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Chapter One

Mod p Arithmetic, Group Theory and Cryptography

In this chapter we review the basic humber theory and group theory which we use
throughout the book, culminating with a proof of quadratic reciprocity. Good in-
troductions to group theory are [J, La3]; see [Dal, IR] for excellent expositions
on congruences and quadratic reciprocity, and [Sil2] for a friendly introduction to
much of the material below. We use cryptographic applications to motivate some
basic background material in number theory; see [Ga] for a more detailed expo-
sition on cryptography and [Lidl, vdP2] for connections with continued fractions.
The guiding principle behind much of this chapter (indeed, much of this book and
number theory) is the search for efficient algorithms. Just being able to write down
an expression does not mean we can evaluate it in a reasonable amount of time.
Thus, while it is often easy to prove a solution exists, doing the computations as
written is sometimes impractical; see Chapiesf [BB] and [Wilf] for more on
efficient algorithms.

1.1 CRYPTOGRAPHY

Cryptography is the science of encoding information so that only certain specified
people can decode it. We describe some common systems. To prove many of the
properties of these crypto-systems will lead us to some of the basic concepts and
theorems of algebra and group theory.

Consider the following two password systems. In the first we choose two large
distinct primesp andq; for example, let us say andg have abou00 digits each.

Let N = pq and display the00 digit numberN for everyone to see. The password

is any divisor of N greater tharl and less thaiv. One very important property of

the integers is unique factorization: any integer can be written uniquely as a product
of prime powers. This implies that the only factorizationsMofarel - N, N - 1,

p - g andgq - p. Thus there are two passworgsandg. For the second system, we
choose &000 digit number. We keep this number secret; to gain access the user
must input this number.

Which method is more secure? While it is harder to correctly gtiess digits
then200, there is a danger in the second system: the computer needs to store the
password. As there is no structure to the problem, the computer can only determine
if you have entered the correct number by comparing %606 digit number to the
one it was told is the password. Thus there is a code-book of sorts, and code-books
can be stolen. In the first system there is no code-book to steal. The computer does
not need to knowp or ¢: it only needs to knowV and how to divide, and it will
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know the password when it sees it!

There are so many primes that it is not practical to try2all digit prime num-
bers. The Prime Number Theorem (Theorem 2.3.7) states that there are approxi-
mately .= primes smaller tham; for = = 10°%, this leads to an impractically
large number of numbers to check. What we have is a process which is easy in
one direction (multiplying andg), but hard in the reverse (knowing, right now
there is no “fast” algorithm to fing andq).

It is trivial to write an algorithm which is guaranteed to fact¥r simply test
N by all numbers (or all primes) at mostN. While this will surely work, this
algorithm is so inefficient that it is useless for such large numbers. This is the first
of many instances where we have an algorithm which will give a solution, but the
algorithm is so slow as to be impractical for applications. Later in this chapter we
shall encounter other situations where we have an initial algorithm that is too slow
but where we can derive faster algorithms.

Exercise 1.1.1.There are approximately03® elementary objects in the universe
(photons, quarks, et cetera). Assume each such object is a powerful supercomputer
capable of checkin§02° numbers a second. How many years would it take to check
all numbers (or all primes) less thavi10400? What if each object in the universe

was a universe in itself, with08° supercomputers: how many years would it take
now?

Exercise 1.1.2.Why do we wanp and ¢ to be distinct primes in the first system?

One of the most famous cryptography methods is RSA (see [RSA]). Two people,
usually named Alice and Bob, want to communicate in secret. Instead of sending
words they send numbers that represent words. Let us represent the: Ibtter
01, b by 02, all the way to representing by 26 (and we can have numbers repre-
sent capital letters, spaces, punctuation marks, and so on). For example, we write
030120 for the word “cat.” Thus it suffices to find a secure way for Alice to transmit
numbers to Bob. Let us say a message is a numbef a fixed number of digits.

Bob chooses two large primgsandq and then two numberg ande such that
(p — 1)(¢ — 1) dividesed — 1; we explain these choices in §1.5. Bob then makes
publicly available the following informationlV.= pgq ande, but keeps secret, ¢
andd. It turns out that this allows Alice to send messages to Bob that only Bob
can easily decipher. If Alice wants to send the messagec N to Bob, Alice
first calculates\/¢, and then sends Bob the remainder after dividingvbycall this
numberX. Bob then calculateX ¢, whose remainder upon dividing by is the
original messag@/! The proof of this uses modulo (or clock) arithmetic and basic
group theory, which we describe below. Afterwards, we return and prove the claim.

Exercise 1.1.3.Letp = 101, ¢ = 97. Letd = 2807 ande = 23. Show that this
method successfully sends “hing09) to Bob. Note that0809)23 is a sixty-six
digit number! See Remark 9.5.6 for one way to handle such large numbers.

Exercisé™ 1.1.4. Use a quadratic polynomialz? + bz + ¢ to design a security
system satisfying the following constraints:

1. the password is the tripléz, b, ¢);
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2. each of10 people is given some information such that any three of them can
provide(a, b, ¢), but no two of them can.

Generalize the construction: consider a polynomial of degkesuch that some
people “know more” than others (for example, one person can figure out the pass-
word with anyone else, another person just needs two people, and so on).

Remark 1.1.5. We shall see another important application of unique factorization
in 83.1.1 when we introduce the Riemann zeta function. Originally defined as an
infinite sum over the integers, by unique factorization we shall be able to express
it as a product over primes; this interplay yields numerous results, among them a
proof of the Prime Number Theorem.

1.2 EFFICIENT ALGORITHMS

For computational purposes, often having an algorithm to compute a quantity is
not enough; we need an algorithm which will computetitckly. We have seen an
example of this when we tried to factor numbers; while we can factor any number,
current algorithms are so slow that crypto-systems based on “large” primes are
secure. For another example, recall Exercise 1.1.3 where we needed to compute a
sixty-six digit number! Below we study three standard problems and show how to
either rearrange the operations more efficiently or give a more efficient algorithm
than the obvious candidate. See Chaptef [BB] and [Wilf] for more on efficient
algorithms.

1.2.1 Exponentiation

Considerz™. The obvious way to calculate it involves— 1 multiplications. By
writing » in base two we can evaluai® in at most2log, n steps, an enormous
savings. One immediate application is to reduce the number of multiplications
in cryptography (see Exercise 1.1.3). Another is in §1.2.33, where we derive a
primality test based on exponentiation.

We are used to writing numbers in base 10, say

T = apl0™ +ap 110™ 7 4o+ a10t +ag, a; € {1,2,3,4,5,6,7,8,9}.

(1.2)
Base two is similar, except each digit is now either 0 or 1. Ldte the largest
integer such tha?* < 2. Then

r = b2 b 128 124 Do, b € {0,1). (1.2)

It costsk multiplications to evaluate?' for all i < k. How? Consideg, = 22,

_ _ 20 20 ot _ _ .22 _ _ 2k
Yr =Y Yo =27 -7 =T ,Y2=Y1 "Y1 =T , ..., Yk = Yk—1 "Yk—1 =T .
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To evaluater™, note

n k28125 b1 24 b0

X
:xkak . xbk—12k7 . xb12 . xbo
b b
k k k—1 k—1 b b
:(wQ ) .(5,;2 ) (@) (@)Y
_ bk bk—l b1 bo
=yt Yy Y Yo (1.3)

As eachb; € {0, 1}, we have at most + 1 multiplications above (ib; = 1 we

have the terny; in the product, ifo; = 0 we do not). It costg multiplications to
evaluate the:?" (i < k), and at most anothérmultiplications to finish calculating

z™. Ask < log,n, we see that™ can be determined in at mo3tog, n steps.

