Problem set 4
P16.1) In thas problem, yon will caleulate the transmission probability through the bamer illustrated i

Figure 16.8. We first go through the mathematics leading to the solufion. You will then camry out further

L

calculations.

The domam i which the caleulation 15 camed out 1s divided mio three regions for which the potentials

are
Fix)=0 forx=0 Fegionl
Fix)=F, forl0<x<a PRemonll
Fix)=0 forxza Region Il

The wave functions must have the following form m the three regions if E < [:

p{x}=denp{+i',lﬁT—2E I]+ Eenp[-i,li l:;E x]

=Ae* 4+ Be™* Region I
EE [m@,-E)
wix)=Cexp| - %I:l-hﬂﬂfpl:-ﬁ % x]
=Ce“+De*™ Fegion I
wix)=F exp +E1H1mf x|+ Gexp -i.Fm:E x
i 3 i
=Fe&* +Ge™ Region I

Assmme that the wave approaches the bamer from the negative x direction. The coefficient B cannot be

set equal to zero because Bl represents reflection from the bamer. However, G can be set
equal to zero because there 15 no wave meident on the bamer from the positive x direction.
a. The wave funchions and ther denvatives mmst be contiomous at x = 0 and x = a. Show that the
coefficients mmst satisfy the following condifions:
A+B=C+ D Ce*“+De™mFag™
ik

A_E--%[-EM m ~-Ce®+De™=—Fe¢™
x



b. Because the transmission probability is given by |F/4[". it is useful to manipulate these equations to
get a relationship between F and 4. By adding and subtracting the first pair of equafions, 4 and B
can be expressed i terms of C and D. The second pair of equations can be solved individually to

give equations for D and O in terms of F. Show that

D= ik &'™ 4+ x8'™ F
i g™

C=-Ek g™ 4y gt Foand
Q™
(k=) Ca{ik+) D
A= Dik
c. Substitute these results for C and I mn terms of F mto

_ (i =a)C+(k+u) D

A
2ik

to relate 4 and F. Show that

-k

2ikd = %[I:i'k = W=k + & )€™ + (ik + )ik + )e ™ ]F
d. Usmng the hyperbohe mgonometnic fimetions

T e e

smh x and cosh x= 5

and the relationship cosh” x — sinh’ x=1. show that

‘ Er _ 16(xk)
Al 160ckY + (40 =) +16(xck)") sinh* (xca)
B 1
" 14 [0k + &) sinh? (xa)]f 4 (xk)?
e. Plot the transmission probability for an electron as a finction of energy for Fi=1.6x 107" Jand a =

9.0 % 107" m up to an energy of 8 x 107" J. At what enersy is the tunneling probability 0.17 At what

energy 1s the tunneling probability 0.027



f

Plot the transmission probability for an electron of energy 0.50 » 107 T as a fimction of the barrier
width for Iy = 1.6 % 107 J between 2 % 107 and 8 « 107° m. At what barrier width is the
transmission probability 0.27

w(x)= JJ’J*E;’ +Bs"’r*:-'a'=_.n“*= +Bea't= FRegion I
w{x}:ﬂs-@'+ﬂ;@:=Ca’"—Ds"" Regimn II

w(x)= Fs+4$‘ + Ga_ql*i;: =Fe''ts + Galts Region III

At x =0, the boundary betwesn regions [ and II, sat the amplitudes
and the derivatives of the wave functions equal.

A«B=C+D

Dhfferentiate the wave fimetions and setx = 0.

ikd ~ikB= <4 & D

..-!—B:—%{—C+D}

Atx = g, the boundary between regions Il and ITI, set the amplitudes
and the denvatives of the wave fimetions of the wave functions aqual.
Ce""+De " =Fg"™

Differentiate the wave finctions and setx = a.

el e = gD @™ = jkF gt

—C E"'+ﬂﬂ'"" =£FE+“:.
K

b} We begm by elmunating B from the set of equations.



Solving ikA-ik(C+D- A)=—x C+x D for 4 gives

d={i'k— k)C+(ik+x)D
2ik

Fe'* - De™*

F:
and substituting this result into - xCe™* +xDe™" = ik F&'** gives

& & L
-n{FE‘ De ]e‘"-brﬂe“"-i'kF&"‘* or

Rewriting Ce™™* + Dé™* = F¢** i the form C=

E—\lﬂ
—xFe* 4+ De " mik F ¢**
resulting in an equation relating [ and F

. ika ddr g
D=rke a0 F

-

Torelate C and F we begm with the two eguations

Ce *+Dg*=Fe™ and ~xCe *+xDe™*=ikFe™*
Solving the second equation for C and using our result for D,

we obtain
ike™ 4 x gt -
. .F -hl.._-kF +HiE &
C=rDe“"-ikFe”"" r[ Qxcaee ]E e
Ke"~* e
=ik g"t® 4 gttt
Cwm= F
T it

¢) We now use the expressions for C and D m terms of F to express 4 m terms of F.
(ik-x)C+(ik+x)D . .
2k Ere

