011, 0101, 1001, 1100, 1010, 0110, 1111}. (1.2)

If we receive the messad@11, we know there was a transmission error as the digits
do not sum to zero modulo 2 (i.e., there is not an even numbEs)ofGoing through
all the cases, we see if we take any code word and change exaetldigit then it is
no longer a code word. Thus, the code is 1-error detecting ribt 2-error detecting.
To see this, we can change 0011 to 0101 by changing the migdldigits, and this is

a valid code word irC'.

Exercise 1.3.4.Consider the code froifl.2). Imagine you receive the message
0011011011110111.
Could this have been the intended message? What about
110010101010101000117

These two examples give us two error detecting codes; hawiey seem very
similar. Both involve codes with 8 words, and both are exatterror detecting. Let’s
look at a really different example.

Example 1.3.5Fixed number code)We take our binary cod€ to be all binary words
of length 5 with exactly two 1s:

C = {00011, 00101, 01001, 10001, 00110, 01010, 10010, 01100, 10100, 11000}.

Note the minimum distance of this code, like the other twongkes, is 2. If there ie
exactly one error then we will detect it, as there will thenrdlitber three 1s or just one
1. If there are exactly two errors, we may or may not detectfithe message was
meant to be 00011 but we receive 01111, we know there was an kowever, if we
receive 00101 then we would not realize an error occurredis Tode was used by
Bell Telephone Laboratories in the 1940s (see page 8 of [Hs]ihe ten different code
words could be set in correspondence with the ten diffengitisgland thus this gave a
way of programming in the decimal system.

Exercise 1.3.6.Using the code from Example 1.3.5, how many different messag
of length 5 can be sent? If there is exactly one error, how nraegsages could be
received?

We have two candidates for an exactly 1-error detecting cthaecode from Ex-
ample 1.3.3 and the code from Example 1.3.5. Which is bettés?a little hard to
compare the two codes. The first has code words of length 4seébend has code
words of length 5. Both can detect exactly one error, buthgiter to be able to detect
one error in four digits or one error in five? We're comparipgles and oranges, and
that’s always a bit messy. We need to find a way to judge how gactl code is.

One very good metric is to look at how much information eactiecallows us to
convey. Let’s look first at the code from Example 1.3.3. Thdecwords there have

1.4. COMPARISON OF CODES 17

length 4, with the fourth digit determined by the first thr8éhus we have three free
digits, and can effectively send any of 8 words: 000, 001, @00, 101, 110,011, 111.
If we were to look at a string of length 20, we could send 5 codeds. As each code
word can be one of eight possibilities, this means we can 8erd32, 768 messages.

What about the code from Example 1.3.5? There we have 10pesside words of

length 5. So, if we were to send a message of length 20, we seuld 4 code words,
giving us a total ofl0* = 10, 000 messages.

It should now be clear why we looked at messages of length B i$ the least
common multiple of 4 (the length of the code words of the ficgte) and 5 (the length
of the code words of the second code). The first code allows warismit almost three
times as much information as the second. From this perspettie first code is far
superior. So, if all we care about is the amount of informatimnsmitted, the first
code is better; however, clearly this is not the only thingcaee about. We are also
concerned with detecting errors. In blocks of length 4, thet fiode can detect one
error, while the second code can detect one error in bloclength 5.

Comparing these two codes turned out to be easier than wgliheun each of the
two natural metrics, the first code was clearly superior.

We end with one final example of an error detecting code.

Example 1.3.7(Repetition code) This is the ‘Tell me twice’ code, where we take
binary code of fixed length and replace each word with its deuBor example, if we
started off with the code

{00, 01, 10, 11}

the new code becomes
{OOOO, 0101, 1010, 1111}.

It's very easy to detect exactly one error; if there is jusearror, then the first two
digits is not the same pair as the last two digits. Thus, thi 1-error detecting code.
It isn't a 2-error detecting code as 1010 could be the intehdeessage, or it could
have been 0000 corrupted in two places.

In Example 1.3.7, we have a four digit code with exactly foade words. Note
this is much worse than Example 1.3.3. There we also had adigitrcode, but we
had 8 code words. Both codes can detect one error in a bloehgth 4, but the code
from Example 1.3.3 can transmit twice as many messages q@ek of four.

1.4 Comparison of Codes

Much of this section is inspired by the informative monodréy Thompson [Th]. In
addition to describing the math, he discusses the histothetubject in great and
often entertaining detail, which is a result of having intewed many of the principal
players.

Let’s revisit some of the codes we discussed in the last@ectio facilitate com-
parisons, we introduce one more definition. Imagine we habvimary code of fixed
lengthn. We say the code is am,) binary block code if the firstr digits are free
message digits and the last— r are check digits. What this means is that the first

18 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

digits can be either 0 or 1 without any constraints; thereamossibilities here. After
we have specified the firstdigits, however, the last — r are forced on us by our
choice of code. These are the check digits, and allow us txtetrors.

Perhaps the simplest example is tRe, n) binary block code that repeats a code
word of lengthn; this is the Repetition Code of Example 1.3.7. What this rséan
that we consider th2"™ words of lengthn, and our code words are each of these words
doubled. For example, it = 2 we have four words of length?> = 4: 00, 01, 10,
11; our code words are 0000, 0101, 1010, 1111. This codeyadsdibcts one error;
if only one digit is altered, the first half of the received easlord does not match the
second half of the code word. Unfortunately, this code catelbus what the error is.
Moreover, it is very wastefulHalf of the digits are devoted to error checking. This is
prohibitively expensive. Surely we can do better.

Let’s return to the Parity Code of Example 1.3.3. In the laagpiof this section,
these arén + 1,n) binary block codes: we get to choose the firdigits freely, and
then the final digit is forced upon us by the constraint thatsihm of the digits is even
(equivalently, there are an even number of 1s, or the sunredfitlits is zero modulo 2).
As discussed in the last section, it's easy to detect an ben@. Ifn = 2 then we have
the four code words 000, 011, 101, 110. Note that for this cede percent of the
digits are devoted to transmitting the message, and %to error detection. Note
the significantly greater efficiency here;agets very large almost all of the message
is devoted to transmitting information, which is in starktast to the Repetition Code.

1.5 Error correcting codes

We now move to the exciting, long awaited topic of error cotim. We’ll describe
some simple and easily implemented codes that not only detears, but actually
correct them as well!

The simplest is an expanded form of the Repetition Code ofifp@1.3.7. Instead
of repeating the message once, let's repeat it twice. Irretbeds, if we want to send
one of 00, 01, 10, 11, then our code is

{000000, 010101, 101010, 111111}

The idea behind this code is that, if mistakes are rare, theatnility of two mistakes
is very unlikely, and the majority opinion is probably carte For example, imagine
we receive the code word 101110. This is notin our code, amslile know there has
been a transmission error. If there can be only one digitgiren the original message
must have been 101010; it is the only code word whose distaratenost 1 unit from
101110. All three of the blocks say the first digit of the megss 1; however, two
of the blocks say the second digit is a 0 while one block saisat1. Going by the
majority, we declare the fourth received digit to be in ereord the intended message
to be 101010.

We've done it — we have a code that not only allows us to detacalso correct
errors. Unfortunately, it is quite expensive. How costlit?sWell, in our fixed code of

1.5. ERROR CORRECTING CODES 19

length 6 in the above example, only two digits were used fentlessage, and the other
4 were used for detection and correction. That means onhtlingof the message is
actually conveying information. Can we do better?

Let’s return to the second riddle from 81.1. The key obséwuah our solution of
the hat problem is that of the eight binary words of lengthaheword is either 000,
111, or differs in exactly one digit from one of 000 and 111.t'¢ eonsider a code
based on this. We transmit either 000 or 111. Our receivesgagesis either one of
these, or differs from one of these in exactly one digit. If ;eceived message is not
000 or 111, we take whichever of these two is exactly one digay. Note that this
method is the same as repeat it twice.