Note, however, that We do need more storage space for this method, as we need to
store the valueg; = 22', i < log,n. Forn large,2log, n is much smaller than

n — 1, meaning there is enormous savings in determinifighis way. See also
Exercise B.1.13.

Exercise 1.2.1.Show that it is possible to calculaté® storing only two numbers
at any given time (and knowing the base two expansiar).of

Exercise 1.2.2.Instead of expanding in base two, expand in base three. How
many calculations are needed to evaluate this way? Why is it preferable to
expand in base two rather than any other base?

Exercise 1.2.3.A better measure of computational complexity is not to treat all
multiplications and additions equally, but rather to count the number of digit op-
erations. For example, iR71 x 31 there are six multiplications. We then must
add two three-digit numbers, which involves at most four additions (if we need to
carry). How many digit operations are required to compute

1.2.2 Polynomial Evaluation (Horner’s Algorithm)

Let f(z) = apa™ + ap_12" "t + -+ + a1x + ag. The obvious way to evaluate
f(x) is to calculater™ and multiply bya,, (n multiplications), calculate™ ! and
multiply by a,,—; (n — 1 multiplications) and add, et cetera. There aradditions
and) ;_,k mult|pI|cat|0ns for a total ofy+ = ”“> operations. Thus the standard

method leads to abou; computations.

n(n+1
Exercise 1.2.4. Prove by induction (see Appendix A.1) thafl_, k = nntl) 5 ),

In general,}";_, k* = pai1(n), wherepy,:(n) is a polynomial of degred + 1

with leading term dd 7 one can find the coefficients by evaluating the sums for
n=0,1,....d because specifying the values of a polynomial of dedrtel + 1
points uniquely determines the polynomial (see also Exercise 1.1.4). See [Mil4] for
an alternate proof which does not use induction.

Exercise 1.2.5.Notation as in Exercise 1.2.4, use the integral test from calculus to
show the leading term @i, (n) is 2 d+1 ~ and bound the size of the error.
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Exercise 1.2.6.How many operations are required if we use our results on expo-
nentiation?

Consider the following grouping to evaluaféx), known asHorner’s algo-
rithm :

(- ((anx + an_1)x+ an—2)x+---+a1)x+ ao. (1.4)
For example,
Tet 4423 =322 — 1z +2= ((Tz +4)z —3)z — 11) z + 2. (1.5)

Evaluating term by term takek! steps; Horner’'s Algorithm takes steps. One
common application is in fractal geometry, where one needs to iterate polynomials
(see also §1.2.4 and the references there). Another application is in determining
decimal expansions of numbers (see 87.1).

Exercise 1.2.7.Prove Horner’s Algorithm takes at mdst steps to evaluate, «" +
. + ao_

1.2.3 Euclidean Algorithm

Definition 1.2.8(Greatest Common Divisar)Letz, y € N. The greatest common
divisor of z and y, denoted bygcd(z,y) or (z,y), is the largest integer which
divides bothr andy.

Definition 1.2.9(Relatively Prime, Coprime)If for integersz andy, ged(z,y) =
1, we sayr andy are relatively prime (or coprime).

TheEuclidean algorithm is an efficient way to determine the greatest common
divisor of x andy. Without loss of generality, assunie< x < y. The obvious way
to determinezed(x, y) is to dividex andy by all positive integers up te. This
takes at moskx steps; we show a more efficient way, taking at most aboag, =
steps.

Let [z] denote thegreatest integerless than or equal te. We write

y = [%}~x+r1, 0<r <z (1.6)

Exercise 1.2.10.Prove thatr; € {0,1,...,z — 1}.
Exercise 1.2.11.Proveged(z, y) = ged(r1, x).

We proceed in this manner unti} equals zero or one. As each execution results
inr; < r;_1, we proceed at mosttimes (although later we prove we need to apply
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these steps at most abQlibg, = times).

C
r=|—|-r+ry 0<rp<m
L71]
.
r = 7 “ro + 13, 0§’l”3<7‘2
L72 ]
F ]
T2 = | r3+re, 0< g <73
L3 ]
(752
Tp_o = . T+ 1, 0 rp <Tg_1. (17)
LTk—1

Exercise 1.2.12.Prove that ifr;, = 0 thenged(z, y) = rx—1, while ifr,, = 1, then
ged(z,y) = 1.

We now analyze how large can be. The key observation is the following:

Lemma 1.2.13. Consider three adjacent remainders in the expansion:y, r;
and Tit1 (Wherey =r_pandz = 7"0). Thengcd(m, 7‘1‘_1) = ng(TH_l,T‘i), and

ri—1

Tiy1 < —5

Proof. We have the following relation:

Ti—1

ri_1 = |: 17“ :l vy ripr, 0 < i <7y (1.8)
K3

If r; < “~L then asr;;1 < r; we immediately conclude that,, < “*. If

r; > “=*, then we note that

Tit1 = Ti—1 — [7"1‘1} " T (1.9)

T

Our assumptions on,_; andr; imply that [’“r—*l} = 1. Thusr;;; < =32, O

We count how often we apply these steps. Going framy) = (ro,7_1)
to (r1,79) costs one application. Every two applications gives three pairs, say
(7‘1'_17 ’I“i_g), (’I”i, Ti—l) and (’/‘7;_;'_1, ’/‘7;), with ri+1 at most half Of’l“i_l. Thus ifkis
the largest integer such th2t < x, we see have at mos$t+ 2k < 1 + 2log, =
pairs. Each pair requires one integer division, where the remainder is the input for
the next step. We have proven

Lemma 1.2.14. Euclid’s algorithm requires at mosgt + 2 log, z divisions to find
the greatest common divisor sfandy.

Euclid’s algorithm provides more information than just thel(z,y). Let us
assume that; = ged(z, y). The last equation before Euclid’s algorithm terminated
was

Ti—g = l:ri_2:| “ric1 1, 0 <1, (110)
Ti-1
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Therefore we can find integetis_; andb;_» such that
T = Gj—1Ti—1 + bi_oTi_o. (1.11)
We have written; as a linear combination of _, andr;_;. Looking at the second

to last application of Euclid’'s algorithm, we find that there are integérs and
b;_4 such that

Tic1 = G5_oTi—a + bj_sTi_3. (1.12)
Substituting forr;_; in the expansion of; yields that there are integesis_» and
b;_3 such that

ri = Q;—oTi_9 + bj_31r;_3. (113)
Continuing by induction and recalling = ged(z, y) yields

Lemma 1.2.15. There exist integers andb such thatced(z, y) = ax + by. More-
over, Euclid’s algorithm gives aonstructiveprocedure to findi andb.

Thus, not only does Euclid’s algorithm show thaandb exist, it gives an effi-
cient way to find them.

Exercise 1.2.16.Find a andb such thata - 244 4+ b - 313 = ged (244, 313).

Exercise 1.2.17.Add the details to complete an alternate, non-constructive proof
of the existence af andb with azx + by = ged(x, y):

1. Letd be the smallest positive value attainedday+ by as we varyu, b € Z.
Such ad exists. Sayl = ax + Gy.

2. Showgced(z, y)|d.

3. Lete = Az + By > 0. Thend|e. Therefore for any choice of, B € Z,
d|(Az 4+ By).

4. Consider(a,b) = (1,0) or (0,1), yielding d|z and d|y. Therefored <
ged(z, y). As we have showged(z, y)|d, this completes the proof.

