Bob wants to send a message to Alice. His message is "42" which is my age and the answer to Life, the Universe and Everything.

Alice chooses two "large" primes : 7 and 13, which means:

Alice has to choose so that . She chooses:

these numbers work because is divisible by 72

She makes public:

She keeps private:

To encrypt his message , he computes:

 35

let
he sends the message Y in public channels to Alice

Alice receives the message Y and computes:

42
so Alice has received Bob’s message

Observations and Questions:

* choosing was easy b/c they were tiny, but choosing was much harder. On my first few tries, ended up being the same as which probably isn’t good OR I got , which I assume is also not a good thing.

* Since is public, how does she know the message is from Bob? Should he include a signature at the beginning or end of every message? probably a good idea.
* When Alice is decrypting, the numbers got very large and my calculator can’t do modular math, so I had to find an online program that would do it for me. If folks in the real world are dealing with 200 digit numbers and they need every decimal place to be accurate, how do they accomplish this quickly?

* After playing with this for a bit, I realized that I couldn’t send a message whose ‘value’ was larger than , so I tried all of this again with larger primes.

I started by googling a list of all primes up to 10,000 and picked two of them: and . This gave me:

 and

Finding then became much harder, so I created an Excel spreadsheet to help me by looking for divisors of . I came up with two choices for relatively quickly and settled on:

 and

I then used this set of values to encrypt the message MATH (13,012,008: M=13, A=01 etc), which I sent to Alice, who decrypted it just fine. Pretty cool.
 I used the modular arithmetic calculator on www.ptrow.com to carry out the calculations.

A final observation is that if Eve intercepts my encrypted message (which, by the way is), would she have a fairly hard time decrypting it because she doesn’t know the decryptor exponent ? She does know the modulus, so I guess she could try different values of with the public modulus . A speedy computer could probably handle this quickly, but I can now see that if the original primes are 200 digits or so long, how a supercomputer doing trillions of calculations a second would have a hard time. Also, I suppose you could add an additional layer of security by first encrypting the message with a Ceasar (or some other) cipher before sending?
image5.png

image65.png

image66.pict

oleObject33.bin

image67.png

image68.pict

oleObject34.bin

image69.png

image70.pict

oleObject35.bin

image71.png

image6.pict

image72.pict

oleObject36.bin

image73.png

image74.pict

oleObject37.bin

image75.png
9,242,039

image76.pict

oleObject38.bin

image77.png
DN)= 59,226,640

image78.pict

oleObject3.bin

oleObject39.bin

image79.png
eandd

image80.pict

oleObject40.bin

image81.png
20(N)+1or 118453 281

image82.pict

oleObject41.bin

image83.png
eandd

image84.pict

oleObject42.bin

image7.png
eandd

image85.png

image86.pict

oleObject43.bin

image87.png
d=310,901

image88.pict

oleObject44.bin

image89.png
31,299,770

image90.pict

oleObject45.bin

image8.pict

image91.png

image92.pict

oleObject46.bin

image93.png

image94.pict

oleObject47.bin

image95.png

image96.pict

oleObject48.bin

oleObject4.bin

image9.png
ed = modD(N)

image10.pict

oleObject5.bin

image11.png

image12.pict

oleObject6.bin

image13.png

image14.pict

oleObject7.bin

image15.png

image16.pict

oleObject8.bin

image17.png

image18.pict

oleObject9.bin

image19.png

image20.pict

oleObject10.bin

image21.png

image22.pict

oleObject11.bin

image23.png

image24.pict

oleObject12.bin

image1.png
pandgq

image25.png
D(N)

image26.pict

oleObject13.bin

image27.png

image28.pict

oleObject14.bin

image29.png

image30.pict

oleObject15.bin

image31.png
X mod N

image2.pict

image32.pict

oleObject16.bin

image33.png

image34.pict

oleObject17.bin

image35.png
42" mod91

image36.pict

oleObject18.bin

image37.png

image38.pict

oleObject1.bin

oleObject19.bin

image39.png
130,691,232mod 91

image40.pict

oleObject20.bin

image41.png

image42.pict

oleObject21.bin

image43.png

image44.pict

oleObject22.bin

image3.png

image45.png

image46.pict

oleObject23.bin

image47.png

image48.pict

oleObject24.bin

image49.png
35" mod 91

image50.pict

oleObject25.bin

image51.png

image4.pict

image52.pict

oleObject26.bin

image53.png
5.997541837..x10%

image54.pict

oleObject27.bin

image55.png

image56.pict

oleObject28.bin

image57.png
pandgq

image58.pict

oleObject2.bin

oleObject29.bin

image59.png
eandd

image60.pict

oleObject30.bin

image61.png
eord

image62.pict

oleObject31.bin

image63.png
porg

image64.pict

oleObject32.bin

Pon—

[—
i S s —