While this actual code turns out to be a disappointment tfigsssame as just the
first digit is free, or again an efficiency of one-third), tliea of using the Hamming
distance to partition the set of possible code words intjpisissubsets is very useful.
There are entire courses devoted to this subject; we camyi o do it justice in a
section or two, but we can at least give a flavor of what can bne dm this section we’'ll
content ourselves with describing a very powerful error@cting code, thélamming
(7,4) code Our exposition will be entirely unmotivated — we’'ll simpéyate what it
is and see why it works. In the next section, we’ll discuss famming and others
found this code.

The general idea is easy to state. Imagine we have a binadylérgth code” (of
lengthn) whose minimum distance i& This means our code words all have the same
length (namely.), and are just strings of Os and 1s. Further, given any twindixode
words, they differ in at least places. Imagine our code has the following wonderful
property: each of the” possible words is within a distance péfg—lj of an element of
C. Then our cod€ can detect and corregt>2 | errors!

Where does th¢<>t | come from? For definiteness, imagide= 4 andn = 7,
and that we have a codg such that any two distinct code words @n differ by 4.
Further, assume that each of the= 128 possible words of length 7 is a distance of at
most| 45 | from at least one of our code words. Could some worbe this close to
two different code words? The answer is no because the disfanction is transitive.
Namely, ifc; ande, are the two code words, then

d—1
dle, ¢e2) < dler,w) +d(e,w) < 2|——] < d-1;
however, we know the distance between any two distinct caatesvs at least/, and
thus we have a contradiction. Thus each word is at rhést | units from exactly one
code word. This allows us to detect and correct up%g? | errors.

Exercise 1.5.1.Check that the Hamming distance is transitive by compat{ng0110,
101101) andd(100110, 100111) 4+ d(100111,101101). Of course this isn't a proof of
transitivity, but it is a good check.

Exercise 1.5.2.Complete the argument above by showing the Hamming disiance
transitive.Hint: first show it is enough to prove this in the special cabemour words
have length one!

20 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

We are now ready to give Hamming (7,4) code. The code has Thiligits, 4 are
free message digits and 3 are check digits. The message aigithe third, fifth, sixth
and seventh, and the check digits are the remaining threecddheC is the following
16 words:

1111111,0010110,1010101,0111100,0110011,101101000031110000,
0001111,1100110,0100101,1001100,1000011,010101000100000000.

A tedious calculation (there are better ways) shows thatiingnum and the max-
imum distance of the code is 4; equivalently, this means eade word differs from
any other code word in exactly 4 places!

Exercise 1.5.3.There are 120 distances to check, as there (éf@ = 120 ways to
choose two out of 16 words when order does not count. e 0011,0100101) =

4 andd(1000011,1101001) = 4. If you want to write a program to check all of these,
the pseudocode looks like:

Let Ham(:) denote the™ of the 16 code words.
min =7; max = 0.
Fori = 21016,
Forj=1toi—1,
Letd = d(Ham(z), Ham(j));
If d < min then min =d;
If d > max then max =l.
Print min. Print max.

The Hamming(7,4) code has 16 code words. Each code word is exactly 4 units
from any other code word. Thus = 7 andd = 4, so|41] = 2] = 1, which
means we can detect and correct one error. Another way a@fgtdtis is that each
of the 27 = 128 binary words of length 7 is at most 1 unit from a code word. To
see this, note that each code word has seven neighbors fieatfidim it in just one
digit; further, two different code words cannot share a hbiy that differs in just one
place as this violates the code words being separated byw.ntbmy words have we
accounted for? There are the original 16, and each genesatea more, for a total of
16 4+ 16 - 7 = 128. We have thus accounted for all of the 128 possible words!

We have therefore shown that the Hammifig4) code can correct one error. How
efficient is it? How much information does it transmit? As wavé 4 message digits
and 3 check digits out of 7, four-sevenths or about 57% of thisdconvey informa-
tion. This is far superior to the Repetition Code, where amig-third of the digits were
transmitting information. In fact, over half of our digitsrvey information, something
that is of course impossible with a repetition code.

The Hamming(7,4) code has a lot of nice features. Our message is digits 3, 5,
6 and 7. We’'ll discuss in the next section why we take the cliigits 1, 2 and 4 to
be the values they are; for now, let’s just accept these. eraes three parts to using
an error detecting code. The first is we have to encode ourageswe then transmit
our message, and then the recipient tries to decode the gee<3ar code tells us how
each message is encoded. For example, while 1111 becom&s1111 ive have 1011

1.6. MORE ON THE HAMMING(7,4) CODE 21

is sentto 0110011. We then transmit our message, and arlg simgr can be detected
and corrected. To decode our message, is it enough to justtiedfirst, second and
fourth digits? Unfortunately, no; this works if there aretn@nsmission errors, but of
course the entire point is in correcting errors! Fortunatieé decoding isn’t too bad.
So long as there is at most one error, only one of our 16 coddsnwill be within 1
unit of the received message; whatever code word is thie ¢tothe decryption. Thus
the Hamming(7,4) code has an extremely simple decryption routine; it's sy @as
don’t have to worry at all about any difficulties in implemiert it.

Our purpose is to just show that efficient, easily implemieletarror correcting
codes exist, and not to write a treatise on the subject;,Ad@e REF for more de-
tails. To do so would involve a lot more mathematics, invodvgroup theory, sphere
packings and lattices. One can build codes that can correcbgs, or 3, or 4 and so
on. Stepping back, though, what we have just shown is alrgaég stunning: we
can construct an easy to implement code that can detect argttan error while still
having more than half of its digits devoted to our messagedaBiing this in terms of
the Indiana Jones scene described earlier, it would be whrdfeElsa could realize
she misheard him and add the missing phrase “You don't'.

1.6 More on the Hamming(7,4) code

This section is heavily influenced by Thompson’s monogrdjpiy;[we heartily recom-
mend it to anyone who would like to know a bit more about theabizrs involved in
these stories, though be warned that the mathematics destisquite deep.

Before describing how Hamming arrived at this code, it'®iasting to note why
he was looking for it. In the 1940s Hamming was working at Relboratories. He
had access to computer time, but only on the weekends. Thetwayked was his
program was fed into the computer, which ran it until an ewas found. At the first
sign of an error, the program halted and the computer moved time next person’s
task. For two straight weekends, errors developed and Hagwas left with nothing.
Frustrated, he wondered why couldn’t the computer be tatoghdt just detect errors,
but also correct them.

Example 1.6.1(Square code)Hamming had a series of papers developing error cor-
recting techniques. One fun example i$%4) binary block code. Consider a four
digit number in binary, say;b2b3bs. We write the number in a square:

b1 be
bz by

and extend it to
by by bs
bs b4 bg
by bg by

as follows:b5 equalsh; + b, modulo 2,bg equalsbs + by modulo 2 b7 equalsh; + bs
modulo 2,bs equalsbs + b + 4 modulo 2, and finallyg is by + bs + bs + by modulo
2. We thus have four message digits and five check digits.a Itikce exercise to

22 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

show that this can detect and correct any single error (irt,fa®@ don’t even neefi).
This code conveys more information than the repeating ldode. While the ‘tell me
three times’ or the ‘majority rules’ repeating code had ahéd of its digits conveying
information, here four-ninths or about 44% of the digits eey information (if we
take the improved version where we remove the superfluguben half the digits
are transmitting information). While this is worse than tHamming(7,4) code, it
is a marked improvement over the repetition code. Note thiatmhethod is a natural
outgrowth of parity checks.

Exercise 1.6.2.Given the messagé11, encode it using the algorithm above.
Exercise 1.6.3.List the 16 different messages in the code from Example.1.6.1

Exercise 1.6.4.Assume you and your friend are using the method from Exangle, 1
and you receive the message 101111000. You quickly rehigéstnot what your
friend meant to send; assuming there was only one error inrdmsmission, what was
the intended message?

Exercise 1.6.5.Generalize the square code and consider the square (16 d&). &how
that it can detect one error, and has 9 out of 16 digits (or 584}, devoted to our
message. Of course, similar to the original square code wetdeed the final entry,
and could construct a (15, 9) code, which would lead to 60%unfroessage devoted
to information! We could continue to push this method furthed look at square
((n + 1)%,7n?) codes. Almost all of the message is now devoted to the infanmae
wish to transmit; unfortunately, we are still stuck at beatge to detect only one error.