Note this is a non-constructive proof. By minimizing+ by we obtainged(z, y),

but we have no idea how many steps are required. Prove that a solution will be
found either among pairgz, b) witha € {1,...,y —1}and-b e {1,..., 2 — 1},

or—a e {l,...,y—1}andb € {1,...,z—1}. Choosing an object that is minimal

in some sense (here the minimality comes from being the smallest integer attained
as we varys andb in ax + by) is a common technique; often this number has the
desired properties. See the proof of Lemma 6.4.3 for an additional example of this
method.

Exercise 1.2.18.How many steps are required to find the greatest common divisor
ofxy,...,zN?

Remark 1.2.19. In bounding the number of computations in the Euclidean algo-
rithm, we looked at three adjacent remainders and showed that a desirable relation
held. This is a common technique, where it can often be shown that at least one of
several consecutive terms in a sequence has some good property; see also Theorem
7.9.4 for an application to continued fractions and approximating numbers.
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Figure 1.1 Newton’s Method

1.2.4 Newton’s Method and Combinatorics

We give some examples and exercises on efficient algorithms and efficient ways to
arrange computations. The first assumes some familiarity with calculus, the second
with basic combinatorics.

Newton’s Method: Newton’s Method is an algorithm to approximate solutions
to f(z) = 0 for f a differentiable function ofR. It is much faster than the method
of Divide and Conquer (see 8A.2.1), which finds zeros by looking at sign changes
of f, though this method is of enormous utility (see Remark 3.2.24 where Divide
and Conquer is used to find zeros of the Riemann zeta function).

Start withzo such thatf(z() is small; we callz, the initial guess. Draw the
tangent line to the graph gfatz, which is given by the equation

y— f(zo) = f'(m0) - (x — x0)- (1.14)

Letx; be thez-intercept of the tangent line; is the next guess for the roat See
Figure 1.1. Simple algebra gives

- f(xo)
1 = g Flae) (1.15)
We now iterate and apply the above procedure;toobtaining
f(z1)
To = X1 — . 1.16
> Y ) (1.16)
If we letg(x) =z — f,(&)) , we notice we have the sequence
zo, 9(zo), 9(9(x0)), ... 1.17)

We hope this sequence will converge to the root, at leastfarlose to the root
and for f sufficiently nice. How closery has to be is a delicate matter. If there
are several roots t@, which root the sequence converges to depends crucially on
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the initial valuez, and the functiorf. In fact its behavior is what is known tech-
nically aschaotic. Informally, we say that we have chaos when tiny changes in
the initial value give us very palpable changes in the output. One common exam-
ple is in iterates of polynomials, namely the limiting behaviorf¢to), f(f(z0)),
f(f(f(z0))) and so on; see [Dev, Edg, Fal, Man].

Exercise 1.2.20.Let f(z) = 2% — a for somea > 0. Show Newton's Method
converges to/a, and discuss the rate of convergence; i.eg,jfis accurate to

m digits, approximately how accurate is,;? For example, look at = 3 and

xo = 2. Similarly, investigatet/a. Compare this with Divide and Conquer, where
each iteration basically halves the error (so roughly every ten iterations yields three
new decimal digits, becausgs; ~ 1)

Remark 1.2.21. One big difference between Newton’s Method and Divide and
Congquer is that while both require us to evaluate the function, Newton's Method
requires us to evaluate the derivative as well. Hence Newton's Method is not ap-
plicable to as wide of a class of functions as Divide and Conquer, but as it uses more
information aboutf it is not surprising that it gives better results (i.e., converges
faster to the answer).

Exercise 1.2.22 Modify Newton’s Method to find maxima and minima of functions.
What must you assume about these functions to use Newton’s method?

Exercise 1.2.23.Let f(z) be a degree: polynomial with complex coefficients. By
the Fundamental Theorem of Algebra, there aréhot necessarily distinct) roots.
Assume there are distinct roots. Assigm: colors, one to each root. Given a point

x € C, we colorz with the color of the root that approaches under Newton’s
Method (if it converges to a root). Write a computer program to color such sets for
some simple polynomials, for example #r— 1 = 0 forn = 2,3 or 4.

Exercise 1.2.24.Determine conditions orfi, the roota and the starting guess
such that Newton’s Method will converge to the root. See gagef [BB] or page
118 of [Rud] for more details.

Exercisé" 1.2.25(Fixed Points) We sayz, is a fixed point of a functior if

h(zg) = zo. Let f be a continuously differentiable function. If we gét) =
T — f,((g;)), show a fixed point of corresponds to a solution tf(z) = 0.
Assume thaf : [a,b] — [a,b] and there is aC' < 1 such that|f'(z)| < C
for z € [a,b]. Prove f has a fixed point ifa, b]. Is the result still true if we
just assumef’(z)| < 1? Fixed points have numerous applications, among them

showing optimal strategies existinplayer games. See [Fr] for more detalils.

Combinatorics: Below we describe a combinatorial problem which contains
many common features of the subject. Assume we have 10 identical cookies and
5 distinct people. How many different ways can we divide the cookies among the
people, such that all 10 cookies are distributed? Since the cookies are identical,
we cannot tell which cookies a person receives; we can only tell how many. We
could enumerate all possibilities: there are 5 ways to have one person receive 10
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cookies, 20 ways to have one person receive 9 and another receive 1, and so on.
While in principle we can solve the problem, in practice this computation becomes
intractable, especially as the numbers of cookies and people increase.

We introduce common combinatorial functions. The first isféetorial func-
tion: for a positive integen, setn! = n - (n — 1) ---2 - 1. The number of ways to
choose- objects fromn when order mattersis-(n—1)--- (n—(r—1)) = (n%'r),
(there aren ways to choose the first element, ther 1 ways to choose the second
element, and so on). THenomial coefficient () = #lr), is the number of
ways to choose objects fromn objects when order does not matter. The reason
is that once we have choserobjects there are! ways to order them. For conve-
nience, we defin@! = 1; thus (3) = 1, which may be interpreted as saying there
is one way to choose zero elements from a set objects. For more on binomial
coefficients, see §A.1.3.

We show the number of ways to divide 10 cookies among 5 peogléis; ).

In general, if there aré’ cookies andP people,

Lemma 1.2.26. The number of distinct ways to dividéidentical cookies among

P different people i§“ 17 1)

Proof. ConsiderC' + P — 1 cookies in a line, and number thento C' + P — 1.
ChooseP — 1 cookies. There aréc;g}_jl_l) ways to do this. This divides the
cookies intoP sets: all the cookies up to the first chosen (which gives the number
of cookies the first person receives), all the cookies between the first chosen and
the second chosen (which gives the number of cookies the second person receives),
and so on. This divide§' cookies among® people. Note different sets ¢f — 1

cookies correspond to different partitions@icookies amond® people, and every

such partition can be associated to choodihg 1 cookies as above. O

Remark 1.2.27. In the above problem we do not canéhich cookies a person
receives. We introduced the numbers for convenience: now cookies 1 thipugh
(say) are given to person 1, cookigs+ 1 throughis (say) are given to person 2,
and so on.

For example, if we havé0 cookies and people, say we choose cookigst, 7
and13 of the10 + 5 — 1 cookies:

OORKRKIOVORIOOOOORO

This corresponds to persameceiving two cookies, pers@receiving zero, person
3 receiving two, persod receiving five and persamreceiving one cookie.

