Chemistry 361 FINAL EXAM Thursday 17 December, 2009

Name	 	 	 	 	 	 				
					 	 	 	 	 -	

Full credit will be given to correct answers only when ALL the necessary steps are shown.

DO NOT GUESS THE ANSWER.

This is a close book exam, and you are responsible to be sure that your exam has no missing pages (7 pages).

If you consider that there is not enough information to solve a problem you have to specify the missing information and describe the problem solving procedure.

Honor Statement

I have neither give nor received aid in this examination.

Full signature	Full signature		. 			_	_		_					_	_			*****	_	_	_	_	_		
----------------	----------------	--	---------------	--	--	---	---	--	---	--	--	--	--	---	---	--	--	-------	---	---	---	---	---	--	--

Problem 1 (25 points)

For the hydrogen-like wave function,

$$\Psi_{2,1,0} = \frac{1}{4\sqrt{2\pi}} \left(\frac{1}{a_o}\right)^{3/2} \frac{r}{a_o} Exp[-r/2a_o] Cos[\theta]$$
 (1)

- a) Calculate the average or expected value of 1/r (< 1/r >).
- b) Calculate the expected value of the kinetic energy ($\langle E_K \rangle$).

Hint: You could use the previous result and the Viral theorem.

Problem 2 (25 points)

The gas-phase decomposition of ethyl bromide is a first-order reaction, occurring with a rate constant that demonstrates the following dependence on temperature

Effect of temperature on rate constant		
	Experime	ntal value
$Tempeature \ k$	$\begin{array}{c c} 800 \ K \\ 0.036 \ s^{-1} \end{array}$	900 K 1.410 s^{-1}

a) Determine the Arrhenius parameters for this reaction.

b) Using these parameters, determine ΔH^{\pm} and ΔS^{\pm} as described by the Eyring equation.

a)
$$k_1 = A Q$$
 $k_2 = A Q$
 $k_1 = A Q$
 $k_2 = A Q$
 $k_2 = A Q$
 $k_3 = A Q$
 $k_4 = A Q$
 $k_4 = A Q$
 $k_5 = A Q$
 $k_6 = A Q$

Problem 3(25 points)

For the following enzymatic reaction, find the rate of the reaction associated with the mechanism.

$$S + E \xrightarrow{k^{obs}} P + E \tag{3}$$

Mechanism

$$S + E \xrightarrow{k_1^+} SE \tag{4}$$

$$SE \xrightarrow{k_1^-} S + E$$
 (5)

$$SE \xrightarrow{k_2} P + E$$
 (6)

but the product inhibits the active isomer of the enzyme

$$P + E \xrightarrow{k_i^+} \bar{E} \tag{7}$$

$$\bar{E} \xrightarrow{k_i^-} P + E$$
(8)

$$\frac{dSE}{dt} = k! S.E - k! SE - k! SE = 0 \Rightarrow SE = \frac{S.E}{KM}$$

$$\frac{dE}{dt} = k! P.E - k! E = 0 \Rightarrow E = K:P.E$$

$$E_0 = E[1 + \frac{S}{KM} + K:P] \Rightarrow E = \frac{E_0 K_M K_0}{R_1(K_M + S)}$$

$$E = \frac{K_M E_0}{K_M E_0}$$

Kuts + Ki Kut

$$late = k, SE = \frac{k_2 E_0 S'}{K_M + S + K_c K_M P} = \frac{V_m S'}{K_M + S + K_c K_M P}$$

Problem 4 (25 points)

My student is considering taking some time off this weekend, but before leaving he wants to start an experiment with $E.\ coli.$ He namely needs to grow a colony starting with one bacterium. Now he wants to start the colony with one bacterium at 9:00 am this Friday and come back and check the colony on Sunday 9:00am.

- a) Assuming an infinite amount of food and optimal conditions, he knows that E. coli reproduces every 20 min. Calculate the number of bacteria after 48 hrs.
- b) If the mass of a single bacterium is $10^{-12}g$, what is the mass of the colony after 24 hrs?
- c) Compare the mass in b) with the mass of an average male (70 kg), and/or the mass of the Earth $(5.98 \times 10^{24} kg)$

a) Half-lik =
$$G_{1/2} = 20 \text{ min} \implies R = \frac{\ln 2}{G_{1/2}}$$

 $N(t) = N_0 Q^{t} R T N_{0} = 1$
 $N(t) = \sqrt{\frac{\ln 2 \frac{t}{tomn}}{T}} = \sqrt{\frac{\ln (2^{t/2} min)}{2000}} = 2$
 $V(t) = \sqrt{\frac{\ln 2 \frac{t}{tomn}}{T}} = \sqrt{\frac{\ln (2^{t/2} min)}{2000}} = 2$
 $V(t) = \sqrt{\frac{\ln 2 \frac{t}{tomn}}{T}} = \sqrt{\frac{\ln (2^{t/2} min)}{2000}} = 2$