Exercise 1.6.6.Try your hand at further generalizations of the square codéat if
you looked at a cube? For instance, if you tooB & 3 x 3 cube with a2 x 2 x 2
sub-cube, you would have 8 message digits. How many erraridwou be able to
detect? What if you looked at larger cubes? What if you lo@kddgher dimensional
analogues, such as hypercubes?

We described the square code for a message with four digitsfafmation; of
course, we could do a larger one (and sketched some of thisdet&xercise 1.6.5.
If we hadr message digits, then we need= m? for somem as we have to be able
to arrange the message in a square. How many check digitheneif our message
is of sizem?? There ar&m + 1 check digits:m from them rows, another from
them columns, and then the final check for the row and column chexdlcourse, we
can similarly remove the last check and make do with pustcheck digits. Note that
asm grows, almost all (percentagewise) of the digits of our ragesare transmitting
information, and almost none are being used for checkingcilipally, the size of the
code ism? +2m+1 = (m+ 1), m? digits are used for transmitting information, and
thus the percentage being used for information is

m? __(mal-1\ 1)
(m+1)2 m+1 B m+1)
As m tends to infinity, this can be made as close to 1 as we wish ¢thaiways, of
course, a little bit less).

1.6. MORE ON THE HAMMING(7,4) CODE 23

What does this mean? Our previous codes had efficiencieslikérd or four-
ninths; now we can make a code as efficient as desired, withdptagewise) almost
all digits devoted to transmitting information! There i§course, a trade-off. We don’t
get anything for free. This code can only detect one errorrédting one error in a
code of length(m + 1)? is much worse than correcting one error in a code of length
four or seven. This means that the square codes are not thaf gdralstory.

Exercise 1.6.7(Hard). It is worth mentioning, though, that the square code can be
extended to several dimensions, which allomdtiple errors to be detected. Try and
think of a multidimensional generalization that will detead correct two errors.

We now describe the derivation of the Hammifrg4) code. We have 7 digits at
our disposal, and the goal is to devote four of them to our agesand three of them
to checks. We will use parity checks, which is very common mviverking with 0s
and 1s. We're going to ignore the geometry and the distan¢ganand concentrate
on how the check digits are used. We have 16 possible messageguivalently 16
numbers.

We place our four digit message into slots 3, 5, 6 and 7 of otgrsdigit message.
We now have to assign values to the first, second and fouritsdigget’s write our
seven digit message dsdsdsd,dsdgdr, where we knowds, ds, dg andd; and need to
determinel;, d> andd,. We set

dl = d3—|—d5—|—d7 mod 2
dy = d3+dg+ d7 mod 2
dy = ds+dg+ d7 mod 2. (1.3)

Exercise 1.6.8.Assume we are using the Hammifig4) code, and we receive the
message 0011001, which is not one of our sixteen code wordist Message was
meant? Which parity checks fail?

Why does this method work? We have three parity checks. Theifivolves
(ds,ds,dr), the secondds, ds, dr) and the las{ds, dgs,d7). We assume there is at
most one error. If the message is transmitted correctly (he3) is satisfied. If there
is an error, then at least one of the three equations i (1r8)atdhold. We now explore
all the various possibilities. If all three parity checks,fthend; was in error.

If only the first fails, thend; (one of our check digits!) is wrong. To see this,
note that if the second two equations hold, thiends, . . ., d; must all be correct, and
therefore the cause of the error musidye

If the first two equations fail, then the fact that the lastdsoineansly, ds, dg and
d7 are correct. The only element in common between the first u@gons isds,
which therefore must be in error.

We end with a few words on how one can find these parity chebksgtarguments
can easily be skipped. We have 16 code words; we list themgiedheir equivalent
decimal number.

0001 (1)
0010 (2)

24 CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

0011 (3)
0100 (4)
0101 (5)
0110 (6)
0111 (7)
1000 (8)
1001 (9)
1010 (10)
1011 (11)
1100 (12)
1101 (13)
1110 (14)
1111 (15)
10000 (16)

We can split these 16 numbers into three sets, dependingarathe of their ones
digit, their twos digit (remember we’re working in binary; lsase 2; thus 10 is really
the same as 2), and their fours digit (100 is really 4). Thelmenmithat have a 1 as their
onesdigitare 1, 3,5, 7, 9, 11, 13 and 15, those with a 1 astthe# digit are 2, 3, 6,
7,10, 11, 14 and 15, and those with a 1 as their fours digit 26e@}, 7, 12, 13, 14 and
15. Note each check has exactly eight of our sixteen numisecxated to it, and each
of the sixteen numbers appears in zero, one, two or threeeaftfcks.

1.7 Additional Riddle

HAVEN'T INCORPORATED THIS YET, BUT THE HAMMING (7,4) CODE
CAN BE MOTIVATED BY THE FOLLOWING RIDDLE. I'LL ADD THIS SOON.

Freedonia security caught 10 spies from the Kingdom of Sy&vavho attempted tq
poison the wine of Freedonia’s King, Rufus T. Firefly the Grdde king keeps 100
bottles of wine in his cellar. The spies managed to poisorctgxane bottle, but
were caught before they could poison any more. The poisonvisra special ong
that is deadly even at one-trillionth the dilution of the gmied wine bottle and takes
EXACTLY 24 hours to kill the victim, producing no symptomsfbee death.
The trouble is that the King doesn’t know which bottle hasrbpeisoned and thg
wine is needed for the Royal Ball in exactly 24 hour's timeh&i the punishment fo
attempted regicide is death, the king decides force thesgpi@rink the wine. The
King informs his wine steward that if he mixes wine from apgmiate bottles for each
spy, he will be able to identify the poisoned bottle by thedithe ball starts and kil
at most 10 of the spies. Further, each spy drinks only onoeigifn each spy’s cup i
potentially a mixture of wine from many bottles.

How does he do it, and can one guarantee that at most 9 (or enessa8) are killed?

o

D

=

a7

We first give a solution for 1000 bottles, and then extenchdljgto 1024. As a
general piece of advice about riddles in particular and rpatblems in general, often

1.7. ADDITIONAL RIDDLE 25

the numbers chosen have significance. Here 1000 should rakiiyk of either1 03,
or a number just a little less tha)24 = 20, It is the latter point of view that is
especially fruitful for solving this riddle; note that if werite 1024 a'°, the number
of spies enters as the exponent of 2!

Let’s label the bottles unimaginatively 1, 2, 3,., 1000. We have the first spy
drink a mixture from bottles 1, 2,..,500. If he dies, we know the poison was in one
of the first 500 bottles, while if he lives we know the poisoini®ne of the final 500
bottles. We now have the second spy drink a mixture from éottl, 2,...,250 and
bottles501, 502, ..., 750. If she dies, the poison was in either bottles 1 throdghd?
501 through 750.

Note that we eliminate half of the bottles from looking at wiex or not a spy is
alive or dead. Further, if we look at the two of them togethemliminate three-fourths
of the bottles! For example, imagine the first spy dies andséwond lives. Then the
poisoned bottle must be in bottle 251, 252, or bottle 500. Why? Since the first spy
died, the poisoned bottle is one of the first 500; since thersepy lived, it's not one
of the first 250.

Continuing in this manner, we can determine which bottlevisgned, and we Kill
at most 10 spies.

Let's recast the answer using binary numbers — this will enfare useful for
studying codes. Imagine now we have 1024 bottles, but nowalsel kthem in binary.
Thus the first bottle is 0000000001, the second bottle is 000010, . ., the 784"
bottle is

26

CHAPTER 1. ERROR DETECTING AND CORRECTING CODES

Chapter 2

Primality Testing and
Factorization

NOTE: THIS INTRO WAS ORIGINALLY WRITTEN FOR SOMETHING ELSE,
AND MIGHT NEED TO BE MOVED ELSEWHERE IN THE BOOK.

It's June 6, 1944, and you are an allied commander during B-@aen Allied
forces launch the greatest amphibious landings the worttslean in an attempt to
liberate Europe. You lead your troops ashore, and find thpodigon of German forces
is notwhat headquarters predicted,; if you can alert comnratithe, you can have your
reinforcements land at strategic positions. Of coursbgif@ermans learn where future
forces will attack, they’ll try and shift their reserve tyu®to thwart those landings.