The above is an example of a partition problem: we are solving- 2, +
x3 + x4 + x5 = 10, wherex; is the number of cookies persarreceives. We
may interpret Lemma 1.2.26 as the number of ways to divide an infégato %
non-negative integers i€'; ;).

Exercise 1.2.28.Prove that

Nt k—1 N+l+k—1
Z( Lo ):( 1 ) (1.18)

n=0
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We may interpret the above as divididg cookies among: people, where we do
not assume all cookies are distributed.

Exercisé 1.2.29. Let M be a set withn > 0 elements\ a set withn > 0
elements and a set withm + n elements. Fof € {0,...,m + n}, prove

O -) e

k=max(0,0—n

This may be interpreted as partitionir@ into two sets, one of size

In Chapter 13 we describe other partition problems, such as representing a num-
ber as a sum of primes or integer powers. For example, the famous Goldbach
problem says any even number greater than 2 is the sum of two primes (known to
be true for integers up ®- 106 [OI]). While to date this problem has resisted solu-
tion, we have good heuristics which predict that, not only does a solution exist, but
how many solutions there are. Computer searches have verified these predictions
for large N of size101°.

Exercise 1.2.30(Crude Prediction) By the Prime Number Theorem, there are
=2 primes less thamV. If we assume all numbers < N are prime with the
same likelihood (a crude assumption), predict how many ways there are taNvrite
as a sum of two primes.

Exercise 1.2.31.In partition problems, often there are requirements such as that
everyone receives at least one cookie. How many ways are there toNvetea
sum ofk non-negative integers? How many solutions oft x5 + 23 = 1701 are
there if eache; is an integer and:; > 2, x5 > 4, andas > 601?

Exercise 1.2.32.In solving equations in integers, often slight changes in the co-
efficients can lead to wildly different behavior and very different sets of solutions.
Determine the number of non-negative integer solutions t¢ x5 = 1996, 2z +

2x9 = 1996, 221+ 225 = 1997, 221 + 322 = 1996, 221 + 222+ 223+ 224 = 1996
and2x; + 2x5 + 3z3 + 3z4 = 1996. See Chapter 4 for more on finding integer
solutions.

Exercisé™ 1.2.33. Let f be a homogenous polynomial of degte® n variables.
This means
fan.om) = Y akk,tfal ag, k2t €C (1.20)

0<ky,....kn<d
Ky+thn=d

Prove for any\ € C that
FOxy, . z,) = Mf(zy,...,xp). (1.21)

As a function of: and d, how many possible terms are therefirfeach term is of
the formaz®* . .. zkn)?

The above problems are a small set of interesting results in combinatorics; see
also [Mil4] for other techniques to prove combinatorial identities. We give some
additional problems which illustrate the subject; the Binomial Theorem (Theorem
A.1.8) is useful for these and other investigations.
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Exercisé™ 1.2.34.Letk be a positive integer and consider the sequeltce”, 3%,

... (sox, = nF). Consider the new sequence obtained by subtracting adjacent
terms: 2 — 1%, 3F — 2k and so on. Continue forming new sequences by
subtracting adjacent terms of the previous terms. Prove that each term éf'the
sequence ig!.

Exercisé™ 1.2.35. Letk andd be positive integers. Prove

k= § kf (i)zm. (1.22)

m=0 £=0

1.3 CLOCK ARITHMETIC: ARITHMETIC MODULO n

LetZ denote the set of integers and foe N defineZ/nZ = {0,1,2,...,n— 1}.
We often read./nZ as theintegers modulon.

Definition 1.3.1(Congruence) x = y mod n meansr — y is an integer multiple
of n. Equivalently,x andy have the same remainder when dividediby

When there is no danger of confusion, we often drop the suffix moariting
insteadr = y.

Lemma 1.3.2(Basic Properties of Congruences$pr a fixedn € N anda, d’, b, b’
integers we have

1. a = b mod n if and only ifb = a mod n.
2. a = bmod n andb = ¢ mod n impliesa = ¢ mod n.

3.a = d modn andb = V' mod n, thenadb = a’/ mod n. In particular
a = a’ mod n impliesab = a’b mod n for all b.

Exercise 1.3.3.Prove the above relations. db = cb mod m, musta = ¢ mod m?

Forx,y € Z/nZ, we definex + y to be the uniqgue number € Z/nZ such
thatn|(x + y — z). In other words,z is the unique number iZ/nZ such that
z +y = zmod n. One can show thét/nZ is a finite group under addition; in
fact, it is a finite ring. (See §1.4.1 for the definition of a group).

Exercisé" 1.3.4 (Arithmetic Modulon). Define multiplication ofr,y € Z/nZ
by x - y is the uniquez € Z/nZ such thatry = z mod n. We often writery for

x - y. Prove that this multiplication is well defined, and that an elemehgs a
multiplicative inverse if and only ifx,n) = 1. Conclude that if every non-zero
element ofZ/nZ has a multiplicative inverse, thenmust be prime.

Arithmetic modulon is also called clock arithmetic. H = 12 we haveZ/127Z.
If it is 10 o'clock now, in5 hours it is3 o’clock becausd0 + 5 = 15 = 3 mod
12. See [Bob] for an analysis of the “randomness” of the inverse map in clock
arithmetic.
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Definition 1.3.5 (Least Common Multiple) Let m,n € N. The least common
multiple ofm andn, denoted bycm(m, n), is the smallest positive integer divisible
by bothm andn.

Exercise 1.3.6.If a = b mod n anda = b mod m, thena = b mod lecm(m, n).

Exercise 1.3.7.Prove for all positive integers:, n thatlcm(m, n) - gcdim,n) =
mn.

Are there integer solutions to the equatidn+ 1 = 2y? The left hand side is
always odd, the right hand side is always even. Thus there are no integer solutions.
What we did is really arithmetic modulbor arithmetic inZ/2Z, and indicates the
power of congruence arguments.

Consider nowr? + 32 + 22 = 8n + 7. This never has integer solutions. Let
us study this equation modufo The right hand side i modulo8. What are the
squares modul8? They arel? = 1,22 = 4,32 = 1, 42 = 0, and then the pattern
repeats (as moduld k£ and(8 — k) have the same square). We see there is no way
to add three squares and gefThus there are no solutionst8+y2+ 22 = 8n+7.

Remark 1.3.8(Hasse Principle)In general, when searching for integer solutions
one often tries to solve the equation modulo different primes. If there is no solution
for some prime, then there are no integer solutions. Unfortunately, the converse is
not true. For example, Selmer showad? + 4% + 523 = 0 is solvable modulo

p for all p, but there are no rational solutions. We discuss this in more detail in
Chapter 4.

Exercise 1.3.9Divisibility Rules). Prove a number is divisible by 3 (or 9) if and
only if the sum of its digits are divisible by 3 (or 9). Prove a number is divisible by
11 if and only if the alternating sum of its digits is divisible by 11 (for example, 341
yields 3-4+1). Find a rule for divisibility by 7.

Exercise 1.3.10(Chinese Remainder Theorem)et m1,mo be relatively prime
positive integers. Prove that for amy, a> € Z there exists a unique mod m1ms
such thatr = a; mod m; andz = a9 mod ms. Is this still true ifm; andm, are
not relatively prime? Generalize t@, ..., m; andaq, ..., ag.

