Preliminary comments

To define a constant, use a single equals sign:

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_3.gif]

Once defined, you can use the constant anywhere you want:

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_4.gif]

To avoid problems,  erase from memory  the assigned value to a

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_5.gif]

When defining a function, you need to remember two important things:
    Use an underscore character after each argument name on the left-hand side (but not on the right-hand side)
    Use a := in the middle

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_6.gif]

Once defined, you can use the function

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_7.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_8.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_9.gif]

The square root of 10

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_10.gif]

We need to tell MATHEMATICA that we need a numerical value.  We can use a decimal point

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_11.gif]

or we can use the N function and ask for 50 digits:

N[ Sqrt[10], 50 ]
3^100
N[%]

The command % refers to the previous output

In the following expression I stand for [Graphics:../Images/MATH.LAB.CHEM155.ST_gr_12.gif]

(3 + 4 I) ^10

More complicated functions

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_13.gif]

Notice the equal ":=" sign that implies a delay calculation, and the underscore "_" sign that implies the independent variable.

Plot a function

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_14.gif]

Make sure that you do not mix the "( ), { } and [ ]" brackets.  MATHEMATICA gets confused and it will send you an error message.

Find the zeros

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_15.gif]

Notices "==" logical sign that determines equality.

We can take the derivative of the function:

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_16.gif]

or

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_17.gif]

We have to tell MATHEMATICA to erase from memory defined constants or functions

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_18.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_19.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_20.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_21.gif]

or

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_22.gif]

Integration

in1=NIntegrate [ Sin [Sin[x]], {x, 0, Pi} ]

or

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_23.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_24.gif]

Relevant integrals in the case of the particle in the box.  Here we use regular integration and also we considered a useful mathematical technique to find integrals.

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_25.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_26.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_27.gif]

We need to consider some substitutions using the "/." command

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_28.gif]

Notice that "/. tells MATHEMATICA to substitute and that the actual substitution is given by  the arrow command ->"and multiple substitution are enclosed by a curly bracket and separated by commas.

Finally consider the following integral:

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_29.gif]
[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_30.gif]

A relevant application in Quantum Mechanics

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_31.gif]

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_32.gif]

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_33.gif]

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_34.gif]

First we consider the integral of the square of the wave function

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_35.gif]

Since α is a positive real number the integral is equal to unity.  Thus we say that psiH10 is normalized.

Now we take the  derivative of the wave function

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_36.gif]

The average <[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_37.gif]> is proportional by the following integral:

[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_38.gif]

Problem 1. - Find the value of <[Graphics:../Images/MATH.LAB.CHEM155.ST_gr_39.gif]> .


Converted by Mathematica      October 2, 2002