This example illustrates two of the key issues in cryptobyapirst, we need to be
able to encode and decode messages quickly, ideally inmeal Battlefield conditions
change minute by minute, if not faster; if it takes too longémd and receive secure
communications, the information or requests could be datié&second, the code must
be secure. The level of security needed depends on theiaitu&br communications
before D-Day that describe the landings, these codes mugtiyesecure, requiring
at a minimum weeks to decrypt. The reason is that an enormatisop D-Day is
the surprise, specifically when and where it will occur. Fomenunications during
the battle, however, far less security is needed. Therdirigsto use a code that can
be broken in several hours, but not sooner, for battlefiedgiests. For example, if
troops radio headquarters at noon that future waves shamitbdt a specified location,
it suffices for the code to be secure until those landings haken place and been
observed by the enemy.

We have discussed many different encryption and decrystitiemes. Many of
these use prime numbers. For example, in RSA we choose tge faimesp and
g and make public their product. This example illustrates t@mplementary issues
for us: the need for efficient algorithms for primality tesfiand for factorization.
We need tdind prime numbers in order to use RSA, which takes two primes as an
input. Additionally, the security of RSA is related to thesamed difficulty offactoring
numbers into primes.

27

28 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

Obviously these two problems are related. If we can effitjefattor any number
N then we get for free a primality test (simply see whether dramy factor is strictly
between 1 andV); the converse, however, need not be true. That is to saywbeé
will see examples of algorithms that will say whether or a bemV is prime, but if
N is composite give uso information on its factors! At first this seems absurd. Every
integer is either a prime or a product of primes; thus if oumber isn’t prime surely
we must know a divisor! Sadly, this is not the case. It turnistbat there are certain
properties that prime numbers satisfy that composite nusndi®not, and thus we can
learn that a number is composite without actually knowingfactors!

We have been in this situation before. Let's revisit Eusligfoof of the infinitude
of primes. At over 2000 years, it's certainly one of the otda®ofs still taught in
classes. We assumed for the sake of a contradiction that #neronly finitely many
primes, say 2, 3,5, 7, 11, ., p,. We then considere?l-3-5---7---11---p, + 1,
and noted that this number cannot be divisible by any primeuwiist, as each leaves
a remainder of 1. Thus our new number is either prime or elisadivisible by a new
prime notin our list. While we have shown there exist infilyiteany primes, our proof
does not give an infinite list of primes. The situation is $g&mfor many primality tests,
where we can learn a number is composite without knowing &itg éactors.

In this chapter we’ll explore how long it takes to do variouathematical tasks,
concentrating on the importance of efficiency for cryptgdyia applications. The re-
mark below looks at the sequence of primes found by Euclidshod. In addition
to going through the details of applying Euclid’s metho&, & nice way to see how
simple questions can lead to fascinating and complicatedver. In particular, while
it's very easy to state Euclid’s method and to discuss it thgeally, in practice it is
exceptionally difficult to implement; sadly, this can be ttese for many algorithms
in cryptography. It requires us to be able to factor large bers, and this quickly be-
comes a challenge. To date only the first 40 or so terms areidnblus this example
serves as a reminder of the need to find efficient algorithms.

Example 2.0.1. It's fascinating to look at the sequence of primes found bglilis
method. We start with 2. We then add one and get 3, the next jprnour list. We then
look at2 - 3 + 1; this is the prime 7, which becomes the third element of ogusace.
Notice that we've skipped 5 — will we get it later? Let's cong. The next number
comes from looking & - 3 - 7+ 1 = 43, which is again prime. The next number arises
from2-3-7-43 = 1807 = 13 - 139; thus the next term is 13. The sequence meanders
around. The first few terms are 2, 3, 7, 43, 13, 53, 5, 6221631038183810571, 139,
2801, 11, 17, 5471, 52662739, 23003, 30693651606209, J1, 1813797957, 887,
71, 7127, 109, 23, 97, 159227, 64367979496346622308150983, 1079990819,
9539, 3143065813, 29, 3847, 89, 19, 577, 223, 139703, 459, 9l, 4357. We
obtained these from the On-line Encyclopedia of Integerugerges, entry A000945
(htt p: // oei s. or g/ AO00945). This website is a great resource to learn more
about interesting sequences. There are many open questiansg this sequence, the
most important beingDoes it contain every primeWe see it does get 5; does it get
317

2.1. BRUTE FORCE APPROACH 29

2.1 Brute Force Approach

We've seen that prime numbers play a key role in many crystesys. One reason
is the Fundamental Theorem of Arithmetic, which assertsramgber can be written
uniquely as a product of prime powers. Here ‘uniquely’ magmto re-ordering, so we
consider? - 3 to be the same & 22 or2 - 3 - 2. In fact, the desire to have a statement
like this be true is why mathematicians have declared thatribt a prime; if it were,
we would no longer have a unique factorization, writing a bemlike 12 as either
22.30r1-22.3, or even wors@?2'2 . 22 . 3, While the proof of this important result
is not beyond the scope of this book (you don't get the labehtfamental Theorem’
lightly in mathematics!), as it would take us too far afieldgminto details, we refer
the interested reader to [MS].

Ouir first method is probably the oldest known way to factor mber: brute force!
While many problems in cryptography and other sciences eaolved by brute force,
frequently the amount of time required is so large that suethods are essentially
useless. Prime numbers play a central role in many cryppbigaystems. The secu-
rity of RSA, for example, rests on the assumption that itfadilty to quicklyfactorize
large numbers.

The key word, of course, iguickly, as there is a trivial algorithm to factor any
number. To find the prime factorization &f all we need do is try every number at
mostN. For example, conside¥ = 1776. We first try 2, which is a factor as

1776 = 888 - 2.

We can now conclude that 1776 is not prime, though we do nog litavcomplete
factorization. To complete the factorization of 1776, wedhenly factor 888 and then
add in the factor of 2 we have just found. Note that, oocefactor is found, we have
a new factorization problem but with a smaller number. We firat 2 divides 888, so
22 divides our original number 1776. Continuing in this manmer see tha2* divides
1776 (1776 = 16 - 111) but2® does not, as

Thus
1776 = 24 - 111.

We have removed all the powers of 2 from our number, and noegaato factor 111.
Note that this problem is easier than the original problenfaoforing 1776 for two

reasons. First, our number is smaller, and second, we knaw2thannot be a factor,
as we have removed all powers of 2. We thus try the next nurBband find

111 = 3-37.

As 3 does not divide 37, we have found all the powers of 3 thatidil11, and thus all
the powers that divide 1776. Our factorization has impraeed

1776 = 2*.3.37.

30 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

We now try to factor 37. We do not need to try 2 or 3 as a factonvashave
already removed all of these. What should our next attempfitheere are two ways to
proceed. One possibility is to try 4. The reason it is nattoraly 4 is that it is the next
integer after 3; however, clearly 4 cannot be a factor asusi2f, and we have already
removed all powers of 2. Thus the next number we try shouldhbanext prime after
3, which is 5. Trying 5, we see that it is not a factor of 37 as

37
)

Continuing in this manner, we keep trying all the prime nurshg to 37, and find
that none of them work. Thus 37 is prime, and the completefaettion of 1776 into
products of prime powers is

= 74.

1776 = 2*.3.37.

Exercise 2.1.1.Using the brute force algorithm, determine whether or nod1L7s
prime. If it is not prime, factor it.

From a theoretical point of view, the brute force algorittsrperfect. It is guar-
anteed to work. It will tell if a number is prime, and if it is mosite it will provide
a complete factorization. Unfortunately, it is essenfialorthless for real world ap-
plications due to its incredibly long run-time. To see tlisnsider the case whes
is prime. If we use the naive approach of trying all numbers haveN numbers to
try; if we instead only try prime numbers as potential fastdsy the Prime Number
Theorem we have essentiallj/ In N numbers to check. For example Nf = 10'%°
thenln 10'%° is about 230 (remember that we are taking the natural Idga)it This
means that there are abol'’/230 primes to check, or more thar)®” candidate
factors!