1.4 GROUP THEORY

We introduce enough group theory to prove our assertions about RSA. For more
details, see [Art, J, La3].
1.4.1 Definition

Definition 1.4.1(Group) A setG equipped with a mag: x G — G (denoted by
(z,y) — zy) is a group if

1. (Identity)Je € G such thatvx € G, ex = ze = x.
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2. (AssociativityWVz, y, z € G, (zy)z = z(yz).
3. (Inverse)vz € G,y € G such thatry = yz = e.
4. (Closure)Vz,y € G, xzy € G.

We have written the group multiplicativelyz, y) — zy; if we wrote (z,y) —
x + y, we say the group is written additively. We célla finite group if the set?
is finite. If Vo, y € G, xy = yx, we say the group iabelian or commutative.

Exercise 1.4.2.Show that under additio# /nZ is an abelian group.

Exercise 1.4.3.Consider the set oN x N matrices with real entries and non-
zero determinant. Prove this is a group under matrix multiplication, and show this
group is not commutative i¥ > 1. Is it a group under matrix addition?

Exercise 1.4.4.Let (Z/pZ)* = {1,2,...,p — 1} wherea - b is defined to be
ab mod p. Prove this is a multiplicative group jf is prime. More generally, let
(Z/mZ)* be the subset & /mZ of numbers relatively prime ta.. ShowZ,/mZ)*
is a multiplicative group.

Exercise 1.4.5Euler’s¢-function (or totient function)) Let ¢(n) denote the num-
ber of elements iZ/nZ)*. Prove that forp prime, ¢(p) = p — 1 and ¢(p*) =
pk — pF=1. If p andq are distinct primes, prove(p’¢*) = #(p’)¢(¢*). If n and
m are relatively prime, prove that(nm) = ¢(n)¢(m). Notep(n) is the size of
the group(Z/nZ)*.

Definition 1.4.6 (Subgroup) A subsetd of G is a subgroup if is also a group.

Our definitions imply any groug- has at least two subgroups, itself and the
empty set.

Exercise 1.4.7.Prove the following equivalent definition: A subgétof a group
G is asubgroupif forall,y € H, zy~! € H.

Exercise 1.4.8.Let G be an additive subgroup &. Prove that there exists an
n € N such that every element 6fis an integral multiple of..

Exercise 1.4.9.Let GL, (R) be the multiplicative group of x n invertible matrices
with real entries. Let SL(Z) be the subset with integer entries and determinant 1.
Prove SL,(Z) is a subgroup. This is a very important subgroup in number theory;
whenn = 2itis called themodular group See 8§7.7 for an application to continued
fractions.

1.4.2 Lagrange’s Theorem

We prove some basic propertiesfafite groups (groups with finitely many ele-
ments).

Definition 1.4.10(Order) If G is a finite group, the number of elementgis the
order of G and is denoted byG|. If z € G, the order ofr in G, ord(z), is the least
positive powern such that:™ = e, wheree € G is the identity of the group.
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Exercisé™ 1.4.11. Prove all elements in a finite group have finite order.

Theorem 1.4.12(Lagrange) Let H be a subgroup of a finite grou@@. Then|H |
divides|G|. In particular, taking H to be the subgroup generated bye G,
ord(z)|ord(G).

We first prove two useful lemmas.

Lemma 1.4.13.Let H be a subgroup of7, and leth € H. ThenhH = H.

Proof. It suffices to showhH C H andH C hH. By closurehH C H. For the
other direction, let’ ¢ H. Thenhh~'h' = h'; ash™'h' € H, everyh/ ¢ H is
alsoinhH. a

Lemma 1.4.14.Let H be a subgroup of a grou@. Then for allg;, g; € G either
g9;H = g;H or the two sets are disjoint.

Proof. Assumeg; H N g; H is non-empty; we must show they are equal. ket
gih1 = g;hs be in the intersection. Multiplying on the right b)y(l € H (which
exists becausél is a subgroup) giveg; = gjhahy'. So0g;H = gjhohy 'H. As
hoh{'H = H, we obtaing; H = g; H. i

Definition 1.4.15(Coset) We call a subsejH of G a coset(actually, a left coset)
of H. In general the set of aj H for a fixedH is not a subgroup.

Exercisé™ 1.4.16. Show not every set of cosets is a subgroup.

We now prove Lagrange’s Theorem.

Proof of Lagrange’s theoremWe claim

G = JyH (1.23)
geG

Why is there equality? Ag € G andH C G, eachgH C G, hence their union is
contained inG. Further, ag € H, giveng € G, g € gH. Thus,G is a subset of
the right side, proving equality.

By Lemma 1.4.13, two cosets are either identical or disjoint. By choosing a
subset of the cosets, we show the union in (1.23) equals a union of disjoint cosets.
There are only finitely many elements@ As we go through aly in G, if the
cosetgH equals one of the cosets already chosen, we do not include it; if it is new,
we do. Continuing this process, we obtain

k
G =|JaH (1.24)
1=1

for some finitek, and thek cosets are disjoint. 1HH = {e}, k is the number
of elements ofG; in general, however; will be smaller. Each sej; H has|H|
elements, and no two cosets share an element. |Hus= k|H|, proving |H]|
divides|G]. O
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Exercise 1.4.17.LetG = (Z/15Z)*. Find all subgroups ofz and writeG as the
union of cosets for some proper subgroldp(H is a proper subgroup of G if H
is neither{1} nor G).

Exercise 1.4.18.Let G = (Z/p1p2Z)* for two distinct primeg; and p,. What
are the possible orders of subgroup(&? Prove that there is either a subgroup of
order p, or a subgroup of ordep, (in fact, there are subgroups of both orders).

1.4.3 Fermat’s Little Theorem

We deduce some consequences of Lagrange’s Theorem which will be useful in our
cryptography investigations.

Corollary 1.4.19 (Fermat's Little Theorem) For any primep, if ged(a,p) = 1
thena?~! = 1 mod p.

Proof. As |(Z/pZ)*| = p — 1, the result follows from Lagrange’s Theorem. O

Exercisé™ 1.4.20. One can reformulate Fermat’s Little Theorem as the statement
that if p is prime, for alla we havep|a? — a. Give a proof for this formulation
withoutusing group theory. Does|a™ — a for all n?

Exercise 1.4.21.Prove that if for some, a"~! # 1 mod n thenn is composite.

Thus Fermat’s Little Theorem is a fast way to show certain numbers are com-
posite (remember exponentiation is fast: see §1.2.1); we shall also encounter Fer-
mat'’s Little Theorem in §4.4.3 when we count the number of integer solutions
to certain equations. Unfortunately, it is not the case tfat' = 1 mod n im-
plies n is prime. There are composite such that for all positive integers,

a” ! = 1 mod n. Such composite numbers are called Carmichael numbers (the
first few are 561, 1105 and 1729). More generally, one has

Theorem 1.4.22Euler). If ged(a,n) = 1, thena®™ = 1 mod n.

Proof. Let (a,n) = 1. By definition,¢(n) = |(Z/nZ)*|. By Lagrange’s Theorem
the order ofu € (Z/nZ)* dividesé(n), or a®™ = 1 mod n. O

Remark 1.4.23. For our applications to RSA, we only need the case whées
the product of two primes. In this case, consider the{$gt. ., pg}. There areng
numbersg numbers are multiples of, p numbers are multiples af, and one is a
multiple of bothp andq. Thus, the number of numbers {1, ..., pq} relatively
prime topg is pg — p — g + 1 (why?). Note this equalks(p)¢(q) = (p—1)(g — 1).
This type of argument is known &sclusion - Exclusion. See also Exercise 2.3.18.