We substitute these expressions for C and D mto 4 =

: ika =ik
F-n-{r'k-rr}lkéﬂ-l ;_:E F
K

—ik et 4 gtk
Qg

(ik-x)
A=

2ik

d) To obtain the mliu%._ we proceed as follows.



g.i-r'l.i
2x
g.i-r'l.i
2x

dik A= j{ik-r}{-i’k+r}€““+{I’k+r]{ik+r}e"‘]F

2ikd=

(a4 4 Dikk e — ke - e 4 dik ket 4 .Ic'z-ﬁ!“"']F

g —g" g4’

Using the defimtions simhx= and coshx=

F ik a et dikae it

A {k*-r*}{a“”-e‘"}+ 1ikr{e‘““’+e‘"} ) E[E -rt}siuhra+ dikw coshua
T Ak e ~dikxet
I{kl-xj]smhra+ dikxcoshia 1[k”-xi}sinhxu--ﬂ-fk::mshxa
: 16({ k)
) 4[k2 -x* }1 sinh® ka+ 16(kx)’ cosh’ xca
16(kx)’
4{k:-r1}:sjnh1rn+lﬁ{kr}:[1+ sci.nhirn}

In the last step, we have used the relation sinh® x+ cosh® x=1
Our final result 1s a rather compact equation.
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e) Plotting ‘%{ as a function of E, we obtain the followimg graph. By replotting the data over a smaller

interval near E= 1x 1077 I, we find that }I{ =01 for E=15x10"Tand 002 for E=1.1x 107" 1.
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P16.2) Semuconductors can become conductive if their temperature 15 raised sufficiently to populate
the (empty) conduction band from the highest filled levels in the valence band. The ratio of the

populations m the highest level of the conduction band to that of the lowest level m the conduction band

15

Moonduction _ Econdbuction - AEJET
r!-ui'nu -gul.mu
where AE 15 the band gap, which i1s 0.661 eV for Ge and 5.5 eV for diamond. Assume for simplhicity that

the ratio of the degeneracies 1s one and that the semiconductor becomes sufficiently conductive when

Poomdveton 1 0107
HI‘EH
At what temperatures will germanum and diamond become sufficiently conductrve? Given that the
most stable form of carbon at normal pressures 1s graphite and that graphite sublimates near 3700 K,
could you heat diamond encugh to make 1t conductive and not sublimate 17

For germanium, we obtam
T - -AE | _0.6616Vx1.602x10° J eV s
! klu-[ - "md.m.r]- 1_331:{1[]'33]]{-',{111{1_[},{10—6]
| gﬁ.ﬁm& Hw i
For diamond, we obtain
T - -AE _ 55 eVxL60x10P TV
} Hn'[ - ](nm] 138110 JK % In(1.0x10°°)
| El.u-ﬂl':m:ﬂ Hw

We predict that diamond would not become conductive before it decomposes.
P16.3) For the mnetwork of fcarotens modeled usmg the particle in the box, the position-dependent

probability density of finding 1 of the 22 electrons 15 given by

2 o nEx
ot -2
00 =y, f =2 s =
The gquantum number n n this egquation 13 determuned by the energy level of the electron under
consideration. As we saw in Chapter 15, this function is strongly position dependent. The guestion
addressed in this problem is as follows: Would you alse expect the total probability density defined by

PM{I}-EJF‘{I}F to be strongly position dependent? The sum 1z over all the electrons in the =



network.
a. Calculate the total probability density PM{I}'E.lﬁ{I}F using the box length a = 29.0 nm and

plot your results as a function of x. Does F_,(x) have the same value near the ends and at the
mnddle of the molecule?

b. Determine AP, (x)/(F . (x)}. where AP __(x) 15 the peak-to-peak amplitude of P (x) in the
mterval between 12.0 and 16.0 nm.

c. Compare the result of part (k) with what vou would obtain for an electron in the lughest occupied

energy level

d. What value would you expect for F_,(x) if the electrons were umformly distmbuted over the
molecule? How does flus value compare with your result from part ()7

a) We need to take all the electrons into account and do so by summmg the probabilites for each
electron. Plotting the data for B, (x) =3 |w, {x}r gives the figure shown below.
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Pioeix) vanes more strongly near the ends of the chain than at the nmddle.
b} Plotting P,...(x) over an mterval in the nuddle of the range gives the figure shown below.
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From this data, we see that




c) Plotting P, _;;(x) over an mterval in the middle of the range gives the fizure shown below.
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(AP, (x)) 0.07x10'm™

the highest occupied state 15 approxmmately 20 times as large as that for the probability density for all
electrons.

From this data, we see that

= 2 The vanation of the probability density for

d) There would be 22 electrons umiformly distnbuted over a length of 29 nm. Therefore the probabilicy
density would bel.76. This 1s very close to the average value obtamed in part (a).

