Problem Set 3
P15.1) This problem explores under what conditions the classical limut is reached for a macroscopic

cubic box of edge length a. An argon atom of average translational energy 3/2 kT is confined in a cubic
box of volume 7= 0.500 m’ at 298 K. Use the result from Equation (15.25) for the dependence of the

energy levels on a and on the quantum numbers n,, n,. and n..

a. What is the value of the “reduced quantum number” « = m for T=298 K?

b. What is the energy separation between the levels & and & + 17 (Hint: Subtract Eo+ from E, before
plugging in numbers.)

c. Calculate the ratio (E, , ~ E,)/kT and use your result to conclude whether a classical or quantum

mechanical description 1s appropriate for the particle.
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b) What 15 the energy separation between the levels & and & = 17 (Hint: Subtract E,,, from E, before
plugging in numbers.
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c) Calculate the ratio %aﬂd use your result to conclude whether a classical or quantum

mechanical description 1s appropriate for the particle.
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Because AE =< kT, a classical description 1s appropnate.

P15.5) Suppose that the wave function for a system can be written as

3+J_1

p ()= 40+ 0+ T g )
and that ¢(x). ¢(x). and @(x) are normalized eigenfunctions of the operator EM with eigenvalues E;,
3E), and 7E), respectively.
a. Venfy that y(x) 1s normalized.
b. What are the possible values that you could obtain in measuring the kinetic energy on identically
prepared systems?
c. What is the probability of measunng each of these eigenvalues?

d. What 1s the average value of Ej,,..,. that you would obtam from a large number of measurements?



a) We first determune 1f the wave function is normalized.
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All but the first three integrals are zero because the functions ¢ (x).¢. (x). and ¢, (x) are orthogonal.

The first three mtegrals have the value one, because the functions are normalized. Therefore,
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b) The only possﬂ)le values of the observable kinetic energy that you will measure are those

corresponding to the finite number of terms m the superposition wave function. In this case, the only
values that you will measure are E;, 3E,, and 7E,.

¢) For a normalized superposition wave function, the probability of observing a particular eigenvalue 1s
equal to the square of the magnitude of the coefficient of that kinetic energy eigenfunction n the
superposition wave function. These coefficients have been calculated above. The probabilities of

observing E1, 3E;, and 7E) arel/4, 1/16, and 11/16, respectively.

d) The average value of the kinetic energy 1s given by
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P15.9) The function w{x)= A(x/a)*[1-(x/a)] 1s an acceptable wave function for the particle in the one-

dmensional infinite depth box of length a. Calculate the normahization constant 4 and the expectation
values{x) and {x%} .
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P15.11) Denive an equation for the probability that a particle characterized by the quantum number n 13

m the first quarter (0< x< a/4) of an mfinite depth box. Show that this probability approaches the
classical ot asn —» .

Using the standard integral !‘m“{b}]dy -—sm{lb_}}
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As n—p e, the second term goes to zero, and the probability approaches 0.23.
This 15 the classical value, because the particle 1s equally likely to be found anywhere m the box.

P15.12) It 15 useful to consider the result for the energy eigemvalues for the one-dimensional box

E = hinlfﬂmai =123 . asafonction of n, m, and a.



a. By what factor do you need to change the box length to decrease the zero point energy by a factor of
275 for a fixed value of m?

b. By what factor would you have to change n for fixed values of a and m to increase the energy by a

factor of G007

c. By what factor would you have to change a at constant n to have the zero point energies of a He
atom be equal to the zero pomt energy of a proton m the box?
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P15.14)
a. Show by substitution into Equation (15.19) that the eigenfunctions of H for a box with lengths

along the x, y, and z directions of a, b, and ¢, respectively, are

Wiy Vo 2)= st.n["fx)sm( H"#F]sin[""”] _
a1y a b .

m terms of n, n,. n., and a, b, and c.

b. Obtain an expression for E,
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P15.18) Are the eigenfunctions of H for the particle in the one-dimensional box also eizenfunctions of

the momentum operator p, 7 Calculate the average value of p, for the case n = 3. Repeat your

calculation for n = 5 and, from these two results, suggest an expression valid for all values of n. How

does your result compare with the prediction based on classical physics?
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This 1s the same result that would be obtained using classical physics. The classical particle 15 equally

hkely to be moving in the positive and negative x directions. Therefore the average of a large number of

measurements of the momentum is zero for the classical particle moving in a constant potential.

P15.11) Generally, the quantization of translational motion 15 not significant for atoms because of their

mass. However, this conclusion depends on the dimensions of the space to which they are confined.

Zeohtes are structures with small pores that we descnibe by a cube with edge length 1 nm Calculate the

energy of a Hx molecule with ne = ny = n. = 10. Compare this energy to kT at T=300. K. Is a classical or

a quanfum description appropriate?
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Using the results of P15.1, the ratio of the energy spacing between levels and kT determunes if a classical
o gquantum description 1s appropriate.
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Because this ratio 15 not much smaller than one, a quantum description 15 appropriate.

P15.32) Consider a particle m a one-dimensional box defined by
Fix)=0,a>x>0and I'{x) =, xz a, x < 0. Explam why each of the following unnormalized
functions 13 or is not an acceptable wave function based on cnteria such as bemg consistent with the

boundary conditions, and with the association of " (x)y (x)dx with probability.
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a) Acos™ X icnotan acceptable wave function because it does not satisfy the boundary condition that
a

w(0)=0.

b) B{x + x’} 15 not an acceptable wave function becanse it does not satisfy the boundary condifion that
wia)=0.

¢) Cx’(x—a) is an acceptable wave function It satisfies both boundary conditions and can be
normalized.

d) 15 not an acceptable wave function It goes to mfinity at x = 0 and cannot be normalized in
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