Exercise 1.4.24.Korselt [Kor] proved that a composite numbetlis a Carmichael
number if and only ifx is square-free and if a primg|n, then(p — 1)|(n — 1).
Prove that if these two conditions are met theis a Carmichael number.

Research Project 1.4.25Carmichael Numbers)lt is known (see [AGP]) that
there are infinitely many Carmichael humbers. One can investigate the spacings
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between adjacent Carmichael numbers. For example, choose aXlaaged look

at all Carmichael numbers iX, 2X], sayc, ..., c,+1. The average spacing be-
tween these numbers is abo’{ﬁ;—x (they are spread out over an interval of size

X, and there are differencesic; — ¢y, ..., c,r1 — ¢,. HOw are these differences
distributed? Often, it is more natural to rescale differences and spacings so that
the average spacing is 1. The advantage of such a renormalization is the results
are often scale invariant (i.e., unitless quantities). For more on investigating such
spacings, see Chapter 12.

Exercisé™ 1.4.26. Prove an integer is divisible by (resp.,9) if and only if the
sum of its digits is divisible by (resp.,9).

Exercisé" 1.4.27. Show an integer is divisible by if and only if the alternating
sum of its digits is divisible by1; for example,924 is divisible by11 because
11|(9 — 2 + 4). Use Fermat’s Little Theorem to find a rule for divisibility By(or
more generally, for any prime).

Exercisé™ 1.4.28. Show that ifz is a positive integer then there exists a positive
integery such that the producty has only zeros and ones for digits.

1.4.4 Structure of (Z/pZ)*

The multiplicative grougZ/pZ)* for p prime has a rich structure which will sim-
plify many investigations later.

Theorem 1.4.29.For p prime,(Z/pZ)* is cyclic of orderp — 1. This means there
is an elemeny € (Z/pZ)* such that

(Z/pZ)" = {1,2,....,p—2,p—1} = {91’927”.,9197279;;71}. (1.25)

We sayg is a generator of the group. For each there is a unique integer
k€ {1,...,p— 1} such thatr = g* mod p. We sayk is theindex of x relative
to g. For eachr € (Z/pZ)*, theorder of z is the smallest positive integersuch
thatz™ = 1 mod p. For example, ifp = 7 we have

{1,2,3,4,5,6} = {3°,3%,3!,3% 3% 3%}, (1.26)

which implies3 is a generator (and the index of 4 relative to 3 is 4, becduse
3* mod 7). Note5 is also a generator of this group, so the generator need not be
unique.

Sketch of the proofWe will use the fact thatZ/pZ)* is a commutative group:
xy = yx. Letx,y € (Z/pZ)* with ordersm andn for the exercises below. The
proof comes from the following:

Exercise 1.4.30.Assumen = mjmsy, With my, mo relatively prime. Show:™:
has orderms.

Exercisé" 1.4.31. Let ¢ be the least common multiple of and n (the smallest
number divisible by botim andn). Prove that there is an elemenbf order/.



20 CHAPTER 1

Exercise 1.4.32.By Lagrange’s Theorem, the order of anglividesp — 1 (the size
of the group). From this fact and the previous exercises, show there is&euah
that the order of every element dividés< p — 1, andthere is an element of order
d and no elements of larger order.

The proof is completed by showinj= p — 1. The previous exercises imply
that every element satisfies the equatidn— 1 = 0 mod p. As every element in
the group satisfies this, and there are 1 elements in the group, we have a degree
d polynomial withp — 1 roots. We claim this can only occurdf=p — 1.

Exercisd™ 1.4.33. Prove the above claim.

Therefored = p — 1 and there is some elemenof orderp — 1; thus,g’s powers
generate the group. O

Exercise 1.4.34.For p > 2, k > 1, what is the structure ofZ/p*Z)*? If all the

prime divisors ofm are greater than 2, what is the structure @£/mZ7)*? For

more on the structure of these groups, see any undergraduate algebra textbook (for
example, [Art, J, La3]).

1.5 RSA REVISITED

We have developed sufficient machinery to prove why RSA works. Remember
Bob chose two primeg and g, and numbersl (for decrypt) ande (for encrypt)
such thatde = 1 mod ¢(pq). He made publidV = pq ande and kept secret the
two primes andi. Alice wants to send Bob a numbé{ (smaller thanV). She
encrypts the message by sendiXig= M ¢ mod N. Bob then decrypts the message
by calculatingX ¥ mod N, which we claimed equals/.

As X = M°mod N, there is an integer such thatX = M€ + nN. Thus
X4 = (M¢+nN)4, and the last term is clearly of the forfW/¢)? +n’ N for some
n’. We need only showM¢)¢ = M mod N. Ased = 1 mod ¢(N), there is an
m such thaed = 1 + m¢(N). Therefore

(M€Y = pMed = pimeN) — pp . (o) = pp o (MPNY™ (1.27)

If M is relatively prime taV then By Euler’s Theorem (Theorem 1.4.22J¢(N) =
1 mod N, which completes the proof. Thus we can only send messages relatively
prime toN. In practice this is not a problem, as it is very unlikely to stumble upon
a message that shares a factor wih of course, if we did find such a message
we could quickly find the factors a¥. If our initial message has a factor in com-
mon with N, we need only tweak our message (add another letter or spell a word
incorrectly).

Why is RSA secure? Assume a third person (say Charlie) intercepts the en-
crypted messag&’. He knowsX, N ande, and wants to recove¥/. Knowing
d such thatde = 1 mod ¢(N) makes decrypting the message trivial: one need
only computeX¢ mod N. Thus Charlie is trying to solve the equatied =
1 mod ¢(N); fortunately for Alice and Bob this equation has two unknowiand
¢(N)! Right now, there is no known fast way to determipi@V) from N. Charlie
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can of course factolV; once he has the factors, he knog@V) and can find;
however, the fastest factorization algorithms make 400 digit numbers unaccessible
for now.

This should be compared to primality testing, which was only recently shown
to be fast ([AgKaSa]). Previous deterministic algorithms to test whether or not a
number is prime were known to be fast only if certain well believed conjectures are
true. It was an immense achievement showing that there is a deterministic, efficient
algorithm. The paper is very accessible, and worth the read.

Remark 1.5.1. Our simple example involved computing a sixty-six digit number,
and this was for a smalV (N = 9797). Using binary expansions to exponenti-
ate, as we need only transmit our message modulave never need to compute
anything larger than the product of four digit numbers.

Remark 1.5.2. See [Bon] for a summary of attempts to break RSA. Certain prod-
ucts of two primes are denoted RSA challenge numbers, and the public is invited to
factor them. With the advent of parallel processing, many numbers have succumbed
to factorization. See http://www.rsasecurity.com/rsalabs/node.asp?id=2092 for more
details.

Exercise 1.5.3.1f M < N is not relatively prime taV, show how to quickly find
the prime factorization oiV.

Exercise 1.5.4(Security Concerns)In the system described, there is no way for
Bob to verify that the message came from Alice! Design a system where Alice makes
some information public (and keeps some secret) so that Bob can verify that Alice
sent the message.

Exercise 1.5.5.Determining¢ (V) is equivalent to factoringV; there is no com-
putational shortcut to factoring. Clearly, if one knows the factors\of= pyq,

one knowsp(N). If one knowsp(N) and N, one can recover the primgsand

g. Show that ifK = N + 1 — ¢(NN), then the two prime factors oV are

(K £V K? —4N)/2, and these numbers are in fact integers.

Exercisé™ 1.5.6(Important) If e and (p — 1)(q — 1) are given, show how one
may efficiently find @ such thated — 1 divides(p — 1)(¢ — 1).