Can the brute force approach be salvaged? With a little thipwge can improve
our algorithm enormously. We've already seen that instéathecking every number,
clearly we need only look at prime numbers up\fo A much better observation is to
note that it also suffices to just test primes up/fd7. The reason is that iV = ab
then either or b must be at most/N. If both a andb were larger than/N then the
product would exceed’:

a > \/N
b > VN
a-b > VN-V/N = N.

Thus for a given numbe¥, either it is primeor it has a prime factor at mostN.

For example, conside¥ = 24611. As /N ~ 156.879, this means that eithe¥
is primeor it has a prime factor at most 156. Checking all primes up to(if6largest
such prime is 151), we see that none of them divide 24611. ZH6&1 is prime, and
we can prove this by confining our search to primes at most Th@re are only 36
such primes, which is far fewer than all the primes at mosti24éhe largest is 24593,
and there are 2726 such primes).

While it is an enormous savings to only have to check caneilap tov/N, is it
enough of a savings so that brute force becomes useful itiggacLet’s analyze the

2.1. BRUTE FORCE APPROACH 31

problem in greater detail. Consider the situation of RSAeretan eavesdropper needs
to factor a large numbe¥N which is the product of two primes. Let's say the primes
p andgq are aroundl02?° so thatN is around10*°°. How long would it take us to
try all possible divisors by brute force? The universe isragimately 13 billion years
old, and is believed to contain less thed¥° subatomic items. Let's overestimate a lot,
and say the universe is 1 trillion years old and therel@fé® subatomic items, each
of which is a supercomputer devoted entirely to our needscapable of checking
10%° prime numbers per second (note thisriagnitudedeyond what the current best
computers are capable of doing). How long would it take usigek thel 02°° potential
prime divisors ofN? We first translate our age into seconds:

365.25 days 24 hours 3600 seconds

< 10%.
1 year 1 day lhour

1 trillion years = 10'2 years

The number of seconds needed is

10200

— 109%0.
10100 . 1040 107

the universe hasn't even existed f@”° seconds, let alon&)®°!

The point of the above computation is to drive home the pdiat,tjust because
we have an algorithm to compute a desired quantity, it doésnean that algorithm
is useful. In our investigations in cryptography, we willcennter two variants of
this problem. The first is a search for efficient algorithmsye do not have to wait
significantly longer than the universe has existed for oswan! The second is the
opposite; for security purposes, want problems whose answers take an incredibly
long time to solve, as these should be secure. Of coursefitas necessary for us to
solve these problems as well. We will thus be led to studyiagdoor functions and
problems. These are problems where the answer can be abtagreficantly faster
with an extra piece of information that is not publicly agdle. For instance, let's
return to the factorization problem, and let's assume thatgassword is the largest
prime factor of N, whereN = pq is the product of two rimes. We've seen thafifis
of the order1 04" then it takes too long to compute the prime divisors by bratesd;
however, if we are givem, then we can immediately determigefrom the simple
divisiong = N/p.

Exercise 2.1.2.In the example above, we assumed the amount of time it toalstto t
whether or not a given divided N was independent of. In practice this is of course
absurd. Consider the following two problems: Iétbe a 10,000 digit number, letbe

a one digit number and lgtbe a 100 digit number. Using long division, approximately
how many digit multiplications are needed to diviNeby z? To divideN by y? We
thus see it is more ‘expensive’ to divideby y than it is to divide bye.

Remark 2.1.3. Not surprisingly, it's very important to find fast, clever ysmato do
operations. The ‘obvious’ way to multiply two digit numbers involves:? single-
digit multiplications; amazingly, there is a better appiola Karatsuba found a way
to do it requiring at mosBn'°223 ~ 3n!-5%5 single-digit multiplications; see for in-
stance the Wikipedia entrigt t p: / / en. wi ki pedi a. or g/ wi ki / Kar at suba.

32 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

To truly appreciate how important this is, imagine we hav®@ @igit number. Multi-

plying it the way we were taught requir2802 = 40, 000 single-digit multiplications,

while the Karatsuba algorithm needs only 13,310. This isdmé of many problems
that can be done faster than you might think. Another examsphorner’s algorithm

to evaluate a polynomial (see for instance Chapter 1 of [NiTaéBailable online at
htt p://press. princeton. edu/ chapt ers/ s8220. pdf).

One of the greatest dangers in cryptography, of courseatsatiproblem which is
believed to be difficult might in fact be easy. For examplet fiecause no one knows a
fast way to factorize large numbers does not mean no suclochettists, it just means
we do not know how to do it. It's possible someone has disaaarfast way to factor
large numbers, and is keeping it secret precisely for tressons! In cryptography, the
fear is that there might be a hidden symmetry or structureathattacker could exploit,
and the underlying problem might not be as difficult as we titu Let’s revisit our
factorization problem. Recall the goal is to find the factofsV, with N a product
of two primes. If we don’t know either prime, we saw that evewé had incredible
computer resources at our disposal, the life of the univisrseenough time to make
a dent in the problem. If we know the smaller of the two fagttre problem is almost
instantaneous. What if we are foolish, and accidentallyoskdhe two primes to be
equal? In this case, the problem is again trivial. Even thowg don’t knowp, we
can quickly discover it by noting thaf N is an integer. (There are lots of good ways
to take square-roots; we could always approximaré, and then test the two integers
immediately above and below.) For many cryptosystems, #mgelr is that there is a
subtle error like this lurking, unknown.

We now discuss various algorithms for primality testing &orization. Some of
these work only for numbers of certain, special form; otlvewsk for any input. While
many of these algorithms are significantly faster than bfortee, to date there is no
known, fast way to factor a number, though there are knovat Wfays to determine if
a number is prime.

2.2 Fermat’s Factoring Method

As remarked above, one of the central difficulties of crypapdpy is that much of it is
based on the belief that certain problems are hard and tmmothae solved without
extra information that is hidden from an attacker. How do wew these problems
are hard? We know because no one has solved them yet! Of ¢thisssounds like
circular logic. There could be an elementary approach thatjhst been missed for
years, and the problem might actually be easy after all.dt fae’ll see an example of
this in §2.3.

We now describe some interesting approaches to factoringars. The first is
Fermat’s method. We might as well assume our integes odd, as it is very easy
to check whether or not it is divisible by 2. Further, we casuase thatV is not a
perfect square, as it is very easy to tesVif= n? for somen. To do this, we simply
approximate the square-root &f and then check the integers immediately below and
above to see if either squaresito

2.2. FERMAT'S FACTORING METHOD 33

We therefore content ourselves with trying to factor addthat are not perfect
squares. Imagine that we can writeas the difference of two squares, so

N = 2% — 42
If, somehow, we can find such arand ay, then we can factoV as
N = (z—y)(z +y);

so long asc — y andz + y are neither 1 noN we have factored as a product of two
non-trivial terms. For example,

2007 = 1162 — 1072,

SO
2007 = (116 +107)(116 — 107) = 223-9.

For a more interesting example, consider
12069 = 1152 —34% = 14981,
or even more amazingly

123456789987654321 = 3552188552 — 521885522
= 407407407 - 303030303;

we couldn’t use 12345678987654321 as an example becauke eftertaining fact
that it equalsl111111112.

Several questions immediately present themselves.

e If N is an odd, composite number, cah be written as a difference of two
squares?

e If N can be written as a difference of two squatesy do we find these squares?

We start with the first question. It turns out that it is alwayssible to write an
odd, square-fre&’ as a difference of two squares:

= N.