P16.5) Calculate the energy levels of the w-network in octatetraene, CgHip, using the particle in the box
model. To calculate the box length, assume that the molecule is linear and use the values 135 and 154
pm for C=C and C-C bonds. What 15 the wavelength of light required to imduce a transition from the
ground state to the first excited state?

The length of the box 13 a=4x135pm+ 3% 154 pm =1002pm. The energy levels are given by

E = E“‘h', and the transition is betweenn =4 and n =3,
ma-

e ¢ Smalc  8x0.11x10™ kegx(10.02x10™ m) %2.998x10° ms
v E/h h(ni-nf) 6.626x107 I 5x( 5 —4)

P16.T) In thus prduble‘fu, you will selve for the total energy elgenfinctions and eigenvalues for an
electron m a fimte depth box. We first go through the calculahion for the box parameters used m Figure
16.1. You will then carry out the calculation for a different set of parameters.



We describe the potential in this way:
Vin =V, fu-rxﬂ-% Region I
F(x)=0 for —%ﬁxﬁ% Region II

Vi) =V, fu-rxé% Region III
The elgenfimctions must have the followmng form mn these three regions:

Fuj=am[+ Fm:i+-ﬂ ] +m[_ y]

g+ Be™* Region I
wix)=Csm x-|- Dcos EmE
= s kx + Deos ke Fegion II
wix)= AEH]JJ'-JW x]+ A’Eﬂp]LdW x]
=de"+ e Fegion IlI

So that the wave functions remam finite at large positive and negative values of x, £ =B =0. An
additional condition mmst also be sahisfied To amiwve at physically meamingful solutions for the
eigenfimctions, the wave functions m the separate regions st have the same amplitude and denvatives
at the values of x = @2 and x = —a/2 boundmg the regions. This restncts the possible values for the
coefficients A, B, C, and D). Show that applying these conditions gives the followmg equations:

Be* @™ = _Csin k%+ Decos k%

Bice "% =Ckcaskg+ Dksink%

Aeg=ia - CsmkE+DcuskE

- Awg = =C’kﬁf’5k%'ﬂksjnk%

These two pairs of equations differ on the nght side only by the sign of one term. We can obtain a set of



equations that contain fewer coefficients by adding and subtracting each pair of equations to give
(A4 B)e = = EDms[ng
(A B)e=te =1C‘sin[k%}
(A4 By g™ =1kaﬂ[k%}

(A= B e = Eﬂkcus[k%J

At tlus point we notice that by dividing the equations in each pair, the coefficients can be eliminated to

B a 2m(F,-E) _JEmE JEmEE
.n:-ktan[klj D-IJ e =5z tan T and

ekca{s2) - [P [BE o PRE )

Multiplymg these equations on both sides by a/2 gives dimensionless parameters and the final equations

give

are

[m(l,- E)a*  |mEa’* an (mEa®

Vo2t Yoaw Yo and

[m{V, —E)a* _ ;mEu- ]'mEa
w Ve N
The allowed energy values E mmst satisfy these equations. They can be obtamed by graphing the two

sides of each equation against E. The mtersections of the two curves are the allowed energy eigenvalues.
For the parameters in the caption of Figure 16.1, Fi=1.20 % 107" J and a = 1.00 x 107 m, the following

two graphs are obtained:
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The five allowed energy levels are at 4.61 x 107 4.00 % 107, and 1.07 % 107%] (top figure), and 1.84

s 107 and 7.13 = 107 T (bottom figure).

a. Given these values, caleulate A for each energy level. Is the relation 4 = 2a/n (for n an integer) that
arose from the calculations on the infimtely deep box still valid? Compare the values with the
correspondmg energy level in the infimitely deep box. Explam why the differences anse.

b. Repeat this calculation for Fo=35.00 % 107 Jand a=0.900 % 10~ m. Do you think that there will be

fewer or more bound states than for the problem just worked out? How many allowed energy levels are
there for this well depth and w hat 15 the energy comresponding to each level?

a) Using the equation — = we obtain the following values
) = a .:J..||'2 mE 5

E Ala Ala for infinite box
461 =107 7 220 2.00
184 %1077 1.15 1.00
409 = 1077 ] 0.768 0.667
T13= 10777 0.582 0500
107 = 1077 0475 0400

We see that A/a 15 always greater for the finite depth box. This is necessary if the parficle 1s to have a

fimte probability of being outside of the box. Note that if /a 15 less than that for the mfimtely deep box,
additional nodes are introduced mside the box.



b) Because a finite depth box has fewer bound states than an infinitely deep box, one should expect that
the number of bound states will decrease as the depth becomes less. Graphmg the equations

m(V,-E)a’  |mEa® __ |mEa’
- = — tan — nd
J 2 w N
Jm(}; ~E)a® _ |mEa® _ [mEd’
28° w Y W

for Fy=5.00 x 107 J and a = 0.900 = 107 m gives
=]

o4
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1
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There are 3 bound states whose energies are 4.76 10797, 186 1077 ] and
305107 1