1.6 EISENSTEIN'S PROOF OF QUADRATIC RECIPROCITY

We conclude this introduction to basic number theory and group theory by giv-
ing a proof of quadratic reciprocity (we follow the beautiful exposition in [LP] of
Eisenstein’s proof; see the excellent treatments in [IR, NZM] for alternate proofs).
In 81.2.4, we described Newton’s Method to find square roots of real numbers.
Now we turn our attention to a finite group analogue: for a prpvend ana #

0 mod p, when isz? = a mod p solvable? For example, jf = 5 then(Z/pZ)* =
{1,2,3,4}. Squaring these numbers givEls 4,4, 1} = {1,4}. Thus there are two
solutions ifa € {1,4} and no solutions it € {2,3}. The problem of whether
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or not a given number is a square is solvable: we can simply enumerate the group
(Z/pZ)*, square each element, and see i§ a square. This takes abqusteps;
quadratic reciprocity will take abolitg p steps. For applications, see 84.4.

1.6.1 Legendre Symbol
We introduce notation. From now opandgq will always be distinct odd primes.
Definition 1.6.1(Legendre Symboq;)). The Legendre Symb()%) is

1 if ais a non-zero square modybo
<“) = ¢ 0 ifa=0modulop (1.28)
P —1 if ais anot a square modujo

The Legendre symbol is a function Bp = Z/pZ. We extend the Legendre symbol

to all integers by(¢) = (42242),

Note a is a square modulp if there exists anc € {0,1,...,p — 1} such that

a = 22 mod p.

Definition 1.6.2 (Quadratic Residue, Non-Residuéfor a # 0 mod p, if 22 =

a mod p is solvable (resp., not solvable) we says a quadratic residue (resp.,
non-residue) modulp. Whenp is clear from context, we just say residue and non-
residue.

Exercise 1.6.3.Show the Legendre symbol is multiplicative?) = (2) (2).

P/ \p
Exercisé™ 1.6.4(Euler’s Criterion) For oddp, (%) = a" mod p.

sz

. — p—1
Exercise 1.6.5.Show(=}) = (-1)"7 and (}) = (-1)
Lemma 1.6.6. For p an odd prime, half of the non-zero numberg#ypZ)* are
guadratic residues and half are quadratic non-residues.

Proof. As p is odd,2;* € N. Consider the numbens, 22,.. ., (251)2. Assume
two numbers: andb are equivalent mog@. Thena? = b2 mod p, so(a — b)(a +
b) = 0mod p. Thus eithera = bmod p or a = —b mod p; in other words,

a=p-—0> Forl <a,b< ”T‘l we cannot have = p — b mod p, implying the

21 values above are distinct. Ap — r)? = 2 mod p, the above list is all of the
non-zero squares moduto Thus half the non-zero numbers are non-zero squares,
half are non-squares. O

Remark 1.6.7. By Theorem 1.4.29(Z/pZ)* is a cyclic group with generatar.

Using the group structure we can prove the above lemma directly: once we show
there is at least one non-residue, & are the quadratic residues and #t&+!

are the non-residues.

Exercise 1.6.8.Show for any: # 0 mod p that

{HENICYRE

t=0 t=0
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Exercise 1.6.9.For z € {0,...,p — 1}, let F,,(z) = 3, (%); note F,(0) =

Fp(p—1) = 0. If (=}) = 1, showF, (£5%) = 0. Do you thinkF"(z) is more likely
to be positive or negative? Investigate its values for varipasdp.

Initially the Legendre symbol is defined only when the bottom is prime. We now
extend the definition. Let = p; - ps - - - p; be the product of distinct odd primes.
Then(2) = (:2) () - (+); this is theJacobi symbol and has many of the same
properties as the Legendre symbol. We will study only the Legendre symbol (see
[IR] for more on the Jacobi symbol). Note the Jacobi symbol dagsay that ifa
is a square (a quadratic residue) madhena is a square mog; for each prime
divisor.

The main result (which allows us to calculate the Legendre symbol quickly and

efficiently) is the celebrated

Theorem 1.6.10(The Generalized Law of Quadratic Reciprocityor m, n odd

and relatively prime,
<m> (”) e (1.30)
n m

Gauss gave eight proofs of this deep result wheandn are prime. If either
p or g are equivalent td mod 4 then we have{%) = (%) i.e.,p has a square root
modulog if and only if ¢ has a square root moduto We content ourselves with
proving the case wittn, n prime.

Exercise 1.6.11.Using the Generalized Law of Quadratic Reciprocity, Exercise
1.6.5 and the Euclidean algorithm, show one can determine<ifm is a square
modulom in logarithmic time (i.e., the number of steps is at most a fixed con-
stant multiple oflogm). This incredible efficiency is just one of many important
applications of the Legendre and Jacobi symbols.

1.6.2 The Proof of Quadratic Reciprocity
Our goal is to prove

Theorem 1.6.12Quadratic Reciprocity)Letp andq be distinct odd primes. Then

E-cr e

As p andq are distinct, odd primes, bottf) and (%) are+1. The difficulty is
figuring out which signs are correct, and how the'two signs are related. We use
Euler’s Criterion (Exercise 1.6.4).

The idea behind Eisenstein’s proof is as foIIon%) (g) is —1 to a power. Fur-
ther, we only need to determine the power moduldisenstein shows many ex-
pressions are equivalent modulao this power, and eventually we arrive at an
expression which is trivial to calculate modulo 2. We repeatedly use the fact that
asp andq are distinct primes, the Euclidean algorithm implies that invertible
modulop andp is invertible modulag.
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We choose to present this proof as it showcases many common techniques in
mathematics. In addition to using the Euclidean algorithm and modular arithmetic,
the proof shows that quadratic reciprocity is equivalent to a theorem about the num-
ber of integer solutions of some inequalities, specifically the number of pairs of in-
tegers strictly inside a rectangle. This is just one of many applications of counting
solutions; we discuss this topic in greater detail in Chapter 4.

1.6.3 Preliminaries

Consider all multiples of by an evern < p—1: {2¢,4q, 6g, . .., (p—1)q}. Denote
a generic multiple by.g. Recallz] is the greatest integer less than or equat.to
By the Euclidean algorithm,

aq = [C;q}p—&-ra, O0<ry<p-—1. (1.32)

Thusr, is the least non-negative humber equivalent4¢anod p. The numbers
(=1)"=r, are equivalent to even numbers{,...,p — 1}. If r, is even this is
clear; ifr, is odd, then—1)"er, = p — r, mod p, and a®p andr, are odd, this is
even. Finally note, # 0; if r, = 0 thenp|aq. As p andq are relatively prime, this
impliesp|a; however,p is prime andz < p — 1. Thereforep cannot dividex and

thusr, # 0.

Lemma 1.6.13.1f (—1)"r, = (—1)"*r, thena = b.

Proof. We quickly get+r, = r, mod p. If the plus sign holds, then, = r, mod
pimpliesag = bg mod p. As ¢ is invertible modulg, we geta = b mod p, which
yieldsa = b (asa andb are even integers betwerandp — 1).

If the minus sign holds, then, + r, = 0 mod p, or ag + bg = 0 mod p.
Multiplying by ¢! mod p now givesa + b = 0 mod p. As a andb are even
integers betweeft andp — 1,4 < a +b < 2p — 2. The only integer strictly
betweerd and2p — 2 which is equivalent t@ mod p is p; however,p is odd and
a + b is even. Thus the minus sign cannot hold, and the elements are all distinct.