N+1*> (N-1\> N?42N+1 N?2-2N+1
2 2 B 4 4

How did we arrive at this? This comes from what happens wheramtiorization is
trivial. Explicitly, if
N =a* -y = (z—-y)(z+y)

34 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

let’s consider what happens when- y = 1. As the productisV, this forcest + y to
equalN. Adding these two equations give

r+y = N
tr—y = L1
2240 = N+1,

orx = % If instead we subtract these two equations we fipd= N — 1 or
Y= % Thus the difference of squares is really

2

2

= N.

s N+1\?> (N-1\> N242N+1 1-2N+N?
S N - 4 N 4

We see that our first question was poorly phrased. It is notigiméo write N as
a difference of two squares; we want the facters y andx + y to be neither 1 nor
N. Clearly this cannot be possibleif is prime. What if N is composite, say = rs
(where of course ands are odd asV is odd)? We then negd — y)(z + y) = rs. If
we letz —y = r andz +y = s, then adding the two givele = r+s orz = “£2; note
2 will be an integer since ands are odd so their sum is even. Similarly, subtracting
the two equations give®y = s — r soy = *5-. In other words, ifN = rs then we

have
2 2
N — (r—i—s) B <s—r> .
2 2

Our discussion above gives us some cause for hope. We hawa shat if NV
is composite then we can write it as a difference of two square non-trivial way,
and conversely if we can write it as a difference of two sgsi@hen we can obtain a
factorization.

The next question is whether or not we ezasily finda difference of two squares
equalingN. At first glance, there is a very obvious reason to worry alloatpracti-
cality of Fermat’s method: what i¥ = 22 — 32 butx andy are much larger thaiv?

If this were the case then it might take a long time to find thédies. We clearly need
some control over how largeandy can be in order to bound how long Fermat's algo-
rithm will take. This is readily done by noting again tiét= 22 —y? = (z—y)(x+y).
For a non-trivial factorizationy — y > 2 and thuse + y < N/2 (asz +y = w—]fy).

In other wordsx: andy are at mostV/2. Compared to our original attempt to factor
by brute force, this is the same order of magnitude of how nmranybers we must
check; however, it is much worse than our refined brute fopge@ach. There we saw
it sufficed to check all numbers up 6N, whereas here we are still checking on the
order of N numbers.

We can now explicitly state Fermat's method to fackr

2.2. FERMAT'S FACTORING METHOD 35

Fermat's Method
1. If N is even, then 2 is a factor and apply Fermat's methaod fa.
2. If N is a perfect square, then apply Fermat’s methog/19.

3. For N an odd integer which is not a perfect square,setqual the smallest
integer greater tha' N. Letz = s,s + 1,. .., % If for any of these choices
of we havex? — N is a square (say?), thenN is composite and factors as
N = (x —y)(z +y); if for each of these’s the number? — N is not a square
thenN is prime.

While we know that it suffices to checkandy that are at mosiV/2, if we had
to check all such integers then Fermat’s method would beltw ® be of practical
use. Unfortunately, there are times when we would have tolchkésuch numbers, for
example, ifN were prime. Fortunately, there is a large class of numbeeseMrermat’s
method works quite well, namely thodéwhich are the product of two primes each of
which is nearn/N.

For example, consideN = 327,653. N is odd, and as/N is approximately
572.41 we sed is not a perfect square. Lettingoe the smallest integer at leagiV,
we haves = 573. Thus we must see ifany af — N, (s +1)? — N, ... are perfect
squares. We are in luck, as the very first case is

s2 — N = 573% — 327653 = 328329 — 327653 = 676 = 26°.
Rearranging gives
573% — 26% = (573 — 26)(573 + 26) = 547 - 599.

For a more interesting example, considér= 223,822, 733. A straightforward
computation shows thay is odd and not a perfect square. &SV ~ 14960.7, s =
14961. Thus we must check to see if anysf— IV, (s+1)% — N, and so on are perfect
squares. We have

149612 — N = 8788 = 93.742
149622 — N = 38711 =~ 196.752
149632 - N = 68636 ~ 261.992
149642 — N = 98563 ~ 313.952
149652 — N = 128492 =~ 358.46°
149662 — N = 158423 =~ 398.02°
149672 — N = 188356 = 4342

Thus
N = 14967% — 434% = (14967 + 434)(14967 — 434) = 15401 - 14533;

thought it is not obvious at all, the two factors above happdre prime, and we have
thus factorizedV = 223, 822, 733. While Fermat's method does not work well for all

36 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

numbers, it is amazing how well it captures the factord/ofthenever we can writé/
asrs with r, s of sizev/N. We were able to show a nine digit number is composite by
just doing 7 loops through the algorithm.

Remark 2.2.1. Looking at Fermat's method, a natural question emerges: hawy
numbers can be written as a product of two numbers of appwteiynthe same size?
For example, consider

N = 7789357 - 10354024466273 = 80651192954534856461.

Neither factor is particularly close t¢/N, which is approximately - 10%; however,
our number has the alternative factorization

N = 8015447633 - 10061969917,

and here the two factors are close\tdv. There are many ways to group factors — for
Fermat’s method to work, all we need is famegrouping to have both terms nediV.
Letting p,, denote thex™ prime, we see

2 .
N = pi15-plg P17 - P231424 - P231425;

the first factorization corresponds to

(pls '??6 'Pl?) * (P231424 - P231425)

while the second corresponds to

(p15 * P16 '?231424) : (P16 “Pir 'P231425) .

Randomly take some large numbers and look at their factowizm Experiment with
grouping the factors and see how often you can find two facteas the square-root of
the number. For definiteness, look at say 1000 numbersragaatisay 34225523532.

2.3 Agrawal-Kayal-Saxena Primality Test

There are many algorithms used to factor integers or, if weose goals lower, to

simply determine if a number is prime. We need a way to comfiese algorithms;

however, it is not immediately clear how to compare diffémmethods. For example,
what if most of the time one method runs 10 times faster thanham, but for some

special numbers the method breaks down and the program tewgnates? Which

algorithm is ‘faster’? Note that if the algorithm doesnitrténate for some inputs, then
its average run time will be infinite!

Let’s consider one method that takes 10 seconds for each mwpdianother which
takes 1 second for all inputs that are not five more than a pieiltif 101°°, where for
these numbers the run-time equals**° seconds. The average run-time of the first
method is just 10 seconds, while for the second it is

(1010 — 1) - 14110100
10100

= 1-107109 4+ 100,

2.3. AGRAWAL-KAYAL-SAXENA PRIMALITY TEST 37

or approximatelyl0'° seconds (which is more than 300 years!). Which algorithm is
better? Even though the first has a better average run-tirost, people would prefer
the second algorithm asostof the time it is ten times faster. Of course, this is a very
artificial example in that we know precisely which inputs beasl for the second algo-
rithm. Knowing this, we would clearly use the first algoritfion such special numbers
and our second algorithm otherwise. In fact, we can gerzerttis idea and look at a
combined, new method defined as follows:

e Step 1: Run the second method on our input. If it terminat@ssacond, we are
done; if not, proceed to Step 2.

e Step 2: Run the first method on our input.

By mixing the two methods, we are able to take advantage df ipabe situations
where they run well. If the second method worked on our inpditi¢h happens for
10199 — 1 out of every10'°° numbers) then our run-time is just 1 second; if we had to
go to Step 2 then the total run-time is 11 seconds (one seaoristép 1 and then 10
seconds for Step 2). Hence the average run-time is now

(10100 —1).141-11
10100

= 14+107%,

or just a tad over 1 second.

This illustrates a common feature. We can try certain meghioat work extremely
well for restricted inputs, and if they do not work we can th@oceed to a slower
algorithm that works well for more inputs.

For a long time, one of the biggest problems in cryptographg whether or not
there was a provably fast method to determine if a nunithaés prime. By ‘fast’ it
was meant an algorithm that runs in time proportional to thmioer of digits of NV
to a fixed power. Note thdbg,, N is a good measure of how many decimal digits
N has. For exampldpg;,10% = 8, log;,10% = 9, and if 10® < N < 10? then
8 < log;o N < 9. People were thus searching for an algorithm which would tel
whether or not an integéy was prime whose run-time was bounded by a polynomial
inlog,, V. To get a sense of what this means, assume the run-time tbegstimality
of Nis4(log,q V)7 — 27 (logyy N)2 + 11. If we now consideiN, = N2, then the run-
time is increased by approximately a factor26f= 128, while if we takeN; = N3
the run-time is approximately’” = 2187 times that forN. For example, if we take
N = 123456789 then the run-time forV is about9.08343 - 10° seconds and folN?2
it is approximatelyl.16273 - 10° seconds, which is an increase in run-time of about
128.005.