$$N(48h) = 2^{\frac{3250}{25}} = 2^{144} = 2.23 \times 10^{43}$$

b)
$$N(2410) = 2^{72} = 4.72 \times 10^{21}$$

 $Mass = 4.72 \times 10^{9} g = 4.77 \times 10^{6} \text{ Kg}$

Notice that the man often 48hr = 2.23 × 1028 kg > MEanth

Problem 5 (25 points)

Several years ago an organic synthetic chemist friend asked to help him analyze his data. He was looking at the decomposition of a couple of reagents in a particular solvent. For a fixed solvent, he found different rates of decomposition.

The problem can be reduced to the following overall reactions,

$$A + R \xrightarrow{k_1} P_1 \tag{9}$$

$$B + R \xrightarrow{k_2} P_2 \tag{10}$$

- a) Find the concentrations of the reactants as function of time, assuming that the initial concentrations are A_o , and B_o , and that R is in excess, so we can consider a pseudo-first order reactions.
- b) Since we know that at time t_1 , only 4% of A and 80% of B are left, what is the ration of k_1/k_2 .
- c) If A_o and B_o are equimolal, find a relation between times t_1 and t_2 at which only 13% of A is left at time t_1 and the same percentage of B is left at t_2 .

w) role should include
$$R_{c}^{\perp}$$
 $-k_{1}E]T$

$$\frac{dE}{dt} = -k_{1}ER]A \implies A(t) = A_{c}C$$

ALD $B(t) = B_{c}C$

$$k_{1}ERT$$

ALD $B(t) = B_{c}C$

$$k_{2}ERT$$

AND $A_{1} = A_{c}C$

$$k_{1}ERTt_{1}$$

and $A_{1} = B_{c}C$

$$k_{2}ERTt_{2}$$

$$k_{1} = k_{1}ERTt_{1}$$

and $k_{1} = k_{2}ERTt_{2}$

$$\frac{k_{1}}{k_{2}} = \frac{\ln(A_{1}|A_{c})}{\ln(B_{1}|B_{c})} = \frac{\ln(C_{1}CY)}{\ln(C_{2}SQ)} = 14.4 = 14 (2 sig figs)$$

c) Censider at z for B

$$k_{1}ERTt_{1}$$

and $k_{2}ERTt_{2}$

$$k_{1}ERTt_{1} = k_{2}ERTt_{2}$$

$$k_{1}ERTt_{1} = k_{2}ERTt_{2}$$

$$k_{1}ERTt_{1} = k_{2}ERTt_{2}$$

$$k_{2}ERTt_{2}$$

$$k_{1}ERTt_{1} = k_{2}ERTt_{2}$$

$$k_{2}ERTt_{2}$$

Problem 6 (25 points)

The following mechanism, first suggested by Peacock-López, Radov and Flesner (1996), is now widely know as the Templator

$$Ao \xrightarrow{k_o} A$$
 (11)

$$Bo \xrightarrow{k_o} B$$
 (12)

$$A + B \xrightarrow{k_u} T \tag{13}$$

$$A + B + T \xrightarrow{k_t} T + T \tag{14}$$

$$T \xrightarrow{E} \phi$$
 (15)

Using the mass action laws a particular definitions and scaling, we get the following dimensionless ordinary differential equations:

$$\frac{dX}{d\tau} = r - X^2 Y \tag{16}$$

$$\frac{dY}{d\tau} = X^2 Y - \frac{Y}{K+Y} \tag{17}$$

where X is related (A + B)/2, and Y to T.

For Eqs. (16, 17):

- **b**) (10 points) Find the steady states (\bar{X}, \bar{Y}) and any constraints in the parameter values
- c) (10 points) Calculate the relaxation matrix as a function of the steady states (\bar{X}, \bar{Y}) .
- d) (10 points) Calculate the relaxation matrix as a function of the rescaled r_o .
- e) (35 points) Find an analytical expression for the bifurcation relation for the rescaled r as a function of K that separates homogeneous stable steady state and oscillatory solutions.

b)
$$r = \frac{1}{K+Y} = \frac{1-r}{K}$$
 $r = \frac{1-r}{K}$
 $r = \frac{1-r}{2}$
 $r = \frac{1-r}{K}$
 $r = \frac{1-r}{2}$
 $r = \frac{1-r}{K}$
 $r = \frac{1-r}{K}$