Remark 1.6.14. The previous argument is very common in mathematics. We will
see a useful variant in Chapter 5, where we show certain numbers are irrational by
proving that if they were not then there would have to be an integer strictly between
0 and1.

Lemma 1.6.15. We have

q o »
(p) — (_1) aeven,a#ﬂ"a7 (133)

wherea even, a # 0 meansy € {2,4,...,p—3,p— 1}.
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Proof. For each even € {2,...,p — 1}, ag = r, mod p. Thus modulg

[Tea= I] ra

a even a even

a#0 a#0
p—1
¢ Jla= I
a even a even
a#0 a#0
q
< H a = H Ta, (1.34)
P/ &sien o even

a0 a0

where the above follows from the fact that we ha?g# choices for an even
(giving the factorqu;l) and Euler’s Criterion (Exercise 1.6.4). Asranges over
all even numbers fror to p — 1, so too do the distinct numbefs-1)"=r, mod p.
Note how important it was that we showegd+ 0 in (1.32), as otherwise we would

just haved = 0 in (1.34). Thus modulg,

H a = H (=1) 7,

a even a even

a#0 a#0 P
[I a=(-1) comanre I ra- (1.35)
@ sien @ slen
Combining gives
P
(q) (_1) a even,az0 Ta H re = H re mod p. (136)
b a even a even

a0 a#0
As eachr,, is invertible modula, so is the product. Thus

q P
(> (=1) aeenazo™ = 1mod p. (1.37)
p
As (%) = £1, the lemma follows by multiplying both sides ). ]

Therefore it suffices to determing,, .., . 7« mod 2. We make one last sim-
plification. By the first step in the Euclidean algorithm (1.32), we haye—=

[%} p + r, forsomer, € {2,...,p — 1}. Hence

Z aq = Z ([ngq]p—Fra) = Z B;]]p—i- Z rq. (1.38)

a#0 a#0 a#0 a#0
As we are summing over even the left hand side above is even. Thus the right

hand side is even, so
aq
E —1|p g r, mod 2
[p}

a even a even

a0 a#0

3 [‘ﬂ 3" 7o mod 2, (1.39)

a even a even

a#0 a#0
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where the last line follows from the fact thatis odd, so modul® dropping the
factor ofp from the left hand side does not change the parity. We have reduced the

proof of quadratic reciprocity to calculating,, oyen a0 [%} . We summarize our
results below.

Lemma 1.6.16. Define

v=Y" [aﬂ (1.40)

Then

(p> — (1), (1.41)
q
Proof. By (1.37) we have
q ~ r
() — (_1) a evena#0 " a (142)
p
By (1.39) we have
Z {c;q] = Z rq mod 2, (1.43)

and the proof for(%) is completed by recalling the definition of the proof for the
case(g) proceeds similarly. O

1.6.4 Counting Lattice Points

As our sums are not over all evenc {0,2,...,p — 1} but rather just over even
a € {2,...,p—1}, this slightly complicates our notation and forces us to be careful
with our book-keeping. We urge the reader not to be too concerned about this slight
complication and instead focus on the fact that we are able to show quadratic reci-
procity is equivalent to counting the number of pairs of integers satisfying certain
relations.

Consider the rectangle with verticesAt= (0,0), B = (p,0), C = (p,¢q) and
D = (0,q). The upward sloping diagonal is given by the equatjos %x Asp
andgq are distinct odd primes, there are no pairs of integerg) on the lineAC.
See Figure 1.2.

We add some non-integer point& = (%£,0), F' = (£,4), G = (0,2) and
H = (%,q). Let#ABC.., denote the number of integer pagtsictly inside the
triangle ABC with evenz-coordinate, andt AE'F denote the number of integer
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H ap,q)

A(0,0) E B(p,0)

Figure 1.2 Lattice for the proof of Quadratic Reciprocity. PoiiéZ,0), F(§,2),
G(0,%), H(%,q)

pairsstrictly inside the triangleAE F'; thus, we do not count any integer pairs on
the linesAB, BC,CD or DA.

We now interpred ... a0 [%} . Consider the vertical line with-coordinate
a. Then [%} gives the number of pairg:, y) with z-coordinate equal ta andy-

coordinate a positive integer at mc{ﬁg} . To see this, consider the lin&C' (which
is given by the equatiop = %:p). For definiteness, let us take= 5, ¢ = 7 and

a = 4. Then [%} = [2] = 5, and there are exactly five integer pairs with

coordinate equal td and positivey-coordinate at most2*|: (4,1), (4,2), (4,3),
(4,4) and(4,5). The general proof proceeds similarly.

Thus} , coen.a0 {%} is the number of integer paisdrictly inside the rectan-

gle ABC D with evenz-coordinate that are below the lindC, which we denote
#ABCeyen. We prove

Lemma 1.6.17. The number of integer pairs under the lid&” strictly inside the
rectangle with even-coordinate is congruent moduibto the number of integer
pairs under the linedA F strictly inside the rectangle. Th4$ABCeoyern = #AEF.

Proof. First observe that i0 < a < % is even then the points undeiC' with -
coordinate equal ta are exactly those under the ligkeF” with z-coordinate equal
to a. We are reduced to showing that the number of points uAdéstrictly inside
the rectangle with even-coordinate is congruent modutdo the number of points
under the lineA F’ strictly inside the rectangle with oddcoordinate. Therefore let
us consider an evanwith £ < a <p —1.

The integer pairs on the line = a strictly inside the rectangle ar@, 1),
(a,2),...,(a,q—1). There argy—1 pairs. Asq is odd, there are an even number of
integer pairs on the line = a strictly inside the rectangle. As there are no integer
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pairs on the lineAC, for a fixeda > £, modulo2 there are the same number of
integer pairaboveAC as there arbelow AC. The number of integer paiebove
AC on the linex = « is equivalent modul@ to the number of integer pairs below
AF on the linex = p — a. To see this, consider the map which takesy) to
(p—2z,9—y). Asa > B andis evenp — a < £ and is odd. Further, every odd
a < Lishit (givenasqq < &, start with the even number— a,qq > £). A similar
proof holds fora < £. O

Exercise 1.6.18.Why are there no integer pairs on the lir>'?

We have thus shown that

3 {‘;‘1] = #AFF mod 2; (1.44)

a even

a#0

remember thatt AEF' is the number of integer pairs strictly inside the triangle
AEF. From Lemma 1.6.16 we know the left hand sidg:iand (%) = (—1)*.
Therefore

p
Reversing the rolls gf andq, we see that
(p> = (—1)¥ = (=1)#ACGF, (1.46)
q

wherery = #AGF mod 2, with #AGF equal to the number of integer pairs
strictly inside the triangledG F'.

Exercise 1.6.19.Prove 1.46.
Combining our expressions farandv yields
p4v = #AEF + #AGF mod 2, (1.47)

which is the number of integer pairs strictly inside the rectangl&F'GG. There are
-1 choices for (z € {1,2,..., 25+ }) and%* choices fowy € {1,2,..., 451},
giving 251 =1 pairs of integers strictly inside the rectanglé& F'G. Thus,

(e - o

(_1)#AEF+#AGF

p—1g—1
2

= (71) P)

which completes the proof of Quadratic Reciprocity.

(1.48)

Exercise 1.6.20(Advanced) Let p be an odd prime. Are there infinitely many
primesq such thaty is a square mog? The reader should return to this problem
after Dirichlet's Theorem (Theorem 2.3.4).