Before 2002, there were no algorithms which were provabéy fa determine
whether or not a number was prime. There were numerous #igw;j but they were
either probabilistic (and thus for some inputs it could takeng time to terminate) or
rested on well-believed but unproven conjectures suchesRitmann Hypothesis. The

38 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

situation dramatically changed in August, 2002, when Rsde Manindra Agrawal
and his students Nitin Saxena and Neeraj Kayal at the Indistituite of Technology
Kanpur announced a provably fast, deterministic algorittnhetermine whether or not
aninteger is prime. This was a phenomenal result, and a rthegoretical breakthrough
in a centuries old problem.

It is worth noting that, in practice, this algorithm has neplaced other methods.
The reason is that there are a large class of methods thatavaljlistic; they will
always return the right answer, but on some inputs the me-tould be enormous.
As these methods are faster for most inputs, it makes sertsg ¢oe of these other
algorithms first, and only if the program is taking a long titoeswitch to this new
algorithm.

We describe their algorithm, called the AKS primality tdslow. Not surprisingly,
their announcement sent waves through scientific circles,naany people looked at
their method and proof. This massive feedback has led toarafmts and variants; we
describe essentially the original formulation.

Before we can state their algorithm, we need to define threeequs and state one
result from combinatorics. The first is the Euler totientdtion, the second is modular
arithmetic, and the third is the order of an element, and ¢éselt concerns values of
the binomial coeﬁicienti’;). While some of these have been discussed earlier in the
book, to keep this section self-contained we repeat sontiere@xplanations.

We start with the simplest, the Euler totient function. Diekp, we define it by
settingy(n) equal to the number of integers{i, 2, . . ., n} that are relatively prime to
n. In other words, we are counting how many of these integerstishare any prime
factors withn. We thus haveo(1) = 1, ¢(2) =1, p(3) = 2 p(4) = 2 andp(12) = 4.
For example, if» = 12 then we have the numbers

{1,2,3,4,5,6, 78,09, 10, 11, 12}.

Which of these are relatively prime to 12? We lose 2, 3, 4, 80&nd 12, and are thus
left with

{1, 5, 7, 11},

and hencep(12) = 4.
The totient function is very well understood; for example, is prime thenpy(p) =
p — 1. To see this, consider the set

{1a 21 31 7p_2ap_17p}

We want to know how many of these numbers do not share a pragsodwith p.
Sincep is prime, the only numbers that divigeare 1 anc; thusp cannot divide 1, 2,

.., p— 1 but does dividen. We therefore see that exacgly- 1 of thep numbers are
relatively prime top, sop(p) =p — 1.

While ¢(n) is the number of integers ifil, . .., n} that are relatively prime ta,
frequently it mattersvhichintegers are relatively prime. These integers have special
properties relative ta, and thus merit a name. We writ& /nZ)* for the subset of
integers of{1,...,n} that are relatively prime ta; this notation should look a bit

2.3. AGRAWAL-KAYAL-SAXENA PRIMALITY TEST 39

strange, but it is the standard notation (and, if you takeaugtheory class, you'll
learn why). For example,

(Z/122)* = {1, 5, 7, 11}

and
for any primep.

Exercise 2.3.1.Computep(15), ©(21), ¢(33) andp(35).

Exercise 2.3.2.Notice each of the numbers in the previous problem is theymioof
two primes. Find a pattern betweeripq), ©(p) andy(q) for the four numbers of the
previous problem? Based on your success, conjecture a farfoup(n) whenn is
the product of two primes. Prove your claim.

Exercise 2.3.3.Computep(4), ©(9), ¢(25) andp(49).

Exercise 2.3.4.Based on the results from the previous exercise, guess al@ffior
©(p?) wherep is a prime. Prove your result.

Exercise 2.3.5.Find a formula forp(p?) for p prime by trying out varioug. Prove
your claim.

The next needed input is modular arithmetic. We say y mod n if © — y is
a multiple ofn. Thus15 = 3mod 12 as15 -3 = 1-12, and—24 = 4 mod 7 as
—24—4 = 4-7. We can define addition and multiplication for element§&fnZ)* by
performing normal addition and multiplication, and thenking at the result modulo
n.

For examplel0 + 5 equals 3 modulo 12. At first glance this seems absurd, as 10+5
is 15; however, if we look at it modulo 12 we are saying we ary concerned with
the answer after removing as many multiples of 12 as we canileBly 10 - 5 equals 2
modulo 12. These operations are usually called moduldmraétic, but they are often
called clock arithmetic in homage to the fact that most ofesrned this years ago
when we were taught how to tell time. For example, if it is 16lack now then in 5
hours it will be 3 o’clock; this does not seem strange, andagt floesn’t even merit
a pause anymore. What we are doing above is just the naturataeation, where
instead of having a clock with 12 hours we now have a clock wittours.

We can generalize these concepts from integers to polynemide sayf(z) =
g(x) mod m(z) if there is a polynomiak(z) such thatf (x) — g(z) = h(z)m(z). For
example,

3224+ Te+4 = 22+ 2+ 1modz +1

as
(B2 + 7z +4)— (22 +22+1) = (22+3)(z+ 1).

We can even combine polynomial congruence and modular cenge, and we say
f(z) = g(x) mod (n,m(x)) if there is anh(z) such thatf (z) — g(z) — h(x)m(z) =

40 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

0 mod n. Obviously the more congruences we have, the harder it ianPfesxample,
we showdx? — 3z + 1 = 2 mod (7,2 + 1). We have

(922 =3z +1) —2 = 922 —4a + 1.

Because we will eventually look at everything modulo 7, wétex? as2z? + 7x2
and—4z as3z — 7x. We thus have

(92 =3z +1)—2 = 92* —dx+1 = (22° + 32 + 1) + (72° — T2).

We can factox? + 3z + 1 as(2z + 1)(x + 1); notez + 1 is our modulusn(z)! We
have thus shown

(922 =3z +1)—z = 2z +1)(z+ 1)+ 7(z* —),
or

(922 =3z +1)—2— 2z +1)(z+ 1) = Omod 7.
Exercise 2.3.6.Is2? + 2z + 1 =22 + 1 mod z + 1?
Exercise 2.3.7.1sz? + 7Tz + 5 = 2% + 3z + 1 mod z + 1?
Exercise 2.3.8.1sz? + x + 2 =22 + 1 mod (3,2 4+ 1)?

The final concept we need in order to state the AKS primal#yitethe order of an
elementin(Z/nZ)*. It turns out that{Z /nZ)* is a group under multiplication modulo
n; one consequence of this is thatrife (Z/nZ)* then there is an integérsuch that
z¥ = 1 mod n. For example, ifn = 12 then we have seef¥./nZ)* = {1,5,7,11},
and we have

12,5%2,72.112 = 1 mod 12.

For another example, consider
(z/)72)" = {1, 2, 3, 4, 5, 6}.

A little calculation shows that each element is equivalerit tvhen raised to an appro-
priate power. The case of 1 is obvious; for the others, we Bave 8 = 1 mod 7,
30 =727=1mod 7,42 =8 = 1mod 7, 55 = 15625 = 1 mod 7 and6? = 36 =

1 mod 7. We denote the order af modulon by ord,, ().

Exercise 2.3.9.Find the orders modulo 9 fofZ/9Z)* and the orders modulo 11 for
(Z/11Z)*. Note thatify = —z mod n then the orders of andy are related; iford(x)

is even therrd(y) = ord(x), while if ord(x) is even therrd(y) = 2ord(z). This
observation can save a lot of time in computing orders!

The needed combinatorial result is the following. Recadk thinomial coefficient

(1) is defined by
ny n!
k) T K —k)

2.3. AGRAWAL-KAYAL-SAXENA PRIMALITY TEST 41

whenn is a positive integer andl < k£ < n is an integer; by convention we s@t) =0.
There is a nice combinatorial interpretation to these nusjlibey are the number of
ways of choosing: objects fromn objects when order does not matter. (Thus we
should view(g) as sa_ying that, mathematically, there is but one way to dbingt)
The key result for us is that

(Z) =0modnforallk € {1,...,n— 1} if and only if n is prime.

Note that we must exclude= 0 andk = n, as(j) = (1) = 1 forall n.

Let’s check the claim by looking at some examples. If we take 4 then since 4 is
composite we expect at least one binomial coefficient noeteduivalent to 0 modulo

4. We have
4 4 4
G) =0 ()= () o

while the first and last are congruent to zero modulo 4, thelhaii$ not (it is congruent
to 2). If instead we take the prime= 5 then we have

Q-5 @)-n Q-n ()

note all of these are equivalent to 0 modulo 5.

Exercise 2.3.10.Verify the claim fom = 6 andn = 7. Note that it suffices to just look
at the binomial coefficients with < n/2 as (}) = (,",).

Exercise 2.3.11.0ne direction of the claim isn't too bad. Considg}) = ﬁlk),
Because this has the combinatorial interpretation as bty number of ways of
choosingk objects fromn objects when order does not matter, we know it must be
an integer. Imagine now that is a prime. Show that cannot divide any term in the

denominatorifl <k <n —1,and thus(z) must be divisible by as claimed.

Exercise 2.3.12.For the brave: prove the other direction of the claim, nantéigt if

n IS composite therﬁ’;) is not divisible byn forall 1 < &k < n — 1. Hint; if n is
composite, we must have= ab for somea, b > 2. Try and keep track of how often
powers ofa andb divide the numerator and the denominator. Try looking foroad
choice ofk.

We can now state the AKS primality test.

42 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

AKS primality test

1. Testto see iV is a perfeck™ power. If it is, thenN is composite and stop, else
proceed to Step 2.

2. Find the smallest primesuch that the order ¢ modulor is greater thain® N;
in other words, for alt’ < r if k is the smallest integer such thsf = 1 mod +’
thenk < In* N.

3. Ifany of the numbersi§2, 3, ..., r} have a non-trivial common factor witN
(this means they share a divisor between 2 ahd 1) then N is composite af
stop, else proceed to Step 4.

4. If N < rthenN is prime and stop, else proceed to Step 5.

5. For each positive integerthat is at most/¢(r) In N, check and see ifz +
a)N = 2V + amod (2" — 1, N). If there is such an such that the equivalende
fails, thenN is composite; if the equivalence holds for all sudihenV is prime.

Remark:Note that if the AKS primality test terminates in either Stepr 3 then not
only do we learn thatV is composite, but we also find a factor. Sadly, this is not the
case if the program ends in Step 5.

There are numerous expositions describing both why the AlkBatity test works,
as well as why it works quickly. We refer the interested readé¢he paper, posted at

http://ww. cse.iitk.ac.in/users/manindra/al gebra/primlity_v6. pdf

as well asADD REFS for these details, and content ourselves with giving a rough
analysis of some of the steps and then doing some illustrattamples.

Let's consider the first step; how difficult is it to determiifieV is a perfectt™
power? First off, we should figure out how largemight be. Let's sayV = n* for
somen andk. Clearly the largemn is the smallerk is; thusk is largest whem is
smallest. The smallest we may takeo be is 2, and thus the largdstan be, which
we’ll denotek,,.,, must satisfiz==x < N. If we take logarithms badeof both sides
we find

logb 2kmax < 1Ogb N.

We now use the power rule, which sdgg, =¥ = y log, « and find
kmax logy 2 < log, V.
This equation is simplest when we take the biagebe 2, as it then reduces to
kmax < logy N.

The above bound ok, ., tells us that Step 1 will be fast. The numbe#kdb check
is at mostog, IV, which is at mostt log,, V. In other words, the number &fto check
is bounded by a polynomial in the number of digits/éf which is our criterion for
‘fast’.

2.3. AGRAWAL-KAYAL-SAXENA PRIMALITY TEST 43

Exercise 2.3.13.Provelog, N < 4log,, N. Hint: Use the Change of Base formula
for logarithms, which stateleg, =/ log, ¢ = log,. 2 and note thatog, 10 < 4.

Step 2 could take a long time for two reasons. One reasontig thayht be hard to
compute the order o modulor, and the second is that we might need to takerge
before we find an such that the order a¥ modulor is at leastin® N. Fortunately
results form number theory tell us that we can find-amithout going to high ¢ is at
most a constant timda n to a fixed power at most 5), and thugs small enough that
computing the orders won't take too long.

As r is not too large, Step 3 is fairly fast. We just have to run tlielieean Algo-
rithm to find the greatest common divisorofinda < r, and the Euclidean Algorithm
is very fast. Step 4 is the simplest of all to analyze: it's pisimple comparison, which
takes no time.

We are thus left with Step 5. For most large numbers, almosf éhe run-time is
due to this step. It is not pleasant to implement polynomiadioiar arithmetic, though
this can be done in environments ranging from Java to Matkiema

Let's look at some representative examples. For our first temisiderN = 21.

It's a little absurd to use the AKS primality test here, as ae seeV is composite and
equal to 3 times 7. Going through the algorithm, we 3e&s not a perfeck™ power.
AsIn? 21 ~ 9.26, we need to find the smallest primsuch that the order a¥ modulo

r is at least 10. The smallest suclis 19, and the multiplicative order is 18. In other
words,21'® = 1 mod 19, and no smaller power of 21 is equivalent to 1 modulo 19. If
we had tried to take = 17, we would have found 21 has multiplicative order of 4, as
214 = 194481 = 1 mod 17. We now move to Step 3 and look at the greatest common
divisors of21 and alla < 19; we are in luck as we very quickly discover that 21 and 3
have a common factor, and thisis composite.

Let’'s do one more example. Consider ndw = 20413. A quick check shows
that IV is not a perfeck™ power. We havén® N ~ 98.4, so we must find a prime
such that the multiplicative order &f modulor is at least 99. The smallest suclis
r = 101, and the order ofV is 100. We now look at the greatest common divisors of
N with a € {2,...,101}, and unfortunately all of these numbers are relatively prim
to N. We thus continue to Step 4. A$ > r, we move on to Step 5. We now have to
deal with the polynomial congruences. Fortunately, thesnegle isn’t too bad; taking
a = 1 shows that the congruence fails and ttNigs composite! Explicitly, we have

(x4 1)2943 2 220413 4 1 mod (20413, 2'°' — 1).

To see the failure in its full glory, we writer+1)20413— (204134-1) mod (20413, 20—
1) below:
18358 4 13974 + 1205622 + 712423 + 192632 4+ 1671425 + 1671425
+1926327 + 71242° 4 1205627 + 1397420 4 18358z + 11645212
4260323 + 198302 4 195912 + - - - 4 198302 + 260327 4 1164521,

which clearly is not zero!

Exercise 2.3.14.Step 1 of the algorithm asks us to make sure fkids not a perfect
k™ power. Show that it suffices to check foprime. For example, while 2176782336
is a twelfth power, it is also a perfect square.

44 CHAPTER 2. PRIMALITY TESTING AND FACTORIZATION

Exercise 2.3.15.In an earlier version of the manuscript, there was a horritylpo in
Step 5 of the algorithm, and we wrote that we must checkatimost,/¢(r) In N and
not all a at mosty/(r) In N. Whenever you see an equation, one of the first things
you should do is ask if it is reasonable. If we really had toakheup to/(r) In N,

how would the run-time of this algorithm compare to our briskee attempt at factor-
ization?

Index

k-error detecting, 14
alphabet, 11

binary block code, 17
binary code, 11

code, 11
(n,r) binary block, 17
k-error detecting, 14
r-ary, 11
binary, 11
exactlyk-error detecting, 14
fixed length, 11
Hamming(7,4), 19
codewords, 11

fixed length code, 11

Hamming code, 19
Hamming distance, 12

maximum distance, 13
minimum distance, 13

parity, 9

45

46

INDEX

Bibliography

[MS] S. J. Miller and C. E. Silva[f a prime divides a product,..preprint.
http://arxiv.org/abs/1012. 5866

[MT-B] S. J. Miller and R. Takloo-BighashAn Invitation to Modern Number The-
ory, Princeton University Press, Princeton, NJ, 2006, 503 page

[Th] T. M. Thompson,From error-correcting codes through sphere packings
to simple groupsThe Carus Mathematical Monographs, Number 21, the
Mathematical Association of America, 1983.